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Abstract. Complementary-Label Learning (CLL) is a weakly-supervised
learning paradigm designed to reduce label collection costs compared to
traditional supervised learning with ordinary labels. However, its com-
petitiveness and feasibility in real-world scenarios still need to be de-
termined. Although recent CLL studies using real-world datasets with
human annotations have begun to explore these challenges, annotating
complementary labels still incurs a non-trivial cost. Consequently, the
current availability of real-world data is insufficient to fully demonstrate
the practical scalability of CLL. The emergence of Vision-Language Mod-
els (VLMs) presents a promising alternative to address the limitation.
Somehow, our analysis shows that directly converting the human labeling
process for VLMs introduces significant label noise and bias. To address
this issue, we developed customized prompts designed to systematically
reduce label noise and bias in VLM-based labeling. Our proposed frame-
work effectively curates VLM-annotated, achieving an improvement of
10% performance over human-annotated datasets. This work represents
a significant step toward making CLL viable for real-world applications.

Keywords: VLM annotation · Complementary Datasets · Complementary-
Label Learning.

1 Introduction

Complementary-Label Learning (CLL) is a paradigm designed to address the
high costs of acquiring ordinary labels, a major challenge in multi-class classi-
fication applications. Obtaining ordinary labels can be prohibitively expensive,
time-consuming, and reliant on expert annotators in some applications. In con-
trast, complementary labels (CLs)–annotations that indicate only the categories
a data point does not belong to [1,2]–can be collected with significantly lower cost
and effort. This potential has inspired extensive research into learning from CLs,
leading to the development of algorithms grounded in theoretical frameworks.
Many studies have demonstrated that models can effectively learn from com-
plementary labels alone, achieving promising results on synthetic datasets [3–6].

⋆ Equal contribution.
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Despite significant algorithms and theoretical advancements, early research
mainly relied on synthetic datasets. The exclusive use of synthetic datasets in
initial studies left the practical effectiveness of CLL methods largely untested
in real-world scenarios, raising critical concerns about their applicability. To
address this gap, researchers have shifted their focus to real-world scenarios,
resulting in the development of CLImage [7], the first set of human-annotated
complementary-label collection of datasets designed to reflect real-world distri-
butions. CLImage offered an in-depth analysis of the characteristics of human-
annotated CLs and evaluated the performance of existing CLL methods on these
datasets. Their findings highlighted that inherent biases—such as human anno-
tators favoring easily recognizable items—and label noise, where ordinary labels
appear as complementary labels, can substantially impair the performance of
existing algorithms [7].

While CLL research has predominantly focused on image datasets, it has yet
to extend to other modalities, such as text or video. The emergence of Vision-
Language Models (VLMs) [8,9] offers a promising alternative to human annota-
tion. In contrast to Large Language Models (LLMs) [10], which are optimized
for text-based tasks, VLMs are specifically designed to process multimodal data,
making them particularly suited for complementary-label annotation in vision-
centric domains. Recent studies have demonstrated the utility of VLMs across
applications, including multi-label learning [11], semi-supervised learning [12],
and learning from partial labels [13, 14], showcasing their potential to address
the limitations of current CLL methods effectively.

To the best of our knowledge, no prior work has systematically investigated
how to effectively adapt and utilize VLMs for annotating weak labels. This gap in
the literature serves as the foundation for our study, which aims to propose and
evaluate a novel framework for leveraging VLMs to annotate complementary-
label datasets. Our analysis revealed that a direct adaptation of the human-
labeling protocol for VLM-based annotation encounters a challenge, particu-
larly with high label noise rates. Label noise is a key factor that degrades the
performance of learning classifiers in CLL [7, 15]. This suggests that human-
labeling protocols are inefficient when directly applied to VLM-based annota-
tion. In response, we developed a tailored complementary label collection proto-
col specifically optimized for VLMs. Our proposed protocol achieved remarkable
success, reducing label noise rates compared to the human-annotated CLImage
datasets [7]. This reduction in label noise highlights the potential of our proposed
method to enhance the quality and reliability of VLM-labeled datasets.

Building on this, we introduced a new VLM-annotated dataset, ACLImage,
and conducted extensive benchmarking experiments using state-of-the-art CLL
algorithms. Additionally, we conducted a dataset-level ablation study to gain
deeper insights into the characteristics of VLM-annotated datasets in comparison
to human-annotated datasets. Our contributions are summarized as follows:

1. We demonstrate the transformative potential of VLMs in replacing human
labeling, drastically reducing costs and enabling the automated creation of
large-scale datasets with efficiency.
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2. To the best of our knowledge, we are the first to propose a unified mechanism
that supports labeling scenarios in weakly-supervised learning with a robust
labeling protocol to tackle challenges associated with VLM-annotated.

3. Through an extensive benchmarking study, we compare VLM-annotated
with human-annotated across four datasets. We discovered the efficacy of
VLM-annotated as follows:
– Compared with existing label noise of complementary-label datasets, us-

ing VLM for labeling is better than human annotations.
– VLM-annotated demonstrates lower bias compared to human-annotated

datasets, a critical factor that significantly impacts model performance.

2 Background

2.1 Complementary-Label Learning Algorithms

In the standard supervised multi-class classification, referred to as the ordinary
label learning (OLL), a labeled dataset D = {(xi, yi)}ni=1 from an unknown
distribution P (x, y) is given, where xi is the M -dimension feature vector and
yi ∈ [K] = {1, 2, . . . ,K} is the class label of instance i. In CLL settings, instead of
the label yi, we have a complementary label ȳi for each instance, which indicates
a class that xi does not belong to. CLL and OLL share the goal of predicting
the correct labels of unseen instances.

To learn from indirect label information, researchers have made assumptions
about the generation process of CLs to ensure the feasibility of learning problems
and algorithms. A common assumption is the class-conditional assumption [4],
which states that the distribution of a complementary label depends only on its
ordinary label and is independent of the instance’s features, i.e., P (ȳi | xi, yi) =
P (ȳi | yi) for each i. To represent the relationship between complementary and
ordinary labels, a transition matrix is used, where Tj,k is the probability of
obtaining a complementary label k given the ordinary label j, i.e., Tj,k = P (ȳ =
k | y = j) for all j, k ∈ [K]. There are two common assumptions for CLL: (1)
Label noiseless Tj,j = 0 requires that the generation process produce CLs from
the remaining classes. If the diagonal of T is greater than zero, it is considered
label noise, (2) Uniform transition matrix Tj,k = 1

K−1 specifies that CLs are
generated uniformly. If the generation process is non-uniform Tj,k ̸= 1

K−1 , it is
called ‘bias’ and represented by a biased transition matrix.

Building on this assumption, the previous works converted the risk mini-
mization in OLL into an unbiased risk estimation (URE) [1]. The surrogate
complementary loss (SCL) algorithm later addressed URE’s overfitting issue
by designing loss functions to reduce variance in the empirical estimation. To
relax the two assumptions, the forward-correction loss (FWD) method accom-
modates biased transition matrix by adding a transition layer into deep neural
networks to improve the estimation of the transition matrix. Alternatively, the
complementary probability estimates (CPE) tackle biased transition matrix and
label noise by reducing the CLL problem to probability estimation to remedy
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the impact from the transition matrix. Beyond a single complementary label
per instance, the previous work studied multiple complementary label (MCL)
problems [16]. They assumed that a label collection protocol randomly selects a
label set and asks labelers whether the correct label is included. They then estab-
lished the URE framework for learning with MCLs. The libcll benchmark [15]
has showed that MCL outperforms other CLL algorithms with comprehensive
ablation studies on two assumptions.

2.2 Visual-Language Models

Visual-Language Models (VLMs) have recently demonstrated remarkable ca-
pabilities in object recognition and visual reasoning. For instance, LLaVA has
showcased advanced proficiency in processing images and textual prompts to gen-
erate accurate textual descriptions [17]. Building upon this foundation, LLaVA-
1.6 further enhances compositional reasoning and data efficiency through a fully-
connected vision-language connector [18]. Recent extensions of the LLaVA frame-
work have expanded its applicability to video scenarios, demonstrating the ver-
satility of VLMs across different modalities [19,20].

With the growing maturity of VLM capabilities, their integration into data
labeling processes has garnered increasing attention in computer vision (CV)
tasks. For example, VLMs have been successfully adapted as labelers for down-
stream image recognition tasks [8] and as robust detectors to identify and miti-
gate noisy labels [14]. In the domain of weakly-supervised learning, VLMs have
been utilized to generate strong positive and negative pseudo-labels for multi-
label learning [11, 12] and to provide partial annotations [13]. The integration
of VLMs into label collection protocols offers a transformative opportunity to
enhance labeling efficiency and accuracy in CV tasks, marking a promising step
forward in addressing challenges within data annotation workflows.

3 Complementary Label Collection Protocol for VLMs

Previous works studied CLL algorithms based on synthetic complementary datasets,
which simplifies the problem for theoretical analysis but remains a gap in ap-
plying CLL algorithms to real-world problems. CLImage1 [7] collected the real-
world complementary label by human annotations based on CIFAR [21] and
TinyImageNet200 [22] datasets.

For VLMs-based labeling, we first utilized the same complementary-labeled
datasets as in CLImage [7], which were annotated by human workers on Ama-
zon Mechanical Turk (MTurk). These datasets include complementary label data
derived from CIFAR10, CIFAR20, MIN10, and MIN20. To ensure a fair compar-
ison with the human-annotated version, we inherit the collection methodology
described in [7] with VLMs. The protocol for generating CLs for each image x is
described as follows: (1) Uniformly sample four labels without replacement from
the label set [K], (2) Request a VLM to select one complementary label ȳ from
the four sampled labels, (3) Add the pair (x, ȳ) to the complementary dataset.
1 https://github.com/ntucllab/CLImage_Dataset

https://github.com/ntucllab/CLImage_Dataset
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Prompt 0: Convert the CLImage’s question to VLMs’s prompt

Question: <image> Please select any one "incorrect" label of this image?
Answer the question by picking one wrong label: [labels[0], labels[1], labels[2],
labels[3]].

Table 1: The results of prompt convert-
ing the human-annotated for VLMs on
the MicroImageNet10 dataset, smaller
value is better.

Platform Model Noisy Time(hrs)

VLM LLaVA-7b-hf 10.34% 3
MTurk Human 5.19% 72

Table 2: Comparison of complemen-
tary label noise levels across different
datasets with three prompts.

CIFAR10 CIFAR20 MIN10 MIN20 Average

Prompt 1 0.25% 0.79% 0.40% 0.29% 0.43%
Prompt 2 0.58% 1.08% 0.30% 0.40% 0.59%
Prompt 3 0.43% 0.78% 0.35% 0.29% 0.46%

In step (2), to replicate the human annotation process, we initially adapted
the question format used in CLImage [7], which asked human annotators.2 This
question was converted into a Prompt 0 for VLMs to annotate CLs. We dis-
covered that VLM-annotated datasets demonstrate inferior effectiveness com-
pared to human-annotated datasets, exhibiting higher label noise while requir-
ing significantly less time to complete the labeling task, as shown in Table 13.
Additionally, we hypothesize the label noise of VLMs-annotated could be re-
duced via optimization prompting since VLMs are impacted by corresponding
lexical changes with the same semantic sentences [23, 24]. Therefore, we de-

Fig. 1: Label Collection Protocol Using Visual Language Models for Complemen-
tary Labels (CLs).

veloped tailored prompts to reduce label noise rates for VLMs-based labeling.
Through extensive testing, we identified three optimal ones (Prompt 1, 2, 3)
for complementary labeling tasks. These prompts were carefully adapted from
the instructions used during the model’s training [20]. Among them, Prompt 1
achieved the best performance, minimizing label noise rate cross all datasets, as
shown in Table 2. Consequently, Prompt 1 was selected to handle the labeling
tasks. The detailed of labeling framework using VLMs for complementary-label
is illustrated in Figure 1.

2 Please select any one incorrect label for this image? Pick one wrong label: [choice[1],
choice[2], choice[3], choice[4]].

3 We reached out to the authors of CLImage regarding the time required for human
labeling, they confirmed that it took approximately 3 days to annotate each dataset.
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Prompt 1

Question: <image> Which label does not belong to this image? Answer the
question with a single word from [labels[0], labels[1], labels[2], labels[3]].

Prompt 2

Question: <image> Which label does not belong to this image? (1) labels[0]
(2) labels[1] (3) labels[2] (4) labels[3] Please respond with only the number of
the correct answer.

Prompt 3

Question: <image> Which label does not belong to this image? (1) labels[0]
(2) labels[1] (3) labels[2] (4) labels[3] Answer with the given number directly.

Markedly, the label noise rate on the MIN10 dataset was reduced by more
than 25 times, dropping from 10.34% to 0.40%. These findings highlight the crit-
ical importance of prompt design in improving labeling accuracy and reliability
in VLMs-based annotation processes.

4 Dataset Characteristic

In this section, we analyze the CLs collected through VLM-based labeling. Specif-
ically, we compare the label noise rate, label distribution, and transition matrix
between human-labeled and VLM-labeled datasets. These comparisons provide
deeper insights into the differing behaviors between the human annotation pro-
cess and the VLM labeling protocol.

Characteristic 1: low label noise rate Our collected VLM-labeled CLs
exhibit significantly lower label noise rates compared to human-labeled datasets.
For human-labeled datasets, the average label noise rates are 3.39% for CLCI-
FAR10, 2.80% for CLCIFAR20, 5.19% for CLMIN10, and 3.21% for CLMIN20 [7].
In contrast, the noise rates for VLM-labeled datasets are remarkably lower:
0.24% for ACLCIFAR10, 0.89% for ACLCIFAR20, 0.66% for ACLMIN10, and
0.86% for ACLMIN20. These label noise rates are the average of three CLs.
Figure 5a provides a visual comparison of label noise rates between VLM- and
human-labeled datasets. These results underscore the superior performance of
VLM annotators in complementary-label annotation tasks, achieving signifi-
cantly lower noise rates.

Characteristic 2: highly biased transition matrix Figure 2 presents the
empirical transition matrices of CLs for CIFAR10 and MIN10 datasets under
both VLM-labeled and human-labeled protocols. Upon examining the figure, we
observe that the transition matrix of the VLM-labeled datasets exhibits a higher
degree of bias compared to the human-labeled datasets. This bias aligns with
our findings from “Characteristic 3”, where we identified a significantly higher
imbalance ratio in the VLM-labeled datasets. This trend extends to the CIFAR20
and MIN20 datasets as well, although for brevity, only CIFAR10 and MIN10 are
shown here.
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(a) ACLCIFAR10 (b) CLCIFAR10 (c) ACLMIN10 (d) CLMIN10

Fig. 2: The empirical transition matrices of complementary datasets ACLCI-
FAR10 vs. CLCIFAR10, and ACLCIFAR10 vs. CLCIFAR10.

Characteristic 3: highly imbalanced label distribution Figure 3 illus-
trates a different level of imbalance distribution of CLs in VLM-labeled datasets
compared to their human-labeled counterparts. Specifically, we observe that the
VLM-labeled datasets are significantly more imbalanced. For example, the im-
balance ratio for human-labeled datasets is approximately 1.56 and 2.07 for
CLCIFAR10 and CLMIN10, respectively. In contrast, the imbalance ratio for
VLM-labeled datasets increases dramatically to around 3.26 for ACLCIFAR10
and 23.46 for ACLMIN10. Further analysis reveals differing biases in the pre-
ferred categories between the two labeling protocols. For the CIFAR10 dataset,
human-labeled data tends to favor categories such as “airplan” and “automobile”,
whereas VLM-labeled data shows a preference for “truck” and “ship”. Similarly, in
the MIN10 dataset, both human and VLM labeling protocols show a preference
for categories like “pizza” and “kimono”. However, their contrasting biases are
evident, as human-labeled data leans toward “sulphur butterfly” and “magnetic
compass”, while VLM-labeled data favors “alp” and “cardigan”. These findings
highlight distinct behaviors between human and VLM-based complementary la-
beling protocols, shedding light on their unique biases and distribution patterns.

(a) ACLCIFAR10 (b) CLCIFAR10 (c) ACLMIN10 (d) CLMIN10

Fig. 3: The label distribution of ACLCIAFR10, CLCIFAR10, ACLMIN10, and
CLMIN10 datasets.

Notably, these patterns are consistent across all four VLM-labeled datasets
when compared to their human-labeled counterparts. While VLM-labeled datasets
demonstrate a lower label noise rate, they exhibit greater imbalances in label
distribution and higher levels of bias. These findings emphasize the trade-offs in-
herent in using VLM for complementary labeling tasks. In the next section, we
validate our methodology to assess the practicality and reliability of collecting
CLs in real-world scenarios.
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5 Experiments

In our experiments, we evaluated the effectiveness of VLMs as replacements for
human annotators in labeling CLs, namely, ACLImage4. We observed notable
accuracy performance gaps between human-labeled and VLM-labeled datasets,
and VLMs’ potential to reduce labeling costs in CLL. Further analyses revealed
that biased transition matrices are major challenges, which we addressed through
label cleaning and a newly designed protocol, achieving promising results. Addi-
tionally, scalability experiments demonstrated that VLMs perform effectively in
large-scale settings, marking significant progress toward practical, cost-efficient
CLL.

5.1 Experimental Setups

The experiments presented in Sections 5.2 and 5.4 evaluate six CLL algorithms
selected for their strong performance on CLImage datasets with three CLs, as re-
ported in the libcll benchmark. The selected algorithms include SCL-NL [6],
SCL-EXP [6], MCL-LOG [16], FWD [4], CPE-F [25], and CPE-T [25]. These
algorithms were tested on VLM-annotated datasets and compared with corre-
sponded human annotation datasets, using three CLs per instance in all cases.

To ensure consistency, we adopted hyperparameters established in libcll.
Specifically, training was performed with a fixed batch size of 256 for 300 epochs
on NVIDIA Tesla V100 GPUs with 32GB memory. Learning rates were selected
based on the best accuracies from the set {1e-3, 5e-4, 1e-4, 5e-5, 1e-5}.
All models were trained using the Adam optimizer and a ResNet34 backbone. For
each experiment, 10% of the training data was reserved as a validation set, as-
suming access to ordinary labels to calculate validation accuracy and conducted
four trials with different random seeds to ensure robustness.

Table 3: Performance comparison of different CLL algorithms on Human-labeled
and VLM-labeled datasets.

ACLCIFAR10 CLCIFAR10 ACLCIFAR20 CLCIFAR20 ACLMIN10 CLMIN10 ACLMIN20 CLMIN20

SCL-NL 53.37±0.50 47.30±0.50 5.23±0.39 8.59±0.75 16.21±0.62 12.87±2.33 9.39±0.87 6.87±0.39
SCL-EXP 33.20±3.68 47.12±0.91 5.65±0.79 9.74±0.52 16.16±1.21 12.78±1.42 8.82±0.48 7.10±0.83
MCL-LOG 52.79±0.25 46.13±0.57 6.35±0.22 8.57±0.20 16.57±0.75 15.02±2.25 12.57±1.08 6.55±0.95

FWD 69.49±1.16 52.48±0.63 33.39±0.29 24.56±0.95 49.42±3.56 29.33±0.85 28.51±1.13 10.11±1.29
CPE-F 69.10±1.11 51.74±0.98 33.25±0.30 24.44±1.07 48.98±3.05 29.51±0.95 27.19±1.34 9.52±1.71
CPE-T 62.43±1.21 49.79±1.45 19.08±0.69 20.85±0.52 43.00±2.37 27.97±1.06 22.48±1.89 9.70±1.13

Supervision 86.61±0.30 64.46±0.72 66.64±1.00 60.04±1.97

To facilitate a fair comparison, we categorized algorithms based on their use
of a transition matrix, which some algorithms require to compute the loss. Al-
gorithms leveraging a transition matrix, referred to as T-aware, are listed in the
upper sections of the result tables, while T-agnostic algorithms are presented in
the lower sections. This separation highlights the differences in their performance
and computational frameworks.
4 https://github.com/yahcreepers/PAKDD_ACLImage_Dataset

https://github.com/yahcreepers/PAKDD_ACLImage_Dataset
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5.2 Standard Benchmark on ACLImage

In this section, we present the baseline learning results on our VLM-annotated
datasets and directly compare them with those obtained from human-annotated
datasets. The results are summarized in Table 3. Notably, VLM-annotated datasets
improved the performance of most algorithms. However, some T-agnostic meth-
ods exhibited decreased performance on VLM-annotated datasets. We hypothe-
size that this decline is due to the inherent bias in the VLM-annotated datasets.
T-agnostic methods operate under the assumption of a uniform distribution and
are unable to adapt to shifts in the complementary-label distribution. Conse-
quently, they are more susceptible to deviations in the transition matrices caused
by dataset biases.

The relationship between transition matrices and testing accuracy is illus-
trated in Figure 4. The figure underscores the significant impact of variations in
label noise rate and bias on model performance. Specifically, higher label noise
rates and larger deviations in the transition matrix introduce ambiguity, leading
to substantial performance degradation. This finding, combined with Figure 5a
reveals a critical limitation of human-annotated, which is prone to high label
noise rates that can severely impair the effectiveness of current CLL algorithms.
In contrast, VLM-annotated demonstrates a clear advantage in achieving sig-
nificantly lower label noise rates. These results emphasizes the need to develop
robust methods to mitigate the impact of biased transition matrices.

(a) ACLCIFAR10
Transition Matrix

(b) ACLCIFAR10
Testing Accuracy

(c) CLCIFAR10
Transition Matrix

(d) CLCIFAR10
Testing Accuracy

Fig. 4: The comparison between FWD predictions learned from human-labeled
and VLM-labeled datasets.

5.3 Label Noise Removal

In this section, our aim was to isolate the impact of noisy labels and identify
the main cause of the accuracy performance gap between human and VLM-
annotated datasets. To achieve this, we measured the accuracy on noise-reduced
versions of the CLCIFAR10 and ACLCIFAR10 datasets, progressively removing
different proportions (0%, 25%, 75%, and 100%) of noisy labels. The results,
presented in Figure 5b, indicate that while VLM-annotated datasets exhibit a
lower label noise rate, human-annotated CLImage datasets outperform VLM-
annotated datasets when noisy labels are sufficiently reduced. This observation
underscores the critical role of the label noise rate in the quality of CLs and
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(a) Complementary label
noise levels across datasets.

(b) Result of noisy label
cleaning on ACLCIFAR10.

(c) Result of incremental
CLs on ACLCIFAR10.

Fig. 5: The ablation study of comparison between human-labeled datasets vs
VLM-labeled datasets.

reinforces the value of VLM labeling as a means to facilitate CLL in real-world
scenarios. These findings suggest the need to reduce the bias in collected labels
and improve learning methods to effectively address distributional biases.

5.4 Bias Removal

To reduce bias in collected labels, we developed a new protocol tailored for
VLM-based annotation. The protocol involves the following steps: (1) creating a
weight list of label distributions and candidate sets for each instance: Wȳi

, and
(2) iteratively collecting CLs through the following process: (i) weighted sam-
pling of four labels from the candidate set Ki, (ii) prompting the VLM to select
one complementary label from the sampled labels ȳi from the sampled labels,
(iii) adding the pair (xi, ȳi) to the complementary dataset, (iv) removing ȳi from
the candidate set Ki, and (v) reducing the weight Wȳi

by one—the process will
stop when weight Wȳi

is equal the sampling number of candidate set. Using this
protocol, we labeled CIFAR10 and MIN10, resulting in the ACLCIFAR10-R and
ACLMIN10-R datasets. This protocol successfully mitigates biases inherent in
VLM-annotated labels and improves learning outcomes on the newly collected
datasets. As illustrated in Table 4 and Figure 6, this carefully designed label-

Table 4: Performance of CLL algorithms with reduc-
ing biasedness approach.

ACLCIFAR10-R ACLCIFAR10 ACLMIN10-R ACLMIN10

SCL-NL 64.46±0.48 53.37±0.50 24.72±0.70 16.21±0.62
SCL-EXP 62.35±0.73 33.20±3.68 21.98±0.77 16.16±1.21
MCL-LOG 64.92±0.52 52.79±0.25 27.38±3.03 16.57±0.75

FWD 71.03±0.44 69.49±1.16 51.29±2.64 49.42±3.56
CPE-F 70.81±0.08 69.10±1.11 51.30±2.91 48.98±3.05
CPE-T 63.56±0.53 62.43±1.21 47.76±1.26 43.00±2.37 Fig. 6: ACLMIN10-R
ing process significantly reduces bias in VLM annotations while lowering label
noise rates. These results underscore the potential of VLM-annotated for com-
plementary labeling, enhancing their applicability in weakly supervised learning
scenarios and demonstrating the efficacy of structured, bias-aware label collec-
tion protocols.
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5.5 Incremental Complementary Labels (CLs)

In this section, we investigate the potential of increasing the number of CLs
per instance to reduce the performance gap between CLL and OLL. Building
upon the labeling protocol introduced in Section 5.4, we extended the number of
CLs to six per instance. This experiment highlights a key advantage of VLMs:
their capacity to generate a substantial volume of labels at a significantly lower
cost, thereby enhancing the practicality of CLL. Additionally, we compared the
outcomes of bias removal with those of uniform synthetic datasets to evaluate the
negative effects of bias in real-world complementary datasets and quantify the
performance gaps. As depicted in Figure 5c, increasing the number of CLs per
instance results in improved model performance. However, notable gaps persist
between CLL and OLL, as well as between VLM-annotated datasets and ideally
uniform datasets. These findings emphasize the critical challenge of addressing
biases in collected CLs. They further suggest that simply increasing the number
of CLs is insufficient to bridge these gaps, underscoring the need for innovative
strategies to mitigate labeling biases effectively.

6 Conclusion

In this paper, we introduced a novel VLM-based protocol for collecting CLs,
addressing label noise and bias that arise when adapting human annotation
processes. Our optimized framework significantly improved labeling quality, en-
abling the creation of ACLImage, the first publicly available, VLM-annotated
complementary-label dataset. Our experiments demonstrated that VLM-annotated
datasets effectively reduce label noise and bias while achieving competitive per-
formance across various CLL algorithms. By minimizing dependence on costly
and error-prone human annotations, our work advances the practicality and
scalability of CLL and establishes a foundation for leveraging VLMs in weakly-
supervised learning.

References

1. Takashi Ishida, Gang Niu, Weihua Hu, and Masashi Sugiyama. Learning from
complementary labels. In Proceedings of the 31st NeurIPS, page 5644–5654, 2017.

2. Takashi Ishida, Gang Niu, and Masashi Sugiyama. Binary classification from
positive-confidence data. In NeurIPS, 2018.

3. Takashi Ishida, Gang Niu, Aditya Menon, and Masashi Sugiyama. Complementary-
label learning for arbitrary losses and models. In Proceedings of the 36th ICML,
pages 2971–2980, 2019.

4. Xiyu Yu, Tongliang Liu, Mingming Gong, and Dacheng Tao. Learning with biased
complementary labels. In Computer Vision – ECCV 2018, pages 69–85, 2018.

5. Yuzhou Cao, Shuqi Liu, and Yitian Xu. Multi-complementary and unlabeled learn-
ing for arbitrary losses and models. Pattern Recognition, 124:108447, 2022.

6. Yu-Ting Chou, Gang Niu, Hsuan-Tien Lin, and Masashi Sugiyama. Unbiased risk
estimators can mislead: A case study of learning with complementary labels. In
Proceedings of the 37th ICML, pages 1929–1938, 2020.



12 Mai et al.

7. Hsiu-Hsuan Wang, Tan-Ha Mai, Nai-Xuan Ye, Wei-I Lin, and Hsuan-Tien Lin.
Climage: Human-annotated datasets for complementary-label learning, 2023.

8. Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to
prompt for vision-language models. International Journal of Computer Vision,
130(9):2337–2348, 2022.

9. Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-
4: Enhancing vision-language understanding with advanced large language models.
2023.

10. Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna
Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke
Hüllermeier, et al. Chatgpt for good? on opportunities and challenges of large
language models for education. Learning and individual differences, 2023.

11. Xin Xing, Zhexiao Xiong, Abby Stylianou, Srikumar Sastry, Liyu Gong, and
Nathan Jacobs. Vision-language pseudo-labels for single-positive multi-label learn-
ing. In Proceedings of the IEEE/CVPR, pages 7799–7808, 2024.

12. Anonymous. Weak supervision from vision-language models to self-improve on
downstream tasks. In Submitted to The Thirteenth International Conference on
Learning Representations, 2024. under review.

13. Qian-Wei Wang, Yuqiu Xie, Letian Zhang, Zimo Liu, and Shu-Tao Xia. Pre-trained
vision-language models as partial annotators. 2024.

14. Tong Wei, Hao-Tian Li, Chun-Shu Li, Jiang-Xin Shi, Yu-Feng Li, and Min-Ling
Zhang. Vision-language models are strong noisy label detectors. In Advances in
Neural Information Processing Systems 37, 2024.

15. Nai-Xuan Ye, Tan-Ha Mai, Hsiu-Hsuan Wang, Wei-I Lin, and Hsuan-Tien Lin.
libcll: an extendable python toolkit for complementary-label learning. 2024.

16. Lei Feng, Takuo Kaneko, Bo Han, Gang Niu, Bo An, and Masashi Sugiyama.
Learning with multiple complementary labels. In Proceedings of the 37th ICML,
ICML’20, 2020.

17. Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction
tuning. Advances in neural information processing systems, 36, 2024.

18. Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with
visual instruction tuning. In Proceedings of the IEEE/CVPR, 2024.

19. Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and
Chunyuan Li. Llava-next-interleave: Tackling multi-image, video, and 3d in large
multimodal models. arXiv preprint arXiv:2407.07895, 2024.

20. Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen
Zhang, Peiyuan Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. Llava-onevision:
Easy visual task transfer, 2024.

21. Alex Krizhevsky. Learning multiple layers of features from tiny images. University
of Toronto, 05 2012.

22. Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N,
7(7):3, 2015.

23. Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to
prompt for vision-language models. International Journal of Computer Vision,
130(9):2337–2348, 2022.

24. Sri Harsha Dumpala, Aman Jaiswal, Chandramouli Sastry, Evangelos Milios,
Sageev Oore, and Hassan Sajjad. Sensitivity of generative vlms to semantically
and lexically altered prompts. arXiv preprint arXiv:2410.13030, 2024.

25. Wei-I Lin and Hsuan-Tien Lin. Reduction from complementary-label learning to
probability estimates. In Proceedings of the PAKDD, May 2023. winner of the best
paper runner-up award.


	The Unexplored Potential of Vision-Language Models for Generating Large-Scale Complementary-Label Learning Data

