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Abstract

Complementary-Label Learning (CLL) is a weakly-supervised learning problem
that aims to learn a multi-class classifier from only complementary labels, which
indicate a class to which an instance does not belong. Existing approaches mainly
adopt the paradigm of reduction to ordinary classification, which applies specific
transformations and surrogate losses to connect CLL back to ordinary classification.
Those approaches, however, face several limitations, such as the tendency to overfit
or be hooked on deep models. In this paper, we sidestep those limitations with a
novel perspective—reduction to probability estimates of complementary classes.
We prove that accurate probability estimates of complementary labels lead to
good classifiers through a simple decoding step. The proof establishes a reduction
framework from CLL to probability estimates. The framework offers explanations
of several key CLL approaches as its special cases and allows us to design an
improved algorithm that is more robust in noisy environments. The framework
also suggests a validation procedure based on the quality of probability estimates,
leading to an alternative way to validate models with only complementary labels.
The flexible framework opens a wide range of unexplored opportunities in using
deep and non-deep models for probability estimates to solve the CLL problem.
Empirical experiments further verified the framework’s efficacy and robustness in
various settings.

1 Introduction

In real-world machine learning applications, high-quality labels may be hard or costly to collect. To
conquer the problem, researchers turn to the weakly-supervised learning (WSL) framework, which
seeks to learn a good classifier with incomplete, inexact, or inaccurate data [27]. Several paradigms
of WSL have been studied, including but not limited to semi-supervised learning [2], learning from
partial labels [10], noisy labels [17], complementary labels [8], multiple complementary labels [6, 1],
ordinary and complementary labels [11], positive-unlabeled data [5], and unlabeled-unlabeled data
[16].

This paper focuses on a very weak type of WSL, called complementary-label learning (CLL) [8].
For the multi-class classification task, a complementary label designates a class to which a specific
instance does not belong. The CLL problem assumes that the learner receives complementary labels
rather than ordinary ones during training, while wanting the learner to correctly predict the ordinary
labels of the test instances. Complementary labels can be cheaper to obtain. For example, when
labeling with many classes, selecting the correct label is time-consuming for data annotators, while
selecting a complementary label would be less costly [8]. In this case, fundamental studies on CLL
models can potentially upgrade multi-class classification models and make machine learning more
realistic. CLL’s usefulness also attracts researchers to study its interaction with other tasks, such as
generative-discriminative learning [23, 15] and domain-adaptation [26].
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Table 1: Comparison of recent approaches to CLL. f(x) is the probability estimates of x, and ` is an
arbitrary multi-class loss.
labeltable:comp-recent

METHOD TRANSFORMATION LOSS FUNCTION

URE [8, 9] φ = I −(K − 1)`(f(x), ȳ) +
∑K

k=1 `(f(x), k)
SCL-NL [3] φ = I − log(1− fȳ(x))

FWD [24] φ(f)(x) = T>f(x) `(φ(f)(x), ȳ)
DM [7] φ(f)(x) = sm(1− f(x)) `(φ(f)(x), ȳ)

Ishida et al. [8, 9] proposed a pioneering model for CLL based on replacing the ordinary classification
error with its unbiased risk estimator (URE) computed from only complementary labels under the
assumption that the complementary labels are generated uniformly. Chou et al. [3] unveiled the
overfitting tendency of URE and proposed the surrogate complementary loss (SCL) as an alternative
design. Yu et al. [24] studied the situation where the complementary labels are not generated
uniformly, and proposed a loss function that includes a transition matrix for representing the non-
uniform generation. Gao & Zhang [7] argued that the non-uniform generation shall be tackled by
being agnostic to the transition matrix instead of including the matrix in the loss function.

The methods mentioned above mainly focused on applying transformation and specific loss functions
to the ordinary classifiers. Such a “reduction to ordinary classification” paradigm, however, faces
some limitations and is not completely analyzed. For instance, so far most of the methods in the
paradigm require differentiable models such as deep neural networks in their design. It is not clear
whether non-deep models could be competitive or even superior to deep ones. It remains to be an
important issue to correct the overfitting tendency caused by the stochastic relationship between
complementary and ordinary labels, as repeatedly observed on URE-related methods [3]. More
studies are also needed to understand the potential of and the sensitivity to the transition matrix in the
non-uniform setting, rather than only fixing the matrix in the loss function [24] or dropping it [7].

The potential limitations from reduction to ordinary classification motivate us to sidestep them by
taking a different perspective—reduction to complementary probability estimates. Our contribution
can be summarized as follows.

1. We propose a framework that only relies on the probability estimates of complementary
labels, and prove that a simple decoding method can map those estimates back to correct
ordinary labels with theoretical guarantees.

2. The proposed framework offers explanations of several key CLL approaches as its spe-
cial cases and allows us to design an improved algorithm that is more robust in noisy
environments.

3. We propose a validation procedure based on the quality of probability estimates, providing a
novel approach to validate models with only complementary labels along with theoretical
justifications.

4. We empirically verify the effectiveness of the proposed framework under broader scenarios
than previous works that cover various assumptions on complementary label generation
(uniform and non-uniform; clean and noisy) and models (deep and non-deep). We find
that the proposed framework improves the state-of-the-art methods in those scenarios,
demonstrating the effectiveness and robustness of the framework.

The rest of the paper is organized as follows. We introduce the formulation of the ordinary and
complementary label learning problem and discuss some recent approaches in Section 2. We describe
the proposed framework in Section 3. In Section 4, we demonstrate the effectiveness of the proposed
method under various scenarios. We then conclude in Section 5.

2 Problem Setup

In this section, we first introduce the problem of ordinary multi-class classification. Then, we will
formulate the problem of complementary-label learning (CLL), and introduce the assumption and
related works.
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2.1 Ordinary-label learning

We start by reviewing the problem formulation of ordinary multi-class classification. In this problem,
we letK withK > 2 denote the number of classes to be classified, and use Y = [K] = {1, 2, . . . ,K}
to denote the label set. Let X ⊂ Rd denote the feature space. Let D be an unknown joint distribution
over X × Y with density function pD(x, y). Given N i.i.d. training samples {(xi, yi)}Ni=1 and a
hypothesis set H, the goal of the learner is to select a classifier f : X → RK from the hypothesis
setH that predicts the correct labels on unseen instances. The prediction ŷ of an unseen instance x
is determined by taking the argmax function on f , i.e. ŷ = argmaxi fi(x), where fi(x) denote the
i-th output of f(x). The goal of the learner is to learn an f from H that minimizes the following
classification risk: E(x,y)∼D

[
`(f(x), ey)

]
, where ` : RK ×RK → R+ denotes the loss function, and

ey denote the one-hot vector of label y.

2.2 Complementary-label learning

In complementary-label learning, the goal for the learner remains the same—finding an f that
minimizes the ordinary classification risk. The difference lies in the dataset to learn from. The
complementary learner does not have access to the ground-truth labels yi. Instead, for each instance
xi, the learner is given a complementary label ȳi. A complementary label is a class that xi does not
belong to; that is, ȳi ∈ [K]\{yi}. In CLL, it is assumed that the complementary dataset is generated
according to an unknown distribution D̄ over X ×Y with density function p̄D̄(x, y). Given access to
i.i.d. samples {xi, ȳi}Ni=1 from D̄, the complementary-label learner aims to find a hypothesis that
classifies the correct ordinary labels on unseen instances.

Next, we introduce the class-conditional complementary transition assumption, which is used by
many existing work [8, 9, 24, 7]. It assumes that the generation of complementary labels only
depends on the ordinary labels; that is, P (ȳ | y, x) = P (ȳ | y). The transition probability P (ȳ | y) is
often represented by a K ×K matrix, called transition matrix, with Tij = P (ȳ = j | y = i). It is
commonly assumed to be all-zeros on the diagonals, i.e., Tii = 0 for all i ∈ [K] in CLL because
complementary labels are not ordinary. The transition matrix is further classified into two categories:

• Uniform: In uniform complementary generation, each complementary label is sampled
uniformly from all labels except the ordinary one. The transition matrix in this setting is
accordingly T = 1

K−1 (1k − Ik). This is the most widely researched and benchmarked
setting in CLL.

• Biased: A biased complementary generation is one that is not uniform. Biased transition
matrices could be further classified as invertible ones and noninvertible ones based on its
invertibility. The invertibility of a transition matrix comes with less physical meaning in the
context of CLL; however, it plays an important role in some theoretical analysis in previous
work [24, 3].

Following earlier approaches, we assume that the generation of complementary labels follows class-
conditional transition in the rest of the paper and that the transition matrix is given to the learning
algorithms. What is different is that we do not assume the transition matrix to be uniform nor
invertible. This allows us to make comparison in broader scenarios. In real-world scenario, the true
transition matrix may be impossible to access. To loosen the assumption that the true transition
matrix is given, we will analyze the case that the given matrix is inaccurate later. This analysis can
potentially help us understand the CLL in a more realistic environment.

2.3 Recent Approaches towards CLL

Ishida et al. [8, 9] derived an unbiased risk estimator (URE) for arbitrary losses on the ordinary classi-
fiers under uniform transition matrix. By setting the risk to classification error, URE can also serve as
a surrogate metric for performance validation. Chou et al. [3] proposed the surrogate complementary
loss (SCL) that employed the intuition of minimizing the likelihood of the complementary labels.
They justified the principle by showing that SCL is an upper bound to a constant multiple of the ordi-
nary classification error when the transition matrix is uniform. Yu et al. [24] proposed to use Forward
correction (FWD) that employs the technique in noisy label learning [19, 18] to correct the softmax
cross-entorpy loss by adding a transition layer to the end of the models outputs: f̄(x) = T>f(x), and
applied cross-entorpy loss between f̄(x) and the complementary labels ȳ. Different from the methods
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mentioned above, Gao & Zhang [7] did not assume class-conditional complementary transition, and
directly used a discriminative model (DM) to estimate P (ȳ |x). They parametrized the discriminative
models by transforming the output of an ordinary classifier f as follows: f̄(x) = sm(1 − f(x)),
where sm denotes the softmax function, then minimize the cross-entorpy loss between f̄(x) and ȳ.

Those methods share one common property – applying different transformation and surrogate loss
functions to the ordinary classifier, as summarized in Table ??. This paradigm, however, faces some
limitations. For instance, as Chou et al. [3] points out, the URE approach suffers from the large
variance in the gradients. Besides, it remains unclear how some of them behave when the transition
matrix is biased. Also, those methods only studied using neural networks and linear models as base
models. It is unclear how to easily cast other traditional models for CLL. These limitations motivate
us to sidestep them with a different perspective—reduction to complementary probability estimates.

3 Proposed Framework

In this section, we propose a framework for CLL based on complementary probability estimates
(CPE) and decoding. In Section 3.1, we describe the CPE framework and derive its theoretical
properties. In Section 3.2, we explain how earlier approaches can be viewed as special cases in CPE.
We further draw insights for earlier approaches through CPE and propose improved algorithms based
on those insights.

3.1 Methodology

Overview The proposed method consists of two steps: In training phase, we aim to find a hypothesis
f̄ that predicts the distribution of complementary labels well. That is, we want to find an f̄ that
approximates P (ȳ |x). This step is motivated by Yu et al. [24] and Gao & Zhang [7], which involve
the idea of modeling the conditional distribution of complementary labels P (ȳ |x), and Zhang et al.
[25], which use similar idea on noisy-label learning. What is different in our framework is the
decoding step during prediction. In inference phase, we propose to predict the label with closest
transition vector to the predicted complementary probability estimates. Specifically, we propose to
predict ŷ = argmink∈[K] d

(
f̄(x), Tk

)
for an unseen instance x, where d denote a loss function. It

is a natural choice to decode with respect to T because the transition vector Tk = (P (ȳ = 1 | y =
k), . . . , P (ȳ = K | y = k))> is the ground-truth distribution of the complementary labels if the
ordinary label is k. In the following paragraph, we provide further details of our framework. First,
we discuss how to learn the distribution of the complementary labels with only one complementary
label per sample. Next, we discuss the choice of the loss function for decoding and demonstrate that
simply using L1 distance can provide theoretical guarantee to the out-sample classification error.

Training Phase: Probability Estimates In this phase, we aim to find a hypothesis f̄ that pre-
dicts P (ȳ |x) well. To do so, given a hypothesis f̄ from hypothesis set H̄, we set the following
complementary estimation loss to optimize:

R(f̄ ; `) = E(x,y)∼D
(
`(f̄(x), P (ȳ |x, y))

)
(1)

where ` can be any loss function defined between discrete probability distributions. By the assumption
that complementary labels are generated with respect to the transition matrix T , the ground-truth
distribution for P (ȳ |x, y) is Ty , so we can rewrite Equation (1) as follows:

R(f̄ ; `) = E(x,y)∼D
(
`(f̄(x), Ty)

)
(2)

The loss function above is still hard to optimize for two reasons: First, the presence of ordinary label
y suggests that it cannot be accessed from the complementary dataset. Second, as we only have one
complementary label per instance, it becomes questionable to directly use the empirical density, i.e.,
the one-hot vector of the complementary label eȳ to approximate Ty as it may change the objective.

Here we propose to use the Kullback-Leibler divergence for the loss function to solve the two issues
mentioned above with the following property:
Proposition 3.1. There is a constant C such that

E
(x,ȳ)∼D̄

`(f̄(x), eȳ) + C = E
(x,y)∼D

`(f̄(x), Ty) (3)

holds for all hypothesis f̄ ∈ H̄ if ` is the KL divergence, i.e., `(ŷ, y) =
∑K
k=1−yk(log ŷk − log yk).

4



The result is well-known in the research of proper scoring rules [12, 21]. It allows us to replace the Ty
by eȳ in Equation (2) because the objective function only differs by a constant after the replacement.
This suggests that the minimization of the two objective functions will be equivalent. Moreover, the
replacement makes the objective function accessible through the complementary dataset because it
only depends on the complementary label ȳ rather than ordinary ones.

Formally speaking, minimizing Equation (2) becomes equivalent to minimizing the following surro-
gate complementary estimation loss (SCEL):

R̄(f̄ ; `) = E(x,ȳ)∼D̄
(
`(f̄(x), eȳ)

)
(4)

By using KL divergence as the loss function, we have that

R̄(f̄ ; `) = E(x,ȳ)∼D̄
(
− log f̄ȳ(x)

)
(5)

with f̄ȳ(x) being the ȳ-th output of f̄(x). Next, we can use the following empirical version as the
training objective: 1

N

∑N
i=1− log f̄ȳi(xi). According to the empirical risk minimization (ERM) prin-

ciple, we can estimate the distribution of complementary labels P (ȳ |x) by minimizing the log loss on
the complementary dataset. That is, by choosing f̄∗ with f̄∗ = argminf̄∈H̄

1
N

∑N
i=1− log f̄ȳi(xi),

we can get an estimate of P (ȳ |x) with f̄∗.

In essence, we reduce the task of learning from complementary labels into learning probability
estimates for multi-class classification (on the complementary label space). As the multi-class
probability estimates is a well-researched problem, our framework becomes flexible on the choice
of the hypothesis set. For instance, one can use K-Nearest Neighbor or Gradient Boosting with log
loss to estimate the distribution of complementary labels. The flexibility is superior to the previous
methods because previous methods rely on using neural networks to minimize specific surrogate
losses, which would be hard to optimize for non-differentiable models. In contrast, the proposed
methods enable existing ordinary models to learn from complementary labels.

Inference Phase: Decoding After finding a complementary probability estimator f̄∗ during the
training phase, we propose to predict the ordinary label by decoding: Given an unseen example x, we
predict the label ŷ whose transition vector Tŷ is closest to the predicted complementary probability
estimates. That is, the label is predicted by

ŷ = argmin
k∈[K]

d
(
f̄∗(x), Tk

)
(6)

where d could be an arbitrary loss function on the probability simplex and Tk is the k-th row vector
of T . We use dec(f̄ ; d) to denote the function that decodes the output from f̄ according to the
loss function d. The next problem is whether the prediction of the decoder can guarantee a small
out-sample classification error R01(f) = E(x,y)∼D If(x)6=y .

We propose to use a simple decoding step by setting L1 distance as the loss function for decoding:

dec(f̄ ;L1) (x) = argmin
y∈[K]

‖Ty − f̄(x)‖1 (7)

This choice of L1 distance makes the decoding step easy to perform and provides the following bound
that quantifies the relationship between the error rate and the quality of probability estimator:
Proposition 3.2. For any f̄ ∈ H̄, and distance function d defined on the probability simplex ∆K , it
holds that

R01

(
dec(f̄ ; d)

)
≤ 2

γd
R(f̄ ; d) (8)

where γd = mini6=j d(Ti, Tj) is the minimal distance between any pair of transition vector. Moreover,
if d is the L1 distance and ` is the KL divergence, then with γ = mini 6=j‖Ti − Tj‖1, it holds that

R01

(
dec(f̄ ;L1)

)
≤ 4
√

2

γ

√
R(f̄ ; `) (9)

The proof is in Appendix A.2. In the realizable case, where there is a target function g that satisfies
g(x) = y for all instances, the term R(f̄ ; `KL) can be minimized to zero with f̄? : x 7→ Tg(x). This
indicates that for a sufficiently rich complementary hypothesis set, if the complementary probability
estimator is consistent (f̄ → f̄?) then the L1 decoded prediction is consistent (R01

(
dec(f̄ ;L1)

)
→
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Table 2: A unifying view of earlier approaches and proposed algorithms through the lens of reduction
to probability estimates, where U denote the uniform transition matrix. Two versions of Forward
Correction are considered: General T denotes the original version in [24], and the Uniform denotes
the case when the transition layer is fixed to be uniform. Proof of the equivalence is in Appendix B.

METHOD HYPOTHESIS SET DECODER

FWD (GENERAL T ) [24] {x 7→ T>f(x; θ) : θ ∈ Θ} argmaxk((T>)−1f̄(x))k
FWD (UNIFORM) [24] {x 7→ U>f(x; θ) : θ ∈ Θ} argmink‖f̄(x)− Uk‖1
SCL [3] {x 7→ U>f(x; θ) : θ ∈ Θ} argmink‖f̄(x)− Uk‖1
DM [7] {x 7→ sm(1− f(x; θ)) : θ ∈ Θ} argmink‖f̄(x)− Uk‖1

CPE-I (NO TRANSITION LAYER) {x 7→ f(x; θ) : θ ∈ Θ} argmink‖f̄(x)− Tk‖1
CPE-F (FIXED TRANSITION LAYER TO T ) {x 7→ T>f(x; θ) : θ ∈ Θ} argmink‖f̄(x)− Tk‖1
CPE-T (TRAINABLE TRANSITION LAYER) {x 7→ T (W )>f(x; θ) : θ ∈ Θ,W ∈ RK×K} argmink‖f̄(x)− Tk‖1

0). The result suggests that the performance of the L1 decoder can be bounded by the accuracy of
the probability estimates of complementary labels measured by the KL divergence. In other words,
to obtain an accurate ordinary classifier, it suffices to find an accurate complementary probability
estimator followed by the L1 decoding. Admittedly, in the non-realizable case, R(f̄ ; `KL) contains
irreducible error. We leave the analysis of the error bound in this case for the future research.

Another implication of the Proposition 3.2 is related to the inaccurate transition matrix. Suppose the
complementary labels are generated with respect to the transition matrix T ′, which may be different
from T , the one provided to the learning algorithm. In the proposed framework, the only affected
component is the decoding step. This allows us to quantify the effect of inaccuracy as follows:

Corollary 3.3. For any f̄ ∈ H̄, if d is the L1 distance and ` is the KL divergence, then

R01

(
dec(f ;L1)

)
≤ 4
√

2

γ

√
R(f̄ ; `) +

2ε

γ
. (10)

where γ = mini 6=j‖Ti − Tj‖1 is the minimal L1 distance between pairs of transition vectors, and
ε = maxk∈[K]‖T ′k − Tk‖1 denotes the difference between T ′ and T .

Validation Phase: Quality of Probability Estimates The third implication of Proposition 3.2
is an alternative validation procedure to the unbiased risk estimation (URE) [8]. According to
Proposition 3.2, selecting the best-performing parameter minimizes the RHS of Eq. (9) among all
hyper-parameter choices minimizes the ordinary classification error. This suggests an alternative
metric for parameter selection: using the surrogate complementary estimation loss (SCEL) on the
validation dataset.

Although the proposed validation procedure does not directly estimate the ordinary classification
error, it provides benefits in the scenarios where URE does not work well. For instance, when the
transition matrix is non-invertible, the behavior of URE is ill-defined due to the presence of T−1

in the formula of URE: Ex,ȳ eȳT−1`(f(x)). Indeed, replacing T−1 with T ’s pseudo-inverse can
avoid the issue; however, it remains unclear whether the unbiasedness of URE still holds after using
pseudo-inverse. In contrast, the quality of complementary probability estimates sidesteps the issue
because it does not need to invert the transition matrix. This prevents the proposed procedure from
the issue of an ill-conditioned transition matrix.

3.2 Connection to Previous Methods

The proposed method may seem different from the previous methods because the learning procedure
is on the complementary label space rather than ordinarylabel space. Nonetheless, the proposed
framework can explain several earlier approaches as its special cases, including (1) Forward Correction
(FWD) [24], (2) Surrogate Complementary Loss (SCL) with log loss [3], and (3) Discriminative
Model (DM) [7]. We summarize how they fit in our complementary probability estimates framework
in Table 2, and provide the proof of equivalence in Appendix B. By viewing those earlier approaches
in the proposed framework, we provide additional benefits for them. First, we can apply the novel
validation process on them for parameter selection. This allows us to use an alternative way to
validate those approaches. Also, we fill the gap on the theoretical explanation to help understand
those approaches in the realizable case.
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On the other hand, the success of FWD inspires us to reconsider the role of transition layers in the
framework. As the base model’s output f(x; θ) is in the probability simplex ∆K , the model’s output
T>f(x; θ) lies in the convex hull formed by the row vectors of T . If the transition matrix T provided
to the learning algorithm is accurate, then such transformation helps control the model’s complexity
by restricting its output. The restriction may be wrong, however, when the given transition matrix T
is inaccurate. To address this issue, we propose to allow the transition layer to be trainable. This
technique is also used in label-noise learning, such as [14]. Specifically, we propose three methods
in our Complementary Probability Estimates framework: (a) CPE-I denotes a model without a
transition layer (b) CPE-F denotes a model with a fixed additional layer to T (c) CPE-T denotes a
model with a trainable transition layer. To make the transition layer trainable, we considered aK×K
matrix W . A softmax function was applied to each row of W to transform it into a valid transition
matrix T (W ) =

(
sm(W1), sm(W2), . . . , sm(WK)

)>
. For a base model f , the complementary

probability estimates of CPE-T for a given instance x would be T (W )>f(x; θ). Note that we use
the L1 decoder for CPE-I, CPE-F, and CPE-T.

We also draw the following observations by viewing earlier approaches with the proposed framework:
Remark 3.4. By viewing FWD with the proposed framework, we can see in Table 2, the equivalent
decoder is different fromL1 decoding. Intuitively, it converts the complementary probability estimates
back to ordinary probability estimates and predicts the largest one. We name it MAX decoding for
future reference.
Remark 3.5. If the transition matrix is uniform, then FWD and SCL with log loss match. The result
suggests that they are exactly the same method, and explain why we see similar performances on the
two methods in the Chou el al.’s experiment [2020]. The similarity between the two methods was
also reproduced in our experiment in Section 4.1 and reported in Table 3.
Remark 3.6. DM was proposed to lift the generation assumption of complementary labels [7].
However, from the view of the proposed framework, DM implicitly assumes the complementary
labels are generated uniformly, as we can see from the decoder. This provides an alternative
explanation why its performance deteriorates as the transition matrix deviates from the uniform
matrix, as shown in Gao and Zhang’s experiment [2021].

4 Experiments

In Section 4.1 and 4.2, we benchmarked the proposed framework to state-of-the-art baselines and
discussed the following questions through the experimental results: (a) Can the transition layers in the
proposed CPE improve the model’s performance? (b) Is the proposed L1 decoding competitive to the
more complex MAX? (c) Does the transition matrix provide information to the learning algorithms
even if it is inaccurate? We further demonstrated the flexibility of incorporating traditional models in
CPE in Section 4.3 and verified the effectiveness of the proposed validation procedure in Section 4.4.

4.1 Comparison on Clean Transition Matrix

Setup We first evaluated CPE and other baselines under the standard CLL setting where the correct
transition matrix T is given to the learner. The baselines include the following state-of-the-art
methods: (a) URE-GA: Gradient Ascent applied on the unbiased risk estimator [8, 9], (b) Fwd:
Forward Correction [24], (c) SCL: Surrogate Complementary Loss with negative log loss [3], and (d)
DM: Discriminative Models with Weighted Loss [7]. We did not include consistency regularization
[20] in the experiment to prevent introducing extra factors and simplify the comparison. Three types
of transition matrices are benchmarked in the experiment. Besides the uniform transition matrix,
following Yu et al. [24], Gao & Zhang [7], we generated two biased ones as follows: For each
class y, the complementary classes Y\{y} are first randomly split into three subsets. Within each
subset, the probabilities are set to p1, p2 and p3, respectively. We consider two cases for (p1, p2, p3):
(a) Strong: ( 0.75

3 , 0.24
3 , 0.01

3 ) to model stronger deviation from uniform transition matrix. (b) Weak:
( 0.45

3 , 0.30
3 , 0.25

3 ) to model milder deviation from uniform transition matrix.

Following the previous work, we test those methods on MNIST, Fashion-MNIST, and Kuzushiji-
MNIST, and use the linear and one-layer mlp model (d-500-c) as base models. We report the
performance of mlp models in this section and leave the results of linear models in the Appendix. All
models are optimized using Adam with learning rate selected from {1e-3, 5e-4, 1e-4, 5e-5, 1e-5} and
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Table 3: Comparison of the testing classification accuracies with different transition matrices.

MNIST FASHION-MNIST KUZUSHIJI-MNIST

UNIF. WEAK STRONG UNIF. WEAK STRONG UNIF. WEAK STRONG

URE-GA 90.3± 0.2 87.8± 0.9 33.8± 8.1 79.4± 0.7 75.7± 2.0 32.3± 4.5 65.6± 0.8 62.5± 1.1 23.3± 5.4
SCL 94.3± 0.4 93.8± 0.4 27.5± 19.8 82.6± 0.4 81.2± 0.1 28.5± 10.8 73.7± 1.4 71.2± 2.9 20.7± 4.8
DM 91.9± 0.6 90.2± 0.3 26.7± 4.6 82.5± 0.3 80.3± 1.1 24.8± 5.0 65.6± 2.9 64.5± 2.7 20.1± 3.2
FWD 94.4± 0.2 91.9± 0.3 95.3± 0.4 82.6± 0.6 83.0± 1.0 85.5± 0.3 73.5± 1.6 63.1± 2.6 74.1± 4.8
CPE-I 90.2± 0.2 88.4± 0.3 92.7± 0.8 81.1± 0.3 79.2± 0.5 81.9± 1.4 66.2± 1.0 62.5± 0.9 73.7± 1.0
CPE-F 94.4± 0.2 92.0± 0.2 95.5± 0.3 83.0± 0.1 83.0± 0.3 85.8± 0.3 73.5± 1.6 64.6± 0.5 75.3± 2.6
CPE-T 92.8± 0.6 92.1± 0.2 95.2± 0.5 83.0± 0.1 83.0± 0.3 85.8± 0.3 63.6± 0.4 64.6± 0.4 74.2± 2.8

Table 4: Comparison of the testing classification accuracies with different levels of noise.

MNIST FASHION-MNIST KUZUSHIJI-MNIST

λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5

URE-GA 31.8± 6.4 27.8± 8.2 28.1± 4.1 27.3± 5.5 28.6± 4.1 26.3± 2.0 24.5± 4.6 21.1± 2.2 19.8± 2.1
SCL 25.1± 11.7 24.7± 8.9 23.8± 2.7 26.6± 9.2 20.6± 6.7 23.2± 5.7 20.4± 4.6 17.3± 2.9 16.8± 1.6
DM 26.5± 9.1 24.6± 6.5 22.6± 1.3 24.1± 5.1 23.6± 6.7 22.6± 2.9 20.0± 3.0 19.2± 3.1 18.2± 1.6
FWD 88.3± 8.7 83.9± 10.7 71.6± 18.4 84.8± 0.6 80.2± 6.2 62.9± 20.1 72.8± 5.6 67.6± 7.5 54.7± 12.4
CPE-I 92.4± 0.7 92.0± 0.8 87.6± 1.4 81.7± 1.4 81.3± 1.4 78.2± 1.5 73.0± 0.7 71.6± 0.9 62.7± 1.6
CPE-F 94.3± 0.5 93.6± 0.5 89.0± 1.4 84.1± 0.8 83.0± 1.1 78.4± 2.5 76.1± 1.3 73.7± 1.5 63.7± 1.5
CPE-T 94.4± 0.5 93.7± 0.5 89.6± 0.9 84.1± 0.8 83.2± 1.1 78.9± 2.0 76.1± 1.3 73.9± 1.6 64.2± 1.2

a fixed weight decay 1e-4 for 300 epochs. The learning rate for CPE is selected with the Surrogate
Complementary Estimation Loss (SCEL) on the validation dataset. For the baseline method, it is
selected with unbiased risk estimator (URE) of the zero-one loss. It is worth noting that the validation
datasets consist of only complementary labels, which is different from some previous works. Other
experimental details are provided in Appendix D. The results are reported in Table 3.

Can Transition Layers Improve Performance? In Table 3, it is displayed that CPE-F and CPE-
T outperform CPE-I, demonstrating that transition layers help achieve higher performances. Also,
CPE-F achieve slightly better accuracies than CPE-T. To understand the reason behind the difference,
we compared their training and validation loss in Figure 1 in Appendix D.2. In the figure, fixed or
trainable transition layers achieve smaller training loss for linear models, demonstrating its ability in
increasing the model’s complexity. On the other hand, mlp model achieves small training loss without
a transition layer but is prone to overfit. We conclude that transition layers improve model’s ability to
fit the distribution of complementary labels when the model is simple. Although the improvement
becomes marginal when the model is complex enough, it provides better generalization performance.
Overall, adding transition layers produce better testing accuracies when the transition matrix is clean.

Is L1 competitive with MAX? As analyzed in Section 3.2, Fwd and CPE-F only differ in the
decoding step, with the former using MAX and the latter using L1. In Table 3, Fwd and CPE-F
have similar testing accuracies, suggesting the competitivity of L1 decoding despite its simplicity. To
eliminate the difference in the validation procedure, we provide testing accuracies when both methods
use SCEL to select parameters in Table 8 in Appendix D.2. It is displayed that Fwd outperforms
CPE-F only marginally, demonstrating that MAX has a small edge to L1 but not much.

Discussion of T -agnostic models Among the baseline methods, URE-GA, SCL and DM are ones
that does not take T as inputs or assumes T is uniform, which we called T -agnostic models. It is
shown that those models perform well when the transition matrix is just slightly deviated from the
uniform one. Their performances all dropped when the deviation from uniform becomes larger. As
we discussed in Section 3.2, the result can be interpreted to be caused by their implicit assumption on
uniform transition matrix, which brings great performance on uniform transition matrix but worse
performance on biased ones. In contrast, we observed that all variations of CPE have similar testing
accuracies across different transition matrices, demonstrating that CPE does exploit the information
from the transition matrix that helps the models deliver better performance.

4.2 Robustness to Noisy Transition Matrix

Setup As in ordinary dataset, it is possible that the complementary labels are noisy. Such scenarios
are explored in this experiment. Specifically, we consider the Strong deviation transition matrix
Tstrong to be the clean transition matrix, and a uniform noise transition matrix 1

K1K to model the
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Table 5: Comparison of testing classification accuracies of CPE with traditional models. Boldfaced
ones outperform the baseline methods based on single-layer deep models.

MNIST FASHION-MNIST KUZUSHIJI-MNIST

MODEL UNIF. WEAK STRONG UNIF. WEAK STRONG UNIF. WEAK STRONG

CPE-KNN 93.1± 0.1 92.6± 0.1 94.5± 0.4 79.1± 0.4 77.8± 0.6 79.0± 1.7 74.9± 0.8 73.7± 0.8 80.4± 1.3
CPE-GBDT 86.9± 0.4 86.0± 0.3 90.3± 0.9 79.8± 0.4 78.0± 0.4 81.4± 1.1 60.6± 0.4 56.6± 1.8 68.4± 2.1

λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5

CPE-KNN 93.7± 0.4 93.4± 0.4 91.9± 1.1 78.7± 1.9 78.5± 1.9 76.6± 1.9 77.2± 1.1 75.9± 1.6 73.2± 1.7
CPE-GBDT 89.7± 1.0 88.6± 1.2 84.0± 1.7 80.6± 1.7 80.0± 1.6 76.0± 2.2 66.7± 2.4 64.7± 2.4 55.8± 3.1

noisy complementary label generation. We generated complementary labels with the transition matrix
(1− λ)Tstrong + λ 1

K1K , but provided Tstrong and the generated complementary dataset to the learners.
The parameter λ controls the proportion of the uniform noise in the complementary labels. The
testing accuracy is reported in Table 4.

Can Transition Layers Improve Performance? Table 4 displays that CPE-F and CPE-T out-
perform CPE-I, demonstrating that transition layers can improve the testing accuracies despite the
provided transition matrix is inaccurate. When λ is large, we observe that CPE-T outperforms
CPE-F in Table 4, and that CPE-T has smaller training loss than CPE-F in Figure 2. It suggests that
by making transition layers trainable, the model can fit the distribution of complementary labels better
by altering the transition layer. In contrast, CPE-F is restricted to a wrong output space, making it
underperform CPE-T. The difference makes CPE-T a better choice for noisy environment.

Is L1 competitive with MAX? Table 4 displays that CPE-F outperforms Fwd, especially when
λ is larger. This results suggests that L1 decoding employed by CPE-F is both simple and more
tolerant than MAX decoding in noisy environments where the transition matrix becomes inaccurate.
In Table 8 in Appendix D.2, we compare them using the same validation procedure. It is displayed
that Fwd is better when λ is small whereas CPE-F is better when λ is large after fixing validation
procedure. This result further confirms that L1 decoding is more robust to an inaccurate transition
matrix than MAX decoding.

Discussion of T-agnostic models Table 4 displays that T -agnostic models (URE-GA, SCL, DM)
perform similarly under different levels of noise. This is expected because their prediction does not
rely on the provided transition matrix and hence should not be affected by a wrong one. On the other
hand, all variants of CPE show solid tolerance against noise. The testing accuracies deteriorate as the
noise level rise, but overall they outperform T -agnostic methods by a large margin. We conclude that
even if the provided transition matrix is inaccurate, CPE is still able to exploit its information and
produce a better model.

4.3 Learn from CL with Traditional Methods

As discussed in Section 3, the proposed framework is not constrained by deep models. We explored
the possibility of applying traditional methods to learn from CL, including (a) k-Nearest Neighbor
(k-NN) and (b) Gradient Boosting Decision Tree (GBDT). We benchmarked those models in the
same settings in Section 4.1 and 4.2. The testing accuracy reported in Table 5 displays that traditional
models, specifically, k-NN, outperform than all the methods using deep models in Kuzushiji-MNIST,
indicating the benefit of the proposed CPE’s flexibility in using non-deep models.

4.4 Comparison of the validation procedure

Does SCEL Select Better Parameters for CPE? We conducted an additional validation procedure
by selecting the parameters with the smallest URE on the validation dataset, compared the testing
accuracies of the selected parameters, and reported the results in Table 9. It is displayed that the
parameters selected by SCEL has better testing accuracies to the ones selected by URE in most
scenarios. We further observed that as the noise level rises, the parameters selected by URE tended to
be unstable and worse in testing accuracies, whereas SCEL did not exhibit such issue. The result
demonstrated the superiority of SCEL over URE in terms of parameter selection even if it does not
have the unbiased property as URE.
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Does SCEL Select Better Parameters for Fwd? It is worth noting that SCEL could be applied to
the earlier approaches by casting them in the proposed CPE framework. We explored whether SCEL
selects better parameters for Fwd as we observed in the previous experiment and reported the results
in Table 10. It is demonstrated that the parameters selected by SCEL outperform those selected by
URE in almost all settings. Although SCEL is designed for the proposed CPE framework, the result
demonstrated that SCEL can be applied to some earlier approaches and allows them to use a more
robust approach to validate models.

5 Conclusion

In this paper, we view the CLL problem from a novel perspective, reduction to complementary
probability estimates. Through this perspective, we propose a framework that only requires comple-
mentary probability estimates and prove that a simple decoding step can map the estimates to ordinary
labels. The framework comes with a theoretically justified validation procedure, provable tolerance in
noisy environment, and flexibility of incorporating non-deep models. Empirical experiments further
verify the effectiveness and robustness of the proposed framework under broader scenarios, including
non-uniform and noisy complementary label generation. We expect the realistic elements of the
framework to keep inspiring future research towards making CLL practical.
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A Proofs

This section provides the proofs for the propositions, theorems claimed in the main text.

A.1 Proof of Proposition 3.1

First, set C = E(x,y)∼D
∑K
k=1 Tyk log(Tyk), then

E
(x,y)∼D

`(f̄(x), Ty) = E
(x,y)∼D

K∑
k=1

−Tyk log

(
f̄k(x)

Tyk

)
= C + E

(x,y)∼D

K∑
k=1

−Tyk log(f̄k(x)) (11)

Next, as P (ȳ | y) = Tyȳ , then

E
(x,y)∼D

K∑
k=1

−Tyk log(f̄k(x)) = E
(x,y)∼D

(
E
ȳ | y
− log(f̄ȳ(x))

)
= E

(x,ȳ)∼D̄
`(f̄(x), eȳ) (12)

Hence, E(x,y)∼D `(f̄(x), Ty) = C + E(x,ȳ)∼D̄ `(f̄(x), eȳ).

A.2 Proof of Proposition 3.2

Let IA denote the indicator function of event A, then using Markov’s inequality on the random
variable d(f̄(x), Ty), we have

R01

(
dec(f̄ ; d)

)
≤ P

(
d(f̄(x), Ty) ≥ γd

2

)
≤ 2

γd
E
[
d(f̄(x), Ty)

]
=

2

γd
R(f̄ ; d) (13)

To see the first inequality holds, note that if d(f̄(x), Ty) < γd
2 , then for any incorrect class y′ 6= y,

we have
d(f̄(x), Ty′) ≥ d(Ty, Ty′)− d(Ty, f̄(x)) ≥ γd

2
(14)

by triangular inequality and the definition of γd. As a result, the decoder decodes f̄(x) to the correct
class y if d(f̄(x), Ty) < γd

2 . This completes the first part of the Proposition.

Next, by Pinsker’s inequality and Jensen’s inequality, we have that

R(f̄ ;L1) = E
(x,y)∼D

∥∥f̄(x)− Ty
∥∥

1
(15)

≤ 2 E
(x,y)∼D

√
2`KL

(
f̄(x), Ty

)
(16)

≤ 2
√

2 E
(x,y)∼D

`KL
(
f̄(x), Ty

)
= 2
√

2R(f̄ ; `KL) (17)

According to the above inequality and the results of the first part, the proof for the second part is now
complete.

A.3 Proof of Corollary 3.3

The decoding step remains the same when T ′ 6= T because the decoder uses the same transition
matrix T to decode. The only difference is in the complementary probability estimates. Specifically,
we have that the complementary estimation loss becomes R(f̄ ; `) = E(x,y)∼D

(
`(f̄(x), T ′y)

)
as the

complementary labels are generated with respect to T ′.

Hence, the last equality in Equation (13) is no longer correct. Instead, we use the following:

E
[
d(f̄(x), Ty)

]
≤ E

[
d(f̄(x), T ′y) + d(T ′y, Ty)

]
≤ E

[
d(f̄(x), T ′y)

]
+ ε (18)

to obtain thatR01

(
dec(f̄ ; d)

)
≤ 2

γd
R(f̄ ; d)+ 2ε

γd
. Then, we can use Pinsker’s inequality and Jensen’s

inequality as in (15) to get

R01

(
dec(f ;L1)

)
≤ 4
√

2

γ

√
R(f̄ ; `) +

2ε

γ
. (19)
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B Details of the Connections between Proposed Framework and Previous
Methods

In this section, we provide further details about how our framework can explain several previous
methods as its special cases. Across this section, we let f(·; θ) denote the base model parametrized
by θ ∈ Θ.

Forward Correction In the training phase, Forward Correction optimizes the following loss
functions:

LFwd(θ) =
1

N

N∑
i=1

− log
(
T>f(xi; θ)

)
ȳi

(20)

In the inference phase, Forward Correction predicts ŷ = argmaxk fk(x) for an unseen instance x.
We claim that Forward Correction is equivalent to CPE with the following parameters when T is
invertible:

• Hypothesis Set: {x 7→ T>f(x; θ) : θ ∈ Θ}
• Decoder: argmaxk

(
(T>)−1f̄(x; θ)

)
k
.

Proof. First, by setting the hypothesis set as above and plugging in the surrogate complementary
estimation loss, we get the training objective function for CPE:

LCPE(θ) =
1

N

N∑
i=1

− log
(
T>f(xi; θ)

)
ȳi

(21)

Equation (21) matches Equation (20), implying that in the training phase they select the same
parameter θ. Next, in the inference phase, it is clear that (T>)−1f̄(x; θ) = (T>)−1T>f(x; θ) =
f(x; θ), so both methods predict the same label for an instance x.

Next, we further show that when T is the uniform transition matrix U , the decoder is equivalent to
the L1 decoder, i.e., argmaxk((U>)−1f̄(x))k = argmink‖Uk − f̄(x)‖1:

Proof. First, as

((U>)−1f̄(x))k = −(K − 1)f̄k(x) +

K∑
k=1

f̄k(x) = −(K − 1)f̄k(x) + 1,

we have that argmaxk((U>)−1f̄(x))k = argmink f̄k(x). Next, set ŷ = argmink f̄k(x). For any
y 6= ŷ, we want to show

|Uyŷ − f̄ŷ(x)|+ |Uyy − f̄y(x)| ≥ |Uŷŷ − f̄ŷ(x)|+ |Uŷy − f̄y(x)|. (22)

As f̄ŷ(x) ≤ 1
K ≤

1
K−1 = Uyŷ ,

|Uyŷ − f̄ŷ(x)|+ |Uyy − f̄y(x)| = |Uyŷ − f̄ŷ(x)|+ f̄ŷ(x) + |Uyy − f̄y(x)| − fŷ(x) (23)

= |Uŷŷ − f̄ŷ(x)|+ |Uyŷ − f̄ŷ(x)|+ |Uyy − f̄y(x)| − f̄ŷ(x) (24)

= |Uŷŷ − f̄ŷ(x)|+ 1

K − 1
− f̄ŷ(x) + f̄y(x)− f̄ŷ(x) (25)

If f̄y(x) ≤ 1
K−1 , as f̄ŷ(x) ≤ f̄y(x),

1

K − 1
− f̄ŷ(x) + f̄y(x)− f̄ŷ(x) ≥ 1

K − 1
− f̄ŷ(x) ≥ 1

K − 1
− f̄y(x) = |Uŷy − f̄y(x)|

Otherwise, as f̄ŷ(x) ≤ 1
K ,

1

K − 1
− f̄ŷ(x) + f̄y(x)− f̄ŷ(x) ≥ f̄y(x)− f̄ŷ(x) ≥ 1

K − 1
− f̄y(x) = |Uŷy − f̄y(x)|.
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Hence, Equation (22) holds. Now,

K∑
k=1

∣∣Uyk − f̄k(x)
∣∣ =

∣∣Uyŷ − f̄ŷ(x)
∣∣+
∣∣Uyy − f̄y(x)

∣∣+
∑
k 6=y,ŷ

∣∣Uyk − f̄k(x)
∣∣ (26)

≥
∣∣Uŷy − f̄y(x)

∣∣+
∣∣Uŷŷ − f̄ŷ(x)

∣∣+
∑
k 6=y,ŷ

∣∣Uŷk − f̄k(x)
∣∣ =

K∑
k=1

∣∣Uŷk − f̄k(x)
∣∣

(27)

As a result, ŷ minimizes k 7→ ‖Uk − f̄(x)‖1. Hence, we conclude that argmink f̄k(x) = ȳ =
argmink‖Uk − f̄k(x)‖1. Then the proof is complete.

As the two decoders are equivalent, we have that Forward Correction is equivalent to CPE with

• Hypothesis Set: {x 7→ U>f(x; θ) : θ ∈ Θ}
• Decoder: argmink‖f̄(x; θ)− Uk‖1.

when the transition layer is fixed to the uniform transition matrix.

Surrogate Complementary Loss In the training phase, Surrogate Complementary Loss with Log
Loss optimizes the following loss functions:

LSCL(θ) =
1

N

N∑
i=1

− log(1− f(xi; θ))ȳi (28)

In the inference phase, this method predicts the ordinary labels by ŷ = argmaxk fk(x) for an unseen
instance x. We claim that this method is equivalent CPE with:

• Hypothesis Set: {x 7→ U>f(x; θ) : θ ∈ Θ}
• Decoder: argmink‖f̄(x; θ)− Uk‖1.

Proof. Observe that the training objective function for CPE with the hypothesis set has the following
property:

LCPE(θ) =
1

N

N∑
i=1

− log
(
U>f(xi; θ)ȳi

)
=

1

N

N∑
i=1

− log

(
1

K − 1

∑
k 6=ȳi

fk(xi; θ)

)
(29)

=
1

N

N∑
i=1

− log
(
1− fȳi(xi; θ)

)
+ log(K − 1) = LSCL(θ) + log(K − 1) (30)

That is, the objective function only differs by a constant. As a result, the two methods match during
the training phase.

In inference phase, SCL predicts ŷ = argmaxk f(x; θ) for unseen instance x as in Forward Correc-
tion. In addition, they have the same hypothesis set {x 7→ U>f(x; θ) : θ ∈ Θ} if the transition layer
of Forward Correction is fixed to uniform. Hence, SCL is equivalent to Forward Correction with
uniform transition layer. It implies that they have the same decoder: ŷ = argmink‖f̄(x)−Uk‖1.

Discriminative Model In the training phase, Discriminative Model with unweighted loss optimizes
the following loss functions:

LDM(θ) =
1

N

N∑
i=1

− log
(

sm(1− f(xi; θ))
)
ȳi

(31)

In the inference phase, this method predicts the ordinary labels by ŷ = argmaxk fk(x) for an unseen
instance x. We claim that this method is equivalent CPE with:

• Hypothesis Set: {x 7→ sm(1− f(x; θ)) : θ ∈ Θ}
• Decoder: argmink‖f̄(x; θ)− Uk‖1.
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Proof. The equivalence in the training phase is clear by plugging in the hypothesis to the surrogate
complementary estimation loss. During inference phase, first observe that

f̄k(x) =
1

Z
exp

(
1− fk(xi; θ)

)
=

e

Z
exp

(
− fk(xi; θ)

)
, (32)

where Z =
∑K
k=1 exp

(
1 − fk(xi; θ)

)
is the normalization term. As x 7→ exp(−x) is mono-

tonic decreasing, we have that argmink f̄k(x; θ) = argmaxk fk(x; θ). Next, as we have shwon
argmink f̄k(x) = argmink‖Uk − f̄k(x)‖1, so argmaxk fk(x; θ) = argmink‖Uk − f̄k(x)‖1, imply-
ing that both methods predict the same label for all instances.

C Broader Impact

This paper proposed a new approach to better utilizing the information from complementary labels.
This may potentially make personal data less private because in some sense CLL algorithms enable
recovery ordinary labels from only complementary ones.

D Experiment Details

In this section, we provide missing details of the experiments in Section 4.

D.1 Setup

Datasets Across the experiments, we use the following datasets:

• MNIST [13] (CC BY-SA 3.0 license)
• Fashion-MNIST [22] (MIT license)
• Kuzushiji-MNIST [4] (CC BY-SA 4.0 license)

For the above dataset, the size of the training set is 60000, and the size of the testing set is 10000.
To perform the hyperparameter selection, in each trial, we split 10 percent of the training dataset
randomly as the validation dataset. We performed five trials with different random seeds for all the
experiments in this paper.

Models We implemented the deep models in PyTorch. The base models considered in the experi-
ment are linear and one-layer mlp model (d-500-c) with 500 hidden units. In CPE-T, the parameter of
the transition layer is initialized such that it matches the provided transition matrix, i.e. it is initialized
to W0 such that T (W0) = T . All models are optimized using Adam with learning rate selected from
{1e-3, 5e-4, 1e-4, 5e-5, 1e-5} and a fixed weight decay 1e-4 for 300 epochs. We used the default
parameters in PyTorch for other parameters in Adam. The experiments are run with Nvidia Tesla
V100 GPUs.

For the two traditional models, we used the K nearest neighbor (KNN) classifier from scikit-learn with
the number of neighbors selected from {10, 20, . . . , 250} based on the complementary estimation
loss on the validation dataset. We performed PCA on the dataset to map the feature to a 32-dimension
space for KNN to reduce the training/inference time. We used Gradient Boosting Decision Tree from
LightGBM, and set the objective to “multiclass” to optimize the log loss. The hyperparameters include
the number of trees {5, 10, . . . , 500} and learning rate {0.01, 0.025, 0.05, 0.1}. Those parameters
are also selected based on the complementary estimation loss on the validation dataset.

D.2 Additional Results

This section provides figures and tables that are helpful in analyzing the experiment results.
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Table 6: Comparison of the testing classification accuracies with different transition matrices.

MNIST FASHION-MNIST KUZUSHIJI-MNIST

UNIF. WEAK STRONG UNIF. WEAK STRONG UNIF. WEAK STRONG

URE-GA 81.7± 0.5 73.4± 1.4 23.7± 2.9 76.2± 0.3 70.8± 1.5 21.3± 5.5 51.0± 1.0 43.7± 1.0 16.7± 2.5
SCL 90.5± 0.2 90.2± 0.2 25.0± 17.9 82.0± 0.4 79.6± 2.2 26.2± 8.7 59.9± 0.9 58.9± 0.7 16.4± 2.2
DM 89.7± 0.5 89.1± 0.2 22.7± 8.5 81.8± 0.3 78.2± 3.1 23.6± 5.5 61.0± 1.5 59.4± 1.4 17.7± 3.0
FWD 90.5± 0.2 90.6± 0.4 91.6± 0.7 82.0± 0.4 81.6± 1.2 83.4± 0.7 59.9± 0.9 60.4± 0.9 62.6± 0.7
CPE-I 80.4± 0.3 73.5± 1.3 76.1± 1.6 74.6± 0.5 71.0± 1.5 74.7± 2.3 49.7± 0.6 42.8± 0.8 46.8± 1.4
CPE-F 90.5± 0.2 90.7± 0.1 91.8± 0.4 82.2± 0.3 82.4± 0.4 83.1± 1.0 60.4± 0.6 60.8± 0.4 62.8± 0.2
CPE-T 90.5± 0.2 90.6± 0.1 91.8± 0.4 82.0± 0.3 82.1± 0.5 83.2± 1.2 60.3± 0.5 60.6± 0.5 63.0± 0.3

Table 7: Comparison of the testing classification accuracies with different levels of noise.

MNIST FASHION-MNIST KUZUSHIJI-MNIST

λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5

URE-GA 22.8± 2.0 21.1± 4.4 21.4± 1.6 20.2± 6.7 23.5± 3.9 22.6± 3.1 16.8± 2.1 16.4± 2.8 15.2± 2.2
SCL 25.6± 13.8 23.9± 10.3 23.7± 4.3 23.9± 7.8 24.5± 5.2 26.0± 3.2 17.8± 2.5 17.8± 3.2 17.4± 1.3
DM 23.3± 7.4 22.4± 8.7 23.4± 2.9 24.1± 7.1 24.3± 5.0 25.6± 3.9 18.1± 2.6 17.6± 2.4 16.5± 1.4
FWD 91.1± 0.7 89.6± 1.0 82.5± 3.6 82.4± 0.9 81.4± 0.9 72.0± 7.5 62.7± 1.0 60.9± 0.9 52.1± 6.2
CPE-I 75.7± 2.0 75.4± 2.0 73.8± 2.2 74.6± 2.3 73.9± 2.2 71.1± 2.0 47.0± 1.4 46.5± 1.3 43.4± 1.1
CPE-F 91.2± 0.7 90.2± 1.0 85.2± 1.7 82.2± 1.2 81.0± 1.5 75.4± 3.3 61.9± 0.9 61.1± 2.2 53.4± 1.5
CPE-T 91.3± 0.7 90.5± 0.8 85.7± 1.6 82.6± 1.3 81.6± 1.3 78.0± 1.6 62.2± 0.8 61.7± 1.7 55.0± 1.1

Benchmark results of linear models Table 6 and 7 provide the the noiseless and noisy benchmark
results using linear models as base models, as introduced in Section 4.1 and Section 4.2, respectively.
We can see that the proposed CPE performs slightly better or is competitive with the baseline methods
in most scenarios. When the transition matrix is highly inaccurate (λ = 0.5), CPE outperforms the
baselines and is more stable in terms of testing accuracies. These are consistent with our observation
when using mlp as base models.

Table 8: Comparison of testing accuracies of decoders when the baseline models use fixed transition
layers. The parameters are selected from the one with smallest SCEL on the validation dataset. Note
that L1 and MAX correspond to CPE-F and Fwd, respectively.

MNIST FASHION-MNIST KUZUSHIJI-MNIST

UNIF. WEAK STRONG UNIF. WEAK STRONG UNIF. WEAK STRONG

LINEAR
MAX 90.5± 0.2 90.7± 0.2 91.9± 0.4 82.2± 0.3 82.6± 0.3 83.8± 0.2 60.4± 0.6 61.2± 0.3 63.2± 0.2
L1 90.5± 0.2 90.7± 0.1 91.8± 0.4 82.2± 0.3 82.4± 0.4 83.1± 1.0 60.4± 0.6 60.8± 0.4 62.8± 0.2

MLP
MAX 94.4± 0.2 92.0± 0.2 95.5± 0.2 83.0± 0.1 83.3± 0.2 86.1± 0.5 73.5± 1.6 64.8± 0.5 75.3± 2.6
L1 94.4± 0.2 92.0± 0.2 95.5± 0.3 83.0± 0.1 83.0± 0.3 85.8± 0.3 73.5± 1.6 64.6± 0.5 75.3± 2.6

MNIST FASHION-MNIST KUZUSHIJI-MNIST

λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5

LINEAR
MAX 91.4± 0.5 90.5± 0.5 83.9± 2.6 83.2± 0.3 82.4± 0.4 76.3± 2.8 62.5± 0.9 62.5± 1.6 55.6± 2.0
L1 91.2± 0.7 90.2± 1.0 85.2± 1.7 82.2± 1.2 81.0± 1.5 75.4± 3.3 61.9± 0.9 61.1± 2.2 53.4± 1.5

MLP
MAX 94.4± 0.3 93.5± 0.3 84.5± 4.1 85.0± 0.3 84.0± 0.5 76.5± 2.5 76.4± 1.1 73.8± 1.2 59.9± 3.4
L1 94.3± 0.5 93.6± 0.5 89.0± 1.4 84.1± 0.8 83.0± 1.1 78.4± 2.5 76.1± 1.3 73.7± 1.5 63.7± 1.5

Comparison of decoders Table 8 provide the comparison of L1 decoder and MAX decoder under
the same the validation procedure (SCEL). It is displayed that the MAX decoder outperform L1

in most noiseless settings; however, when the transition matrix is highly inaccurate (λ = 0.5), we
observe that the L1 decoder outperform the MAX decoder when using mlp. This suggests that L1

could be more tolerant to an inaccurate transition matrix when the models are complex. These results
reveal that a deeper sensitivity analysis of different decoders, both empirically and theoretically,
would be desired. We leave this as future studies.
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Table 9: Comparison of CPE-T’s testing accuracies using different validation procedures.

MNIST FASHION-MNIST KUZUSHIJI-MNIST

UNIF. WEAK STRONG UNIF. WEAK STRONG UNIF. WEAK STRONG

LINEAR
URE 90.3± 0.6 90.4± 0.3 91.8± 0.5 82.1± 0.3 81.5± 1.2 82.6± 1.3 59.9± 0.4 60.0± 0.9 62.5± 0.5
SCEL 90.5± 0.2 90.6± 0.1 91.8± 0.4 82.0± 0.3 82.1± 0.5 83.2± 1.2 60.3± 0.5 60.6± 0.5 63.0± 0.3

MLP
URE 92.7± 0.5 91.8± 0.7 90.4± 6.5 82.9± 0.1 83.0± 0.3 84.3± 1.5 63.8± 0.7 63.8± 1.9 74.5± 2.7
SCEL 92.8± 0.6 92.1± 0.2 95.2± 0.5 83.0± 0.1 83.0± 0.3 85.8± 0.3 63.6± 0.4 64.6± 0.4 74.2± 2.8

MNIST FASHION-MNIST KUZUSHIJI-MNIST

λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5

LINEAR
URE 90.9± 1.0 90.2± 0.8 86.1± 1.3 82.2± 1.3 81.2± 1.4 77.1± 1.8 62.3± 0.8 60.6± 0.9 55.3± 2.3
SCEL 91.3± 0.7 90.5± 0.8 85.7± 1.6 82.6± 1.3 81.6± 1.3 78.0± 1.6 62.2± 0.8 61.7± 1.7 55.0± 1.1

MLP
URE 83.7± 9.7 90.8± 4.7 82.9± 9.4 83.0± 3.2 74.8± 10.1 74.3± 10.1 68.5± 11.4 67.1± 7.7 57.2± 16.3
SCEL 94.4± 0.5 93.7± 0.5 89.6± 0.9 84.1± 0.8 83.2± 1.1 78.9± 2.0 76.1± 1.3 73.9± 1.6 64.2± 1.2

Table 10: Comparison of Fwd’s testing accuracies using different validation procedures.

MNIST FASHION-MNIST KUZUSHIJI-MNIST

UNIF. WEAK STRONG UNIF. WEAK STRONG UNIF. WEAK STRONG

LINEAR
URE 90.5± 0.2 90.6± 0.4 91.6± 0.7 82.0± 0.4 81.6± 1.2 83.4± 0.7 59.9± 0.9 60.4± 0.9 62.6± 0.7
SCEL 90.5± 0.2 90.7± 0.2 91.9± 0.4 82.2± 0.3 82.6± 0.3 83.8± 0.2 60.4± 0.6 61.2± 0.3 63.2± 0.2

MLP
URE 94.4± 0.2 91.9± 0.3 95.3± 0.4 82.6± 0.6 83.0± 1.0 85.5± 0.3 73.5± 1.6 63.1± 2.6 74.1± 4.8
SCEL 94.4± 0.2 92.0± 0.2 95.5± 0.2 83.0± 0.1 83.3± 0.2 86.1± 0.5 73.5± 1.6 64.8± 0.5 75.3± 2.6

MNIST FASHION-MNIST KUZUSHIJI-MNIST

λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5

LINEAR
URE 91.1± 0.7 89.6± 1.0 82.5± 3.6 82.4± 0.9 81.4± 0.9 72.0± 7.5 62.7± 1.0 60.9± 0.9 52.1± 6.2
SCEL 91.4± 0.5 90.5± 0.5 83.9± 2.6 83.2± 0.3 82.4± 0.4 76.3± 2.8 62.5± 0.9 62.5± 1.6 55.6± 2.0

MLP
URE 88.3± 8.7 83.9± 10.7 71.6± 18.4 84.8± 0.6 80.2± 6.2 62.9± 20.1 72.8± 5.6 67.6± 7.5 54.7± 12.4
SCEL 94.4± 0.3 93.5± 0.3 84.5± 4.1 85.0± 0.3 84.0± 0.5 76.5± 2.5 76.4± 1.1 73.8± 1.2 59.9± 3.4

Comparison of validation processes Table 9 and 10 provide comparison of validation process
using URE and the proposed SCEL. In Table 9, we observe that SCEL selects better parameters in
most cases. We also observe that when the transition matrix is inaccurate, the parameters selected
by SCEL tends to be more stable, especially when the base models are mlp. This demonstrates the
superiority of SCEL despite not being an unbiased estimator of the classification accuracies. In Table
10, we further apply SCEL to Fwd. Similarly, we observe that SCEL selects better parameters in
most cases. This suggests that the proposed validation procedure can not only be applied to CPE but
also earlier approaches. It enables a more robust approach to validate earlier methods.
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Training and validation loss curves

Figure 1: Comparison of the training and validation loss of CPE with different transition layers in
MNIST under different transition matrices. CPE-F and CPE-T perform almost identically, so the red
lines and blue lines overlap in the figures. The shaded area denotes the standard deviation of five
random trials.

Figure 2: Comparison of the training and validation loss of CPE with different transition layers in
MNIST under different noise level. CPE-F and CPE-T perform almost identically when λ is small, so
the red lines and blue lines overlap in those figures. The shaded area denotes the standard deviation
of five random trials.
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