
Cost-Sensitive Reference Pair Encoding for
Multi-Label Learning

Yao-Yuan Yang, Kuan-Hao Huang, Chih-Wei Chang, and Hsuan-Tien Lin

CSIE Department, National Taiwan University
{b01902066,r03922062}@ntu.edu.tw, cwchang@cs.cmu.edu, htlin@csie.ntu.edu.tw

Abstract. Label space expansion for multi-label classification (MLC) is
a methodology that encodes the original label vectors to higher dimen-
sional codes before training and decodes the predicted codes back to the
label vectors during testing. The methodology has been demonstrated
to improve the performance of MLC algorithms when coupled with off-
the-shelf error-correcting codes for encoding and decoding. Nevertheless,
such a coding scheme can be complicated to implement, and cannot eas-
ily satisfy a common application need of cost-sensitive MLC—adapting
to different evaluation criteria of interest. In this work, we show that a
simpler coding scheme based on the concept of a reference pair of label
vectors achieves cost-sensitivity more naturally. In particular, our pro-
posed cost-sensitive reference pair encoding (CSRPE) algorithm contains
cluster-based encoding, weight-based training and voting-based decoding
steps, all utilizing the cost information. Furthermore, we leverage the
cost information embedded in the code space of CSRPE to propose a
novel active learning algorithm for cost-sensitive MLC. Extensive exper-
imental results verify that CSRPE performs better than state-of-the-art
algorithms across different MLC criteria. The results also demonstrate
that the CSRPE-backed active learning algorithm is superior to existing
algorithms for active MLC, and further justify the usefulness of CSRPE.

Keywords: multi-label classification, cost-sensitive, active learning

1 Introduction

The multi-label classification (MLC) problem aims to map an instance to mul-
tiple relevant labels [1, 2], which matches the needs of many real-world appli-
cations, such as object detection and news classification. Different applications
generally require evaluating the performance of MLC algorithms with different
criteria, such as the Hamming loss, 0/1 loss, Rank loss, and F1 score [3].

Most existing MLC algorithms are designed to optimize one or few criteria.
For instance, binary relevance (BR) [3] learns a binary classifier per label to
predict its relevance, and naturally optimizes the Hamming loss. Classifier chain
(CC) [4] extends BR by ordering the labels as a chain and using earlier labels
of the chain to improve the per-label prediction, and optimizes the Hamming
loss like BR. Label powerset (LP) [3] optimizes the 0/1 loss by solving a multi-
class classification problem that treats each label combination as a hyper-class.

2 Yao-Yuan Yang, Kuan-Hao Huang, Chih-Wei Chang, and Hsuan-Tien Lin

These cost-insensitive algorithms cannot easily adapt to different criteria, and
may suffer from bad performance when evaluated with other criteria.

Cost-sensitive MLC (CSMLC) algorithms are able to adapt to different cri-
teria more easily. In particular, CSMLC algorithms take the criterion as an
additional piece of input data and aim to optimize the criterion during the
learning process. Two state-of-the-art CSMLC algorithms are probabilistic clas-
sifier chain (PCC) [5] and condensed filter tree (CFT) [6]. PCC estimates the
conditional probability of the labels to infer the Bayes-optimal decision with
respect to the given criterion. While PCC can tackle any criterion in principle,
the Bayes-optimal inference step can be time-consuming unless an efficient in-
ference rule of the criterion is derived in advance. CFT can be viewed as an
extension of CC for CSMLC by re-weighting each example with respect to the
criterion when training each binary classifier. Nevertheless, the re-weighting step
depends on going back and forth within the chain, making CFT still somewhat
time-consuming and hardly parallelizable.

The multi-label error-correcting code (ML-ECC) [7] framework is a more so-
phisticated algorithm that goes beyond the per-label classifiers to improve clas-
sification performance. ML-ECC uses error-correcting code (ECC) to transform
the original MLC problem into a bigger MLC problem by adding error-correcting
labels during encoding. Classifiers on those labels, much like ECC for communi-
cation, can be used to correct prediction errors made from the original per-label
classifiers and improve MLC performance. While ML-ECC is successful in terms
of the Hamming loss and 0/1 loss [7], it is not cost-sensitive and cannot eas-
ily adapt to other evaluation criteria. In fact, extending ML-ECC for CSMLC
problem appears to be highly non-trivial and has not yet been deeply studied.

In this work, we study the potential of ECC for CSMLC by considering a
special type of ECC, the one-versus-one (OVO) code, which is a popular code for
multi-class classification [8]. We extend the OVO code to a cost-sensitive code,
cost-sensitive reference pair encoding (CSRPE), which preserves the information
of the criterion in each code-bit during encoding. We further propose a method
to convert the criterion into instance weights during training, and a method
to take the criterion into account during decoding. To make the whole CSRPE
algorithm efficient enough to deal with exponentially many possible label vectors,
we study the possibility of sampling the code-bits and zooming into a smaller
subset of label vectors during prediction. The resulting algorithm is as efficient as
a typical random forest (when coupled with decision trees) in training, and can
be easily implemented in parallel. Extensive experimental results demonstrate
that CSRPE outperforms existing ML-ECC algorithms and the state-of-the-art
CSMLC algorithms across different criteria.

In addition, based on the proposed CSRPE, we design a novel algorithm
for multi-label active learning (MLAL). Retrieving ground-truth labels is usu-
ally expensive in real-world applications [2]. The goal of MLAL is to actively
query the labels for a small number of instances while maintaining good test
MLC performance. Nevertheless, current MLAL algorithms [9–11] are not capa-
ble of taking the evaluation criterion into consideration when querying. In this

Cost-Sensitive Reference Pair Encoding for Multi-Label Learning 3

paper, we formulate the cost-sensitive multi-label active learning (CSMLAL) set-
ting, and propose a novel algorithm that leverages the code space computed by
CSRPE to conduct cost-sensitive querying. Experimental results justify that the
proposed algorithm is superior to other state-of-the-art MLAL algorithms.

This paper is organized as follows. First, we define CSMLC problem formally
and introduce the ML-ECC framework in Section 2. Our proposed CSRPE al-
gorithm is described in Section 3. In Section 4, we define the CSMLAL problem
and solve it with a novel algorithm based on CSRPE. The empirical studies of
both CSRPE and its active learning extension are presented in Section 5. Finally,
we conclude the paper in Section 6.

2 Preliminary

The goal of a MLC problem is to map the feature vector x ∈ X ⊆ Rd to a label
vector y ∈ Y ⊆ {0, 1}K , where y[k] = 1 if and only if the k-th bit is relevant.
During training, MLC algorithms use the training dataset D = {(x(n),y(n))}Nn=1

to learn a classifier f : X → Y. During testing, for any test example (x,y)
drawn from by some distribution that generated (x(n),y(n)), the prediction f(x)
is evaluated with a cost function C : Y × Y → R, where C(y, ŷ) represents the
penalty of predicting y as ŷ. The objective of MLC algorithms is to minimize
the expected cost E(x,y)[C(y, f(x))].

Traditional MLC algorithms are designed to optimize one or few cost func-
tions. These algorithms may suffer from bad performance when other cost func-
tions are used. On the contrary, cost-sensitive multi-label classification (CSMLC)
algorithms take the cost function as an additional input and learn a classifier f
from both D and C. Classifier f should adapt to different C easily.

The multi-label error-correcting code (ML-ECC) [7] framework is originally
designed to optimize one cost function (the 0/1 loss). ML-ECC borrows the error-
correcting code (ECC) from the communication domain. ML-ECC views the la-
bel vectors y(n) as bit strings and encodes them to longer codes b(n) = enc(y(n))
with some ECC encoder enc : Y → {0, 1}M , where M is the code length. An MLC
classifier h is trained on {(x(n),b(n))} to predict the codes instead of the label
vectors. The code-bits store redundant information about the label vector to
recover the intended label vector even when some bits are mispredicted by h. In
prediction, the corresponding ECC decoder dec : {0, 1}M → Y, is used to convert
the predicted vector from h back to the label vector f(x) = dec(h(x)). In other
words, ML-ECC learns the classifier f = dec ◦ h. Such an ECC decoder is often
designed based on special nearest-neighbor search steps in the code space [7].

In the original work of ML-ECC [7], several encoder/decoder choices are
discussed and experimentally evaluated. Nevertheless, none of them take the
cost information into account. In fact, to the best of our knowledge, there is
currently no work that deeply studies the potential of ECC for CSMLC. Next,
we illustrate our ideas on making a special ECC cost-sensitive.

4 Yao-Yuan Yang, Kuan-Hao Huang, Chih-Wei Chang, and Hsuan-Tien Lin

3 Proposed Approach

We start from a special cost-insensitive ECC, the one-versus-one (OVO) code.
The OVO code is the core of the OVO meta-algorithm for multi-class classifica-
tion (MCC). The meta-algorithm trains many binary classifiers, each represent-
ing the duel between two of the classes, and let the binary classifiers vote for the
majority decision for MCC.

To study the OVO code for MLC, we can näıvely follow the label pow-
erset algorithm [3] to reduce the MLC problem to MCC and then apply the
OVO meta-algorithm to further reduce MCC to binary classification. As a con-
sequence, each label vector y ∈ Y is simply treated as a distinct hyper-class,
and each binary classifier within the OVO meta-algorithm represents a duel be-
tween two label vectors. More specifically, the i-th classifier is associated with

two label vectors yiα and yiβ , called the reference label vectors. There are
(
2K

2

)
such classifiers, each can be trained with examples in D that match either yiα
and yiβ . During prediction, the

(
2K

2

)
binary classifiers can then vote for all the

label vectors ∈ Y towards the majority decision.
The steps of applying OVO to MLC above can be alternatively described as

a special ML-ECC algorithm, similar to how OVO is viewed as a special ECC for

MCC [12]. OVO as ML-ECC encodes each label vector to a code of length
(
2K

2

)
with the following encoder encovo(y)[i] =

1 if y = yiα
0 if y = yiβ
0.5 otherwise

. The i-th bit in the

code represents whether the label vector matches either of the reference vectors.
The the special “bit” value of 0.5 for representing other irrelevant label vectors.
Then, decoding based on majority voting is equivalent to nearest-neighbor search
in the code space over all possible encoded y ∈ Y in terms of the Hamming
distance (dham), as the Hamming distance is a linear function of the vote that
each y gets. More precisely, denote the predicted code as b̂ = h(x), the decoder
of OVO is simply decovo(b̂) = argmaxy∈Y(dham(b̂, encovo(y))).

The näıve OVO for ML-ECC above suffers from several issues. First, the code

length
(
2K

2

)
is prohibitively long for large K, making it inefficient to compute.

Second, many of the
(
2K

2

)
classifiers may not be associated with enough data

during training. Last but not least, OVO is not cost-sensitive and cannot adapt
to different cost functions easily. We resolve the issues in the designs below.

Cost-sensitive encoding. The OVO code is designed to optimize 0/1 loss
(C(y, ŷ) = [[y 6= ŷ]], where [[·]] is the indicator function) for MLC. In the OVO
code, each bit of encovo(y) is learned from only the instances with y being
exactly the same as yiα or yiβ . For instances with y being neither yiα nor yiβ ,
these instances will be dropped from training. This suits the design of optimizing
0/1 loss. Now, we take a different perspective to view the OVO code.

When considering 0/1 loss, what the OVO code does is to decide whether
predict as yiα or yiβ suffers less 0/1 loss. For the case that y is neither yiα nor yiβ ,

the costs for predicting as yiα and yiβ are the same. That is why OVO code

Cost-Sensitive Reference Pair Encoding for Multi-Label Learning 5

ignores these cases during training. However, for other cost functions, the costs
for predicting y as yiα and yiβ can be different. Hence, even if the label vector y

is neither yiα nor yiβ , the vector can still provide information for training.

To generalize the encoding function towards cost-sensitivity, we hold the same
idea that each bit should predict which reference label vector incurs less cost. The

encoding function is designed as enccs(y)[i] =

1 if C(y,yiα) < C(y,yiβ)

0 if C(y,yiα) > C(y,yiβ)

0.5 otherwise

.

Training classifiers for cost-sensitive codes. With the encoding function
defined, we learn a classifier h to predict the encoded vectors outputted from
enccs. Although enccs gives the classifier a better ground truth, different label
vectors are not equally important for the classifier. For example, if C(y,yiα)
and C(y,yiβ) differ by a lot, there would be a high cost if the classifier gives
the wrong prediction, thus making y very important. In contrast, if there exists
a label vector y s.t. C(y,yiα) ≈ C(y,yiβ), then y is relatively unimportant
because a misclassified y would not incur a high cost. Thus, we design a weight
function to emphasize the importance for each label vector as weight(y)[i] =
|C(y,yiα)− C(y,yiβ)|.

Dataset {(x(n), enccs(y
(n)), weight(y(n)))}Nn=1 is used to train the classifier h

to predict the encoded vector. Normally, h should be trained on the full-length

encoded vectors. But the exponentially growing code length
(
2K

2

)
makes training

on the full encoding infeasible. However, many classifiers would result in learning
similar problems during training. This could allow us to use fewer bits and
preserves the same amount of information. For example, let the i-th reference
label vectors be yiα = (1, 0, 1, 0) and yiβ = (1, 0, 0, 1), and the j-th reference

vectors be yjα = (1, 1, 1, 0) and yjβ = (1, 1, 0, 1). The i-th and j-th classifier
are actually learning similar things: learning to predict whether the last two
labels of the label vector should be (1, 0) or (0, 1). Observing the redundancy
in the encoded vectors, it is clear that the length of the encoded vector can
be decreased and thus learning becomes feasible. For simplicity, we uniformly
sample some bits for from encoded vectors. In Section 5, we demonstrate that

the number of needed bits are much smaller than
(
2K

2

)
.

Cost-sensitive decoding. OVO code decodes by letting each bit votes on
either of the reference label vectors. Following the idea for encoding, this is
also a special case of decoding by considering the 0/1 loss. To match with our
proposed cost-sensitive encoding, the decoding approach is redesigned to utilize
the information more effectively.

Figure 1 is an illustration of the relation between encoded vectors under
OVO encoding and our cost-sensitive encoding. In 0/1 loss, all instances that
are predicted incorrectly incur the same cost making all label vectors except yiα
and yiβ are on the decision boundary. Only yiα and yiβ are distinguishable under
the current bit. Thus, original OVO voting only needs to be done on reference
label vectors. When using our cost-sensitive encoding, all label vectors are gen-
erally separated into two groups by the boundary as Figure 1(b): the group that

6 Yao-Yuan Yang, Kuan-Hao Huang, Chih-Wei Chang, and Hsuan-Tien Lin

yiα

yiβ
y4

y3

y2

y1

C(y,yiα) < C(y,yiβ) C(y,yiα) > C(y,yiβ)

(a) OVO voting (0/1 loss)

yiα

yiβ
y4y3

y2y1

C(y,yiα) < C(y,yiβ) C(y,yiα) > C(y,yiβ)

(b) proposed voting

Fig. 1: An illustration of the decoding methods.

is closer to yiα (left) (in terms of cost) and the group that is closer to yiβ . A
predicted encoded bit not only provides the information about the reference la-
bel vector, but also the information about all other label vectors in the same
group. Following this thought, if the prediction is yiα, all label vectors y such
that C(y,yiα) < C(y,yiβ) should be voted as well. If predicted otherwise, all
label vectors in the other group are voted. By this voting approach, we can use
the information encoded within the vectors to decode more effectively.

In fact, this voting approach echoes the Hamming decoding for ECC [12].
More specifically, with the predicted encoded vector b̂ = h(x), the decoding
function is written as deccs(b̂) = argmaxy∈Y dham(b̂, enccs(y)) With this for-
mulation, deccs is formulated as the classic nearest neighbor search problem,
where efficient algorithms exist to speed up the decoding process [13].

Despite the efficient decoding algorithm, the number of possible predictions
|Y| equals 2K , which makes it computationally infeasible. Inspired by [14], we
propose to only work with a subset of label vectors that are more likely to be the
prediction. We define a relevant set Ỹ ⊆ Y, which contains a subset of the label
vectors from the label space, on which we perform the nearest neighbor search.
The decoding function is written as deccs(b̂) = argmaxy∈Ỹ dham(b̂, enccs(y)).

The use of the Ỹ introduces a trade-off between the number of possible
predictions and the prediction efficiency. A reasonable choice of Ỹ would be
{y|(x,y) ∈ D}, which are the distinct label vectors in the training set. Given
that the training and testing sets come from the same distribution, the label
vectors that appear in the testing set are likely to have appeared in the training
set. We justify this choice of Ỹ in Section 5.

The algorithm that combines enccs, weight and deccs is called cost-sensitive
reference pair encoding (CSRPE). Our design is inspired by a cost-sensitive ex-
tension of OVO for MCC problem called cost-sensitive one-versus-one [8], but
is refined by our special ideas for encoding and decoding in the MLC problem.

4 Active Learning for CSMLC

CSRPE is able to preserve cost information in the encoded vectors. In this
section, we design a novel active learning algorithm for MLC based on CSRPE.

MLC algorithms intend to learn a classifier from a fully labeled dataset, in
which every feature vector is paired with a label vector. In many real-world

Cost-Sensitive Reference Pair Encoding for Multi-Label Learning 7

applications, obtaining a label vector to the corresponding feature vector is very
expensive [2]. This gives rise to a new problem, active learning, which investigates
how to obtain good performance with as little data labeled as possible.

In this paper, we consider the pool-based multi-label active learning (MLAL)
setting [15] and formulate the cost-sensitive extension of MLAL called cost-
sensitive multi-label active learning (CSMLAL). In CSMLAL, the algorithm is
presented with two sets of data, the labeled pool Dl = {(x(n),y(n))}Nl

n=1 and
the unlabeled pool Du = {x(n)}Nu

n=1. During iterations t = 1, . . . , T , the MLAL
algorithm considers Du, Dl, a MLC classifier ft trained on Dl and cost function
C to choose a instance xt ∈ Du to query. After the queried label vector is
retrieved as yt, xt is removed from Du and the pair (xt,yt) is added to Dl. With
a small budget of T queries, the goal of the CSMLAL algorithm is to minimize
the average prediction cost of ft on the testing instances evaluated on C.

Many of the current MLAL algorithms are based on the idea of uncertainty
sampling. They query the instance that current classifier ft is most uncertain
about. There are different uncertainty measures being developed. However, most
of these measures consider only one specific C or even completely ignoring C.
Binary minimization [9] was proposed to directly take the most uncertain bit
in the label vector to represent the uncertainty of the whole instance. It queries
based on one label at a time and arguably optimizes towards Hamming loss.
Another work, in contrast, calculates an average over the uncertainty of all labels
[10]. Yet another work uses the difference between the most uncertain relevant
label and irrelevant label as an uncertainty measure [11]. This uncertainty is then
combined with label cardinality inconsistency. However, this measure is designed
heuristically and does not aim at any C.

We propose cost-sensitive uncertainty in the encoded vector space to evaluate
the importance of instances. The cost-sensitive uncertainty can be separated into
two parts, the cost estimation uncertainty and the cost utility uncertainty.

Cost estimation uncertainty. Cost estimation uncertainty measures how
well CSRPE estimates the cost between label vectors. Let the predicted encoded
vector b̂ = h(x) and b̃ = enccs(deccs(b̂)). Note that b̃ is actually the nearest
encoded vector of b̂. Ideally, if CSRPE estimates the cost information well, b̂
should be close to b̃. If, unfortunately, the distance dham(b̂, b̃) is large, this
implies that CSRPE does not have a good cost estimation for this x and we
hence need more information about it. In other words, we are uncertain about
this x. For this reason, we define dham(b̂, b̃) as the cost estimation uncertainty.

Cost utility uncertainty. The cost utility uncertainty measures how uncertain
the classifier ft is under the current cost function. Let the prediction ȳ = ft(x)
and its encoding b̄ = enccs(ȳ). If the classifier ft is certain about its prediction
under current cost function, b̄ should be close to the cost estimation b̂ = h(x).
If unfortunately, distance dham(b̂, b̄) is large, it implies that classifier ft is un-
certain under the current cost function. Therefore, we define dham(b̂, b̄) as the
cost utility uncertainty.

The proposed cost-sensitive uncertainty is the combination of these two parts
of uncertainty, namely dham(b̂, b̃) + dham(b̂, b̄). The cost-sensitive uncertainty

8 Yao-Yuan Yang, Kuan-Hao Huang, Chih-Wei Chang, and Hsuan-Tien Lin

leads to a novel algorithm for CSMLAL. For each iteration, the algorithm selects
the instance with the highest cost-sensitive uncertainty to query its label.

5 Experiments

We justify the proposed algorithm on ten public datasets [16] and three com-
mon evaluation criteria, including F1 score, Accuracy score, Rank loss. [3]. The
experiment was run 20 times, each with a random 50-50 training-testing split.
CSRPE has the flexibility to take any base learner. In CSMLC experiments,
CSRPE is viewed as an ensemble MLC method, each bit with a binary classi-
fier attached. Because ensemble of decision trees is arguably a popular ensemble
method nowadays, we use decision trees as the base learner in these experiments.
The parameters are searched with 3-fold cross-validation.

In CSMLAL experiments, the experiments are repeated for 10 runs. Since
many of competitors designed their algorithms based on linear base learners, the
base learner is changed to logistic regression for fair comparison. The parameters
are searched with 5-fold cross-validation using the initial dataset.

More detailed experimental setup can be found in the full version [17]. In
the following experimental results, we use ↑ (↓) to indicate that a higher (lower)
value for the criterion is better.

Effect of Code Length. To justify our claim in Section 3 that the code
length can be reduced by sampling, we conduct experiments to analyzing the
performance of CSRPE with respect to the code length.

Corel5k

CAL500

Fig. 2: Different criteria versus code length for CSRPE

Figure 2 shows the average performance and standard error versus code
length. We select two of the datasets with larger label counts to showcase the
effect of the code length on performance. The results of other datasets can be
found in [17]. From the figures, CSRPE performs better as the number of bit

Cost-Sensitive Reference Pair Encoding for Multi-Label Learning 9

increases. The performance of CSRPE generally converges when the code length
reaches 3000 across all cost functions and datasets. The length is significantly
smaller than the full encoding (2K). This justifies our claim that full encoding
is not needed to achieve top performance. In the following experiments, we set
the code length as 3000.

Influence of the Relevant Set. In Section 3, we claim that a good choice for
relevant set Ỹ is all distinct label vectors in the training dataset. To justify our
claim, we demonstrate that the possible downside of this choice, which is the
inability to predict all possible label vectors, will not degrade the performance
much. In particular, we compare CSRPE with CSRPE-ext, which is CSRPE-ext
with a larger relevant set that includes label vectors that appeared in either the
training set or the testing set.

Table 1: Experiment results (mean ± ste) of CSRPE and CSRPE-ext
Dataset Rank loss ↓ F1 score ↑ Accuracy score ↑

CSRPE CSRPE-ext CSRPE CSRPE-ext CSRPE CSRPE-ext

Corel5k 490.17 ± 1.20 485.73 ± 0.88 .2455 ± .0012 .2492 ± .0011 .1664 ± .0009 .1674 ± .0009
CAL500 1304.6 ± 4.57 1303.4 ± 4.18 .4083 ± .0017 .4109 ± .0013 .2645 ± .0013 .2690 ± .0014
bibtex 104.94 ± 0.38 102.78 ± 0.32 .4663 ± .0008 .4695 ± .0009 .3926 ± .0011 .3946 ± .0010
enron 34.32 ± 0.182 33.47 ± 0.206 .5911 ± .0014 .5921 ± .0016 .4772 ± .0016 .4777 ± .0017
medical 5.330 ± 0.068 5.415 ± 0.081 .8203 ± .0023 .8204 ± .0023 .7939 ± .0024 .7934 ± .0022
genbase 0.353 ± 0.030 0.360 ± 0.032 .9878 ± .0009 .9876 ± .0009 .9836 ± .0010 .9828 ± .0012
yeast 8.451 ± 0.030 8.448 ± 0.026 .6670 ± .0012 .6679 ± .0012 .5653 ± .0012 .5650 ± .0012
flags 3.010 ± 0.047 3.050 ± 0.050 .7222 ± .0041 .7192 ± .0043 .6056 ± .0058 .6028 ± .0052
scene 0.679 ± 0.008 0.645 ± 0.006 .7860 ± .0020 .7913 ± .0014 .7620 ± .0020 .7563 ± .0017
emotions 0.591 ± 0.001 0.592 ± 0.002 .6655 ± .0035 .6673 ± .0030 .5775 ± .0037 .5774 ± .0036

The results, which shows the mean and standard error (ste) of the criteria,
are listed in Table 1. The results demonstrate that CSRPE-ext is slightly better
performing, but the improvement is at best marginal and insignificant. Even
in the CAL500 dataset, where all the label vectors in training and testing sets
are different, there is only a small performance difference between CSRPE and
CSRPE-ext. The result verifies that our choice of Ỹ as all the distinct label
vectors in the training set are sufficiently good.

Comparison with Other MLC Algorithms. In this experiment, we com-
pare the performance of various MLC and CSMLC algorithms. For the MLC
competitors, we include different codes applied within ML-ECC framework. The
competing codes include the Hamming on repetition code (HAMR), repetition
code (REP), and RAKEL repetition code (RREP) [7]. REP and RREP are equiv-
alent to BR [3] and RAKEL [18], respectively. In addition, CC [4] is added to
serve as a baseline competitor together with REP and RREP. For CSMLC al-
gorithms, we compete with PCC [5] and CFT [6].

The results are shown in Table 2 and 3. The results show that CSMLC al-
gorithms generally outperform traditional MLC algorithms. This justifies that
it is important to take cost information into account. Among the CSMLC al-
gorithms, CSRPE is superior over all other competitors with respect to F1 and
Accuracy score. For Rank loss, PCC performs slightly better, but CSRPE still
performs competitively with PCC and CFT. Such result justifies CSRPE as a
top performing CSMLC algorithm.

10 Yao-Yuan Yang, Kuan-Hao Huang, Chih-Wei Chang, and Hsuan-Tien Lin

Table 2: Experiment results (mean ± ste) on different criteria (best in bold)
F1 score ↑

Dataset REP (BR) RREP (RAKEL) HAMR CC PCC CFT CSRPE

Corel5k .0683 ± .0011 .1028 ± .0010 .0608 ± .0008 .0661 ± .0009 .1759 ± .0008 .1708 ± .0017 .2455 ± .0012
CAL500 .3388 ± .0014 .3527 ± .0011 .3152 ± .0012 .3354 ± .0024 .3540 ± .0018 .3815 ± .0016 .4083 ± .0017
bibtex .3636 ± .0009 .3761 ± .0010 .3658 ± .0008 .3569 ± .0009 .3736 ± .0011 .3957 ± .0015 .4663 ± .0008
enron .5441 ± .0026 .5336 ± .0025 .5459 ± .0023 .5492 ± .0022 .5508 ± .0014 .5530 ± .0013 .5911 ± .0014
medical .7883 ± .0028 .7757 ± .0034 .7877 ± .0031 .7924 ± .0035 .8131 ± .0023 .7970 ± .0031 .8203 ± .0023
genbase .9897 ± .0012 .9893 ± .0014 .9896 ± .0012 .9896 ± .0012 .9911 ± .0007 .9845 ± .0009 .9878 ± .0008
yeast .6119 ± .0014 .6130 ± .0011 .6171 ± .0015 .5968 ± .0018 .6013 ± .0013 .6111 ± .0024 .6670 ± .0012
flags .6954 ± .0045 .6965 ± .0044 .7005 ± .0044 .6973 ± .0048 .7075 ± .0038 .6725 ± .0055 .7222 ± .0041
scene .5895 ± .0026 .5926 ± .0019 .6365 ± .0021 .6547 ± .0019 .7306 ± .0016 .6592 ± .0027 .7860 ± .0020
emotions .5968 ± .0038 .5773 ± .0047 .6100 ± .0035 .6205 ± .0035 .6384 ± .0033 .6015 ± .0043 .6655 ± .0035

Accuracy score ↑
Dataset REP (BR) RREP (RAKEL) HAMR CC PCC CFT CSRPE

Corel5k .0471 ± .0007 .0696 ± .0006 .0408 ± .0009 .0471 ± .0007 .1135 ± .0005 .0790 ± .0019 .1664 ± .0009
CAL500 .2097 ± .0010 .2179 ± .0008 .1925 ± .0007 .2085 ± .0018 .2209 ± .0012 .2425 ± .0015 .2645 ± .0013
bibtex .3063 ± .0009 .3103 ± .0009 .3094 ± .0008 .3031 ± .0010 .2940 ± .0010 .3235 ± .0011 .3926 ± .0011
enron .4303 ± .0023 .4215 ± .0022 .4344 ± .0024 .4437 ± .0021 .4259 ± .0013 .4363 ± .0018 .4772 ± .0016
medical .7559 ± .0034 .7431 ± .0033 .7604 ± .0033 .7643 ± .0035 .7716 ± .0025 .7570 ± .0031 .7939 ± .0024
genbase .9859 ± .0014 .9852 ± .0015 .9856 ± .0014 .9858 ± .0014 .9873 ± .0009 .9792 ± .0012 .9835 ± .0010
yeast .5047 ± .0014 .5065 ± .0012 .5120 ± .0015 .4954 ± .0021 .4872 ± .0017 .5027 ± .0019 .5653 ± .0012
flags .5849 ± .0047 .5860 ± .0046 .5913 ± .0051 .5908 ± .0057 .5974 ± .0041 .5616 ± .0059 .6056 ± .0058
scene .5791 ± .0025 .5816 ± .0020 .6258 ± .0017 .6457 ± .0018 .6821 ± .0019 .6467 ± .0029 .7620 ± .0020
emotions .5179 ± .0037 .4959 ± .0045 .5320 ± .0034 .5417 ± .0035 .5433 ± .0035 .5216 ± .0036 .5775 ± .0037

Rank loss ↓
Dataset REP (BR) RREP (RAKEL) HAMR CC PCC CFT CSRPE

Corel5k 618.1 ± .6695 597.2 ± .6664 623.5 ± .6474 636.0 ± .5374 421.2 ± .6626 300.7 ± .7848 490.2 ± 1.1959
CAL500 1500. ± 5.023 1477. ± 4.835 1537. ± 4.488 1520. ± 6.155 1179. ± 4.498 1122. ± 4.470 1305. ± 4.574
bibtex 132.6 ± .2981 124.1 ± .2511 131.5 ± .2819 136.8 ± .2886 69.10 ± .2454 112.06 ± .2811 104.9 ± .3814
enron 43.39 ± .2919 44.06 ± .2810 43.40 ± .2540 43.56 ± .3000 27.94 ± .1681 27.20 ± .1365 34.32 ± .1815
medical 5.454 ± .1184 5.733 ± .1088 5.601 ± .1232 5.469 ± .0997 3.058 ± .0603 4.117 ± .0741 5.330 ± .0676
genbase .2461 ± .0281 .2422 ± .0273 .2525 ± .0257 .2423 ± .0308 .1976 ± .0178 .4686 ± .0310 .3863 ± .0341
yeast 9.609 ± .0358 9.565 ± .0290 9.443 ± .0312 10.324 ± .0448 9.378 ± .0365 9.473 ± .0363 8.451 ± .0298
flags 3.123 ± .0434 3.139 ± .0383 3.078 ± .0352 3.120 ± .0450 3.012 ± .0490 3.363 ± .0504 3.010 ± .0470
scene 1.136 ± .0066 1.149 ± .0055 1.031 ± .0046 1.098 ± .0080 0.726 ± .0060 0.892 ± .0069 0.679 ± .0083
emotions 1.789 ± .0182 1.906 ± .0220 1.764 ± .0165 1.741 ± .0207 1.563 ± .0176 1.834 ± .0281 1.591 ± .0198

Table 3: CSRPE versus others based on t-test at 95% confident level
criteria (win/tie/loss) F1 Rank. Acc. total

REP 9/1/0 7/2/1 9/0/1 27/7/6

RREP 9/1/0 9/0/1 9/1/0 31/5/4

HAMR 9/1/0 7/2/1 8/2/0 26/9/5

CC 9/1/0 7/2/1 8/2/0 30/6/4

CFT 9/1/0 6/1/3 9/1/0 30/4/6

PCC 9/0/1 2/2/6 8/1/1 22/7/11

Comparison with MLAL Algorithms In this experiment, we evaluate the
performance of CSRPE under the CSMLAL setting. We compare it with sev-
eral state-of-the-art MLAL algorithms, which includes adaptive active learning
(adaptive) [11], maximal loss reduction with maximal confidence (MMC) [10],
and random sampling as a baseline algorithm. We do not include a comparison
with binary minimization [9] since MMC and adaptive are reported to outper-
form it.

Figure 3 shows the performance with respect to the number of instances
queried. For F1 score and Rank loss, CSRPE performs better than other strate-
gies on four out of six datasets. These results indicate that CSRPE is able to
consider the cost information, thus enabling it to outperform other competitors
on most of the datasets across different evaluation criteria.

6 Conclusion

In this paper, we propose a novel approach for cost-sensitive multi-label classifi-
cation (CSMLC), called cost-sensitive reference pair encoding (CSRPE). CSRPE

Cost-Sensitive Reference Pair Encoding for Multi-Label Learning 11

(a) CAL500 (b) enron (c) CAL500 (d) enron

(e) medical (f) yeast (g) medical (h) yeast

(i) scene (j) emotions (k) scene (l) emotions

Fig. 3: CSMLAL results with F1 score and Rank loss

is derived from the one-versus-one algorithm and can embed the cost informa-
tion into the encoded vectors. Exploiting the redundancy of the encoded vectors,
we use random sampling to resolve the training challenge of building so many
classifiers. We also design a nearest-neighbor-based decoding procedure and use
the relevant set to efficiently make cost-sensitive predictions. Extensive exper-
imental results demonstrate that CSRPE achieves stable convergence respect
to the code length and outperforms not only other encoding methods but also
state-of-the-art CSMLC algorithms across different cost functions. In addition,
we extend CSRPE to a novel multi-label active learning algorithm by designing
a cost-sensitive uncertainty measure. Extensive empirical studies show that the
proposed active learning algorithm performs better than existing active learn-
ing algorithms. The results suggest that CSRPE is a promising cost-sensitive
encoding method for CSMLC for either supervised or active learning.

Acknowledgments. We thank the anonymous reviewers and the members of
NTU CLLab for valuable suggestions. This material is based upon work sup-
ported by the Air Force Office of Scientific Research, Asian Office of Aerospace
Research and Development (AOARD) under award number FA2386-15-1-4012,
and by the Ministry of Science and Technology of Taiwan under MOST 103-
2221-E-002-149-MY3 and 106-2119-M-007-027.

12 Yao-Yuan Yang, Kuan-Hao Huang, Chih-Wei Chang, and Hsuan-Tien Lin

References

1. Katakis, I., Tsoumakas, G., Vlahavas, I.: Multilabel text classification for auto-
mated tag suggestion. ECML PKDD discovery challenge 75 (2008)

2. Liu, Y.: Active learning with support vector machine applied to gene expression
data for cancer classification. Journal of Chemical Information and Computer
Sciences (2004) 1936–1941

3. Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Mining multi-label data. In: Data
Mining and Knowledge Discovery Handbook. (2010) 667–685

4. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Machine learning 85(3) (2011) 333–359

5. Dembczynski, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classifi-
cation via probabilistic classifier chains. In: ICML. (2010)

6. Li, C.L., Lin, H.T.: Condensed filter tree for cost-sensitive multi-label classification.
In: ICML. (2014)

7. Ferng, C.S., Lin, H.T.: Multilabel classification using error-correcting codes of hard
or soft bits. IEEE Transactions on Neural Networks and Learning Systems 24(11)
(2013) 1888–1900

8. Lin, H.T.: Reduction from cost-sensitive multiclass classification to one-versus-one
binary classification. In: ACML. (2014)

9. Brinker, K.: On active learning in multi-label classification. In: From Data and
Information Analysis to Knowledge Engineering. (2006) 206–213

10. Yang, B., Sun, J.T., Wang, T., Chen, Z.: Effective multi-label active learning for
text classification. In: ICDM. (2009)

11. Li, X., Guo, Y.: Active learning with multi-label svm classification. In: IJCAI.
(2013)

12. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying
approach for margin classifiers. Journal of Machine Learning Research 1 (2001)
113–141

13. Liu, T., Moore, A.W., Gray, A.: New algorithms for efficient high-dimensional
nonparametric classification. Journal of Machine Learning Research 7 (2006) 1135–
1158

14. Huang, K.H., Lin, H.T.: Cost-sensitive label embedding for multi-label classifica-
tion. Machine Learning (2017) 1725–1746

15. Settles, B.: Active learning literature survey. University of Wisconsin, Madison
(2010)

16. Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: A java
library for multi-label learning. Journal of Machine Learning Research 12 (2011)
2411–2414

17. Yang, Y.Y., Huang, K.H., Chang, C.W., Lin, H.T.: Cost-sensitive random pair
encoding for multi-label classification. arXiv preprint arXiv:1611.09461 (2016)

18. Tsoumakas, G., Vlahavas, I.P.: Random k -labelsets: An ensemble method for
multilabel classification. In: ECML. (2007)

