
A Simple Unlearning Framework
for Online Learning under Concept Drifts

Sheng-Chi You and Hsuan-Tien Lin

Department of Computer Science and Information Engineering,
National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, Taiwan

{r02922068,htlin}@csie.ntu.edu.tw

Abstract. Real-world online learning applications often face data com-
ing from changing target functions or distributions. Such changes, called
the concept drift, degrade the performance of traditional online learning
algorithms. Thus, many existing works focus on detecting concept drift
based on statistical evidence. Other works use sliding window or similar
mechanisms to select the data that closely reflect current concept. Never-
theless, few works study how the detection and selection techniques can
be combined to improve the learning performance. We propose a novel
framework on top of existing online learning algorithms to improve the
learning performance under concept drifts. The framework detects the
possible concept drift by checking whether forgetting some older data
may be helpful, and then conduct forgetting through a step called un-
learning. The framework effectively results in a dynamic sliding window
that selects some data flexibly for different kinds of concept drifts. We
design concrete approaches from the framework based on three popular
online learning algorithms. Empirical results show that the framework
consistently improves those algorithms on ten synthetic data sets and
two real-world data sets.

Keywords: online learning, concept drift

1 Introduction

Online learning is a machine learning setup where the learning algorithm needs
to learn from and make predictions on streaming data efficiently and effec-
tively [3, 4, 9]. The setup enjoys many potential applications, such as predicting
the weather, customer preferences, or stock prices [16].

Traditional online learning algorithms, such as the passive-aggressive algo-
rithm (PA) [3], the confidence weighted algorithm (CW) [4] and the adaptive
regularization of weight algorithm (AROW) [9], are designed under the assump-
tion that the target function to be learned is fixed. In many applications, how-
ever, change in the underlying environment can result in change of the target
function (concept) as time goes by. That is, the concept can be drifting [17]
instead of fixed. For example, the best popular-cloth predictor (concept) is con-
sistently drifting as the fashion trend evolves [10]. The drifting concept possesses

2 Sheng-Chi You and Hsuan-Tien Lin

difficulty for traditional online learning algorithms and are studied by two fami-
lies of works. One family of works focuses on the detection of concept drift from
the data stream [5, 1, 12, 15]. Those works generally conduct statistical analysis
on the data distribution and set up an alert threshold to reliably detect concept
drift. The other family tries to construct learning models from selected instances
of the data stream, with the hope that such instances match the drifting concept
better [13, 2]. The simplest approach of this family is to use a sliding window
to capture the newest instances for learning [13]. While the two kinds both deal
with concept-drifting data, it is not fully clear on how they could be combined
to improve the learning performance and will be the main focus of this work.

In particular, we propose a framework on top of existing online learning algo-
rithms to improve the learning performance under concept drifts. The framework
detects the possible concept drift by checking whether forgetting some older data
may be helpful, where the detection is motivated by the confidence terms used
in modern online learning algorithms. Then, it conducts forgetting by unlearn-
ing older data from the current model. By greedily repeating the detection and
unlearning steps along with online learning, the framework effectively results in
a dynamic sliding window that can suit different concept drifts. We design con-
crete approaches of the framework based on PA [3], AROW [9] and CW [4]. Our
empirical results demonstrate that the framework can reach better accuracy on
artificial and real-world data. The results justify the usefulness of the framework.

The paper is organized as follows. Section 2 establishes the setup and lists
related online learning algorithms. Section 3 introduces the proposed framework.
Section 4 discusses the experimental results and Section 5 concludes the paper.

2 Preliminaries

In this paper, we consider the online learning problem for binary classification.
In each round of this problem, the learning algorithm observes a coming instance
and predicts its label to be +1 or −1. After the prediction, the true label is re-
vealed and the algorithm can then take the new instance-label pair to improve its
internal prediction model. The goal of the algorithm is to make as few prediction
errors as possible.

We shall denote the instance-label pair in round t as (xt, yt), where t ∈
{1, 2, · · · , T}. Each xt ∈ Rn represents the instance (feature vector) and yt ∈
{+1,−1} indicates the label. The prediction in the t-th round is denoted as ŷt,
and the error refers to the zero-one loss `01(yt, ŷt), which is 1 if and only if
yt 6= ŷt, and 0 otherwise.

In this work, we consider the linear model for online learning, where some
linear weight vector wt ∈ Rn is maintained within round t and ŷt = sign(wt ·xt)
with · denoting an inner product. The linear model generally enjoys efficiency in
online learning and is often the focus of study in many online learning works [14,
3, 4, 9]. For the linear model, improving would then mean updating from wt to
wt+1, and we denote the difference as ∆wt = wt+1 − wt. The core of dif-
ferent online learning algorithms is then to design a proper update function

A Simple Unlearning Framework for Online Learning under Concept Drifts 3

Algorithm 1 the linear model for online learning

1: initialize w1 ← (0, 0, ..., 0)
2: for t = 1 to T do
3: receive instance xt ∈ Rn and predict ŷt ← sign(wt · xt)
4: receive label: yt ∈ {−1,+1}
5: ∆wt ← Update(wt,xt, yt) and wt+1 ← wt +∆wt

6: end for

Update(wt,xt, yt) that calculates ∆wt. The details steps of the linear model
for online learning is shown in Algorithm 1, where we assume w1 to be the zero
vector for simplicity.

One of the most popular algorithms for online learning with the linear model
is the Passive-Aggressive algorithm (PA) [3]. PA calculates the signed margin
of the labeled instance by yt(wt · xt), which indicates how confident the pre-
diction ŷt = sign(wt · xt) was. PA then aims to adjust the weights wt to the
closest wt+1 (passive) in terms of the Euclidean distance, such that the hinge
loss `h(w; (yt,xt)) = max(0, 1− yt(w ·xt)) is decreased to `h(wt+1; (yt,xt)) = 0
(aggressive). The aim leads to the following Update(wt,xt, yt) for PA:

∆wt =
`h
(
wt; (yt,xt)

)
‖xt‖2

ytxt. (1)

The Confidence weighted (CW) algorithm [4] is extended from PA. Instead
of considering a single weight vector wt, the algorithm considers the weight
distribution, modeled as a Gaussian distribution with mean wt and covariance
Σt. During each Update for CW, both wt and Σt are taken into account, and
updated to wt+1 and Σt+1. The updating step adjusts (wt, Σt) to the closest
(wt+1, Σt+1) (passive) in terms of the KL divergence, such that the probabilistic
zero-one loss under the new Gaussian distribution is smaller than some (1− η)
(aggressive).

An extension of CW is called adaptive regularization of weight (AROW) [9],
which improves CW by including more regularization. In particular, the updating
step of AROW solves an unconstrained optimization problem that calculates
(wt+1, Σt+1) by

argmin
w,Σ

DKL(N (w, Σ)||N (wt, Σt)) + λ1`
2
h(w; (yt,xt)) + λ2x

T
t Σxt. (2)

The first term is exactly the KL divergence that the passive part of CW consid-
ers; the second term embeds the aggressive part of CW with the squared hinge
loss (similar to PA); the third term represents the confidence on xt that should
generally grow as more instances have been observed. In particular, the confi-
dence term represents how different xt is from the current estimate of Σ. The
confidence term acts as a regularization term to make the learning algorithm
more robust. In this work, we set the parameters λ1 and λ2 by λ1 = λ2 = 1/(2γ)
as the original paper suggests [9].

4 Sheng-Chi You and Hsuan-Tien Lin

One special property of the three algorithms above, which is also shared
by many algorithms for the linear model of online learning, is that ∆wt is a
scaled version of ytxt, as can be seen in (1) for PA. Then, by having w1 as
the zero vector, each wt is simply a linear combination of the previous data
y1x1, y2x2, · · · , yt−1xt−1. We will use this property later for designing our frame-
work.

The three representative algorithms introduced above do not specifically fo-
cus on concept-drifting data. For example, when concept drift happens, being
passive like the algorithms do may easily lead to slow adaptation to the latest
concept. Next, we illustrate more on what we mean by concept drift in online
learning. [16] defines concept drift to mean the change of “property” within the
data. Some major types of concept drifts that will be considered here are abrupt
concept drift, gradual concept drift and virtual concept drift. The first two entail
the change of the relation between instances and labels. Denote the relation as
the ideal target function f such that yt = f(xt) + noise, abrupt concept drift
means that the ideal target function can change from f to a very different one
like (−f) at some round t1, and gradual concept drift means f is slowly changed
to some different f ′ between rounds t1 and t2.

Virtual concept drift, unlike the other two, is generally a consequence of the
change of some hidden context within the data [6]. The change effectively causes
the distribution of xt to vary. While the target function that characterizes the
relation between xt and yt may stay the same for virtual concept drift, the change
of distribution places different importance on different parts of the feature space
for the algorithm to digest.

Two families of methods in the literature focus on dealing with concept-
drifting data for online learning. One family [5, 1, 12, 15] is about drift detection
based on different statistical property of the data. [5] proposes the drift detection
method (DDM) that tracks the trend of the zero-one loss to calculate the drift
level. When the drift level reaches an alert threshold, the method claims to detect
the concept drift and resets the internal model. While the idea of DDM is simple,
it generally cannot detect gradual concept drift effectively. [1] thus proposes
the early drift detection method (EDDM) to cope with gradual concept drift,
where the distribution of errors instead of the trend is estimated for detection.
Some other popular detection criteria include the estimated accuracy difference
between an all-data model and a recent-data model [12], and the estimated
performance difference between models built from different chunks of data [15].
Generally, similar to [5], after detecting the concept drift, the methods above
reset the internal model. That is, all knowledge about the data received before
detection are effectively forgotten. Nevertheless, forgetting all data before the
detection may not be the best strategy for gradual concept drift (where the
earlier data may be somewhat helpful) and virtual concept drift (where the
earlier data still hint the target function).

The other family [13, 2] makes the internal model adaptive to the concept drift
by training the model with selected instances only. The selected instances are
often within a sliding window, which matches the fact that the latest instances

A Simple Unlearning Framework for Online Learning under Concept Drifts 5

should best reflect the current concept. Most of the state-of-the-art methods
consider dynamic sliding windows. For instance, [13] takes the leave-one-out error
estimate of the support vector machine to design a method that computes the
best dynamic sliding window for minimizing the leave-one-out error. [2] proposes
a general dynamic sliding window method by maintaining a sliding window such
that the “head” and “tail” sub-windows are of little statistical difference. The
sliding-window methods naturally trace concept drifts well, especially gradual
concept drifts. Nevertheless, calculating a good dynamic sliding window is often
computationally intensive. It is thus difficult to apply the methods within this
family to real-world online learning scenario where efficiency is highly demanded.

In summary, drift-detection methods are usually simple and efficient, but
resetting the internal model may not lead to the best learning performance
under concept drifts; sliding-windows methods are usually effective, but are at
the expense of computation. We aim to design a different framework for better
online learning performance under the concept drift. Our framework will include
a simple detection scheme and directly exploits the detection scheme to efficiently
determine a dynamic sliding window. In addition, the framework can be flexibly
coupled with existing online learning algorithms with linear models.

3 Unlearning Framework

The idea of our proposed unlearning framework is simple. Between steps 5 and 6
of Algorithm 1, we add a procedure UnlearningTest to check if forgetting
some older instance can be beneficial for learning. In particular, the decision of
“beneficial” is done by comparing a regularized objective function before and
after the forgetting, where the regularized objective function mimics that being
used by AROW. If forgetting is beneficial, a new w′t+1 (and its accompanying
Σ′t+1 in the case of CW or AROW) replaces the original wt+1. There are then
two issues in describing the framework concretely: what the regularized objective
function and unlearning step are, and which “older” instance to check? We will
clarify the issues in the next subsections.

3.1 Unlearning Test

Denote (xk, yk), k ∈ {1, 2, · · · , t − 1} as the selected instance for Unlearn-
ingTest. Recall that in round t, each wt is simply a linear combination of the
previous data y1x1, y2x2, · · · , yt−1xt−1. That is, every old instance has its (pos-
sibly 0) footprint within wt+1 if we record ∆wk along with the online learning
process. Then, one straightforward step to unlearn (xk, yk) is to remove it from
wt+1. That is,

w′t+1 ← wt+1 −∆wk.

The Σ′t+1 accompanying wt+1 can also be calculated similarly by recording ∆Σk
along with the online learning process.

Now, w′t+1 represents the weight vector after removing some older instance,
and wt+1 represents the original weight vector. Our task is to pick the better one

6 Sheng-Chi You and Hsuan-Tien Lin

for online learning with concept drift. A simple idea is to just compare their loss,
such as the squared hinge loss used by AROW. That is, unlearning is conducted
if and only if

`2h(w′t+1; (xt, yt)) ≤ `2h(wt+1; (xt, yt)).

We can even make the condition more strict by inserting a parameter α ≤ 1.0
that controls the demanded reduction of loss from the original weight vector.
That is, unlearning is conducted if and only if

`2h(w′t+1; (xt, yt)) ≤ α`2h(wt+1; (xt, yt)).

Then, α = 0.0 makes unlearning happen only if w′t+1 is fully correct on (xt, yt)
in terms of the hinge loss, and the original online learning algorithms are as if
using α < 0.

In our study, we find that only using `2h as the decision objective makes the
unlearning procedure rather unstable. Motivated by AROW, we thus decide to
add two terms to the decision objective. One is the confidence term used by
AROW, and the other is the usual squared length of w. The first term regular-
izes against unwanted update of Σ, much like AROW does. The second term
regularizes against unwanted update of w to a long vector, much like the usual
ridge regression regularization. That is, given (xt, yt), the framework considers

obj(w, Σ) = `2h(w; (xt, yt)) + βxTt Σxt + γ‖w‖2 (3)

and conduct unlearning if and only if obj(w′t+1, Σ
′
t+1) ≤ αobj(wt+1, Σt+1). The

parameters β and γ balances the influence of each term.
The final missing component is how to specify β and γ. To avoid making

the framework overly complicated, we only consider using those parameters to
balance the numerical range of the terms. In particular, we let β be the average
of

1

2

(
`2h(wτ+1,xτ , yτ)

xTτ Στ+1xτ
+
`2h(w′τ+1,xτ , yτ)

xTτ Σ
′
τ+1xτ

)
. (4)

for τ ∈ {1, 2, . . . , t} so βxTt Σxt can be of a similar numerical range to `2h. Simi-
larly, we let γ be the average of

1

2

(
`2h(wτ+1,xτ , yτ)

‖wτ+1‖2
+
`2h(w′τ+1,xτ , yτ)

‖w′τ+1‖2

)
. (5)

The details of UnlearningTest is listed in Algorithm 2.

3.2 Instance for Unlearning Test

Unlearning is completed by the unlearning test at a certain selected instance
(xk, yk). But how to determine the k from all previous processed instances? We
proposed three possible unlearning strategies to deciding the instance (xk, yk).

A Simple Unlearning Framework for Online Learning under Concept Drifts 7

Algorithm 2 Unlearning test for some instance (xk, yk)

1: input parameter: α ∈ [0.0, 1.0]
2: procedure UnlearningTest(wt+1, Σt+1,xk, yk)
3: ∆wk, ∆Σk ← UpdateHistory(xk, yk) . previous updated status on (xk, yk)
4: w′

t+1 ← wt+1 −∆wk, Σ′
t+1 ← Σt+1 −∆Σk

5: set β, γ as the average of (4) and (5), respectively
6: if obj(w′

t+1, Σ
′
t+1) ≤ αobj(wt+1, Σt+1) then . see (3)

7: return w′
t+1, Σ′

t+1

8: else
9: return wt+1, Σt+1

10: end if
11: end procedure

Fig. 1: Forwarding Fig. 2: Queue Fig. 3: Selecting

Forwarding-removing: Traditional sliding window technique tries to maintain
a window that keeps the recent accessed examples, and drops the oldest instance
according to some set of rules [2]. Here, the unlearning test is substituted for the
rules. Forward-removing considers (xt−L, yt−L) subject to a fixed window size L
as the as the selected instance for unlearning test. The strategy is illustrated by
Fig. 1, where the older instances are at the right-hand-side of the data stream.
After updating on xt is done, the unlearning test examines the red instance
xt−L.

With some studies on parameter L = {1, 10, 100, 1000}, L = 100 is sufficiently
stable and will be used to demonstrate this strategy in Section 4.

Queue-removing: Instead of considering the instance that is L rounds away,
this strategy selects the oldest one within the current model wt+1. Recall that
the current model wt+1 is a combination of some updated parts ∆wi on previous
updated instance (xi, yi). We record those ∆wi like a data list, as illustrated in
Fig. 2.

wt+1 =

K∑
i=1

∆wi =

K∑
i=1

τixiyi where τi 6= 0. (6)

Take wt+1 as a queue, unlearning test will be executed at the red updated part
∆w1, which is the oldest updated instance in model. As (xi, yi) are added and
removed from wt, the size of the queue can change dynamically, resulting in a
dynamic sliding window effectively.

8 Sheng-Chi You and Hsuan-Tien Lin

Table 1: The properties of the ten data sets

Data set
Properties

Features Drift type Drifting details

SINE1 2 real Abrupt Reversed wave: y = sin(x)
SINE2 2 real Abrupt Reversed wave: 0.5 + 0.3sin(3πx)

SINIRREL1 2 real + 2 irrelevant Abrupt Same as SINE1 function
SINIRREL2 2 real + 2 irrelevant Abrupt Same as SINE2 function

MIXED 2 real + 2 boolean Abrupt Reversed 1 function with 1 boolean condition
STAGGER 3 boolean Abrupt Switching between 3 boolean conditions

GAUSS 2 real Virtual Switching between 2 distributions
CIRCLES 2 real Gradual Switching between 4 circles [5]

LINES 2 real Gradual changing line functions: shift and rotate

MULTILINES 4 - 15 real Gradual changing hyperplanes: Σd
i wixi = w0 [8]

Selecting-removing: Above strategies both select one particular instance un-
der different structure. However, those strategies neither consider all candidates
in their window nor find out the best unlearned weight w′t+1 for current instance
(xt, yt). Illustrated by Fig. 3, Selecting-removing will test all K instances and
take the instance that can decrease obj the most as the instance to be unlearned.

4 Empirical Evaluation

We take these three unlearning strategies in Section 3 with PA [3], AROW [9]
and CW [4]. In those algorithms, we set a = 1.0, φ = 0.0001 in CW and r =
0.1 in AROW. The parameter α in unlearning test is individually selected from
{0.1, 0.2, . . . , 0.9} due to the different properties on these algorithms.

All ten synthetic data sets contain different concept drifts described in Ta-
ble 1. The first eight data sets are used by [5]. Because most of them are about
abrupt concept drift, we construct two more data sets, LINES and MULTI-
LINES, whose drifting type is gradual. The target function of LINES is changed
by shifting and rotating gradually in 2D, and MULTILINES is a d dimensional
version defined in [8].

Previous works [1, 5] assume every concept contains a fixed number of in-
stances, and examine on small size data sets. Here we construct these artifi-
cial data sets with three differences to make the data sets more realistic. First,
the number and the timing of concept drifts are randomly assigned and all
drift events are recorded so that we could simulate a perfect drifting detection,
Concept-removing, which resets wt+1 immediately after a concept drift hap-
pens. We take Concept-removing as an upper bound benchmark for using the
ideal drifting information. Second, at least 1,000,000 instances are generated in
each data set for the robustness. Finally, we inject noise made by flipping bi-
nary labels under different probabilities to check the robustness of the proposed

A Simple Unlearning Framework for Online Learning under Concept Drifts 9

Table 2: Ranking all unlearning strategies under three types of drifting data

strategy
drifting type

Abrupt Gradual Virtual

None 4.031± 0.347 3.047± 0.402 3.333± 0.890
Forwarding-removing 4.325± 0.308 3.809± 0.471 5.476± 0.534

Queue-removing 3.373± 0.235 2.984± 0.387 2.190± 0.499
Selecting-removing 3.769± 0.254 3.666± 0.517 3.714± 0.730

EDDM 3.309± 0.264 3.174± 0.385 3.000± 0.427
Concept-removing 1.269± 0.138 3.809± 0.501 2.666± 0.930

framework. All artificial data sets are generated under different flipping level
within {0.00, 0.05, · · · , 0.30}.

For each data, a simple second-order polynomial transform is applied to im-
prove the accuracy. Two evaluation criteria are considered, ranking performance
and cumulative classification accuracy. A smaller average rank (along with stan-
dard deviation) indicates that an higher classification accuracy performed among
compared methods.

4.1 Results and Discussion

In addition to the three proposed strategies within the framework, and the
ideal Concept-removing strategy, we also compare the proposed framework with
EDDM [1]. Our experimental results are summarized in following tables with dif-
ferent control variables. Table 2 compares all unlearning strategies under three
kinds of concept-drifting data. Table 3 compares the relation between different
unlearning strategies and each online learning algorithm individually. Table 4
evaluates the influence on the best unlearning strategy with different noise level.
The individual accuracy performances for each data set are recorded in Table 5.

Table 2 makes comparison by different kinds of concept-drifting data. The
ideal Concept-removing strategy performs very well for abrupt drifting and vir-
tual drifting, as expected. But the immediate resetting cannot work for grad-
ual drifting data, and the ideal detection is not realistic anyway. Our proposed
framework, on the other hand, performs well on all kinds of data when using
Queue-removing.

Table 3 is evaluated under individual learning algorithms. On the strategy
side, Queue-removing preforms the best ranking on average in four unlearning
strategies. Note that Selecting-removing is worse than Queue-removing, which
indicates that overly searching for the “best” instance to unlearn is not necessary.
On the algorithm sides, a significant ranking gap between Concept-removing
and the others is presented in AROW. All four unlearning strategies show the
smaller ranking than original AROW. For the other two algorithms, only Queue-
removing and EDDM gets smaller ranking on PA. But almost unlearning ap-
proaches do not have great advantage in CW. The cause of non-improving is

10 Sheng-Chi You and Hsuan-Tien Lin

Table 3: Ranking all unlearning strategies under each learning algorithm

strategy
algorithm

PA AROW CW Average

None 3.257± 0.325 5.642± 0.336 2.100± 0.215 3.666± 0.263
Forwarding-removing 5.128± 0.352 5.371± 0.239 2.357± 0.236 4.285± 0.245

Queue-removing 3.100± 0.348 3.485± 0.335 2.528± 0.284 3.138± 0.195
Selecting-removing 4.228± 0.352 4.457± 0.411 2.514± 0.235 3.733± 0.228

EDDM 3.342± 0.394 2.200± 0.152 4.171± 0.279 3.238± 0.200
Concept-removing 2.242± 0.467 1.242± 0.140 3.028± 0.483 2.171± 0.248

Table 4: Ranking three main unlearning strategies under different bias data sets

Unlearning strategy
Noise level

0.05 0.10 0.15 0.20 0.25 0.30

None 2.22± 0.17 2.16± 0.16 2.11± 0.17 2.18± 0.16 2.06± 0.16 2.02± 0.16
Queue-removing 1.90± 0.08 1.97± 0.11 1.97± 0.11 1.97± 0.11 2.01± 0.12 1.97± 0.14

Concept-removing 1.28± 0.12 1.38± 0.14 1.36± 0.13 1.34± 0.13 1.40± 0.14 1.44± 0.14

their individual updating rules, which does not consider confidence term in PA
and squared hinge-loss in CW.

We study Queue-removing more in Table 4, which shows the ranking per-
formance under different noise levels. From lowest to highest bias, Concept-
removing is still the best in three strategies but Queue-removing shows its effec-
tiveness in all noise levels. When the noise becomes larger, Queue-removing is
closer to the ideal Concept-removing strategy.

Table 5 explains whether unlearning framework reflects the significant differ-
ence from original algorithms. We conducted the t-test experiment by its cumu-
lative classification accuracy at each data set 30 times for all artificial data and
directly evaluated two real data, MNIST1 and ELEC22. For two real data, we
directly compare the accuracy performance with EDDM and Queue-removing.

The t-test is evaluated in three different strategies. Queue-removing shows
better accuracy than no-unlearning, and those p-value(N-Q) are mostly smaller
than 0.01, which indicates the performance gap is significant enough. Concept-
removing reveal the upper bound accuracy and the nearly 0 on p-value(Q-C)
comparing with the Queue-removing in all data sets except for CIRCLES.

MNIST [11] is a handwritten digits data. Although it is not a concept-drifting
data, we test whether our unlearning framework will deteriorate the classifying
performance. We use one versus one to evaluate 45 binary classifications for
those digits under online learning scenario. To handle all classifications quickly,

1 handwritten digits: http://yann.lecun.com/exdb/mnist
2 electricity price data: http://www.inescporto.pt/~jgama/ales/ales.html

A Simple Unlearning Framework for Online Learning under Concept Drifts 11

Table 5: Cumulative accuracy and t-test on ten artificial and two real-world data

Properties Average accuracy among three algorithms P-value

Strategy None Queue-removing Concept-removing N-Q Q-C

SINE1 0.6696± 0.0232 0.6816± 0.0244 0.7541± 0.0267 0.0352 0.0000
SINE2 0.6373± 0.0161 0.6422± 0.0154 0.6984± 0.0166 0.0117 0.0000

SINIRREL1 0.6819± 0.0212 0.7202± 0.0199 0.7687± 0.0215 0.0000 0.0000
SINIRREL2 0.6395± 0.0181 0.6660± 0.0175 0.7071± 0.0169 0.0000 0.0000

MIXED 0.6792± 0.0220 0.6938± 0.0214 0.7469± 0.0211 0.0011 0.0000
STAGGER 0.7476± 0.0219 0.7517± 0.0216 0.7996± 0.0223 0.0001 0.0000

GAUSS 0.6452± 0.0189 0.6676± 0.0188 0.6871± 0.0182 0.0001 0.0000
CIRCLES 0.7179± 0.0194 0.7262± 0.0208 0.7244± 0.0217 0.0000 0.5950

LINES 0.7557± 0.0244 0.7783± 0.0246 0.7970± 0.0230 0.0002 0.0002
MULTILINES 0.7687± 0.0222 0.7566± 0.0240 0.7865± 0.0239 0.0002 0.0000

Strategy None Queue-removing EDDM N-Q Q-C

MNIST 0.9774± 0.0032 0.9774± 0.0032 0.9758± 0.0033 NA NA
ELEC2 0.8423± 0.0765 0.8742± 0.0575 0.8342± 0.1312 NA NA

we scale each image by 25% and take its pixel as feature. Because MNIST data
does not contain significant drifting and the nearly same accuracies are presented,
it implies our unlearning framework can work well in the normal data set.

ELEC2 [7] is the collection of the electricity price. Those prices are affected
by demand and supply of the market, and the labels identify the changing prices
related to a moving average. It is a widely used for concept-drifting. We predict
the current price rises or falls by its all 8 features. The result shows that Queue-
removing preforms better than no-unlearning and EDDM.

5 Conclusion

We present an unlearning framework on top of PA-based online algorithms to
improve the learning performance under different kinds of concept-drifting data.
This framework is simple yet effective. In particular, the queue-removing strat-
egy, which is the best-performing one, results in a dynamic sliding window on
the mistaken data and dynamically unlearns based on a simple unlearning test
as the drift detection. Future work includes more sophisticated ways to balance
between loss and regularization for the unlearning test.

6 Acknowledgment

The work arises from the Master’s thesis of the first author [18]. We thank
Profs. Yuh-Jye Lee, Shou-De Lin, the anonymous reviewers and the members
of the NTU Computational Learning Lab for valuable suggestions. This work
is partially supported by the Ministry of Science and Technology of Taiwan

12 Sheng-Chi You and Hsuan-Tien Lin

(MOST 103-2221-E-002-148-MY3) and the Asian Office of Aerospace Research
and Development (AOARD FA2386-15-1-4012).

References

1. Baena-Garćıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavaldà, R.,
Morales-Bueno, R.: Early drift detection method. International Workshop on
Knowledge Discovery from Data Streams pp. 77–86 (2006)

2. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing.
SIAM International Conference on Data Mining pp. 443–448 (2007)

3. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-
aggressive algorithms. Journal of Machine Learning Research 7, 551–585 (2006)

4. Dredze, M., Crammer, K., Pereira, F.: Confidence-weighted linear classification.
Proceedings of the 25th International Conference on Machine Learning pp. 264–
271 (2008)

5. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection.
Advances in Artificial Intelligence–SBIA 2004 3171, 286–295 (2004)

6. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Computing Surveys (CSUR) 46, 44:1–44:37 (2014)

7. Harries, M., Wales, N.S.: Splice-2 comparative evaluation: Electricity pricing (1999)
8. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. Pro-

ceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining pp. 97–106 (2001)

9. Koby Crammer, Alex Kulesza, M.D.: Adaptive regularization of weight vectors.
Machine Learning 91, 155–187 (2013)

10. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: An ensemble method for
drifting concepts. Journal of Machine Learning Research 8, 2755–2790 (2007)

11. LeCun, Y., Cortes, C.: Mnist handwritten digit database. AT&T Labs (2010)
12. Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing. Dis-

covery Science 4755, 264–269 (2007)
13. Ralf, K., Joachims, T.: Detecting concept drift with support vector machines. Pro-

ceedings of the Seventeenth International Conference on Machine Learning pp.
487–494 (2000)

14. Shalev-Shwartz, S.: Online learning and online convex optimization. Foundations
and Trends in Machine Learning 4, 107–194 (2012)

15. Sobhani, P., Beigy, H.: New drift detection method for data streams. Adaptive and
Intelligent Systems 6943, 88–97 (2011)

16. Tsymbal, Alexey: The problem of concept drift: definitions and related work. Tech-
nical Report, Computer Science Department, Trinity College Dublin (2004)

17. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Machine Learning 23, 69–101 (1996)

18. You, S.C.: Dynamic unlearning for online learning on concept-drifting data. Mas-
ters thesis, National Taiwan University (2015)

