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Abstract
Label space dimension reduction (LSDR) is an efficient and effective paradigm
for multi-label classification with many classes. Existing approaches to LSDR,
such as compressive sensing and principal label space transformation, exploit only
the label part of the dataset, but not the feature part. In this paper, we propose
a novel approach to LSDR that considers both the label and the feature parts.
The approach, called conditional principal label space transformation, is based
on minimizing an upper bound of the popular Hamming loss. The minimization
step of the approach can be carried out efficiently by a simple use of singular
value decomposition. In addition, the approach can be extended to a kernelized
version that allows the use of sophisticated feature combinations to assist LSDR.
The experimental results verify that the proposed approach is more effective than
existing ones to LSDR across many real-world datasets.

1 Introduction
The multi-label classification problem is an extension of the traditional multiclass classification
problem. In contrast to the multiclass problem, which associates only a single label to each instance,
the multi-label classification problem allows multiple labels for each instance. General solutions
to this problem meet the demands of many real-world applications for classifying instances into
multiple concepts, including categorization of text [1], scene [2], genes [3] and so on. Given the
wide range of such applications, the multi-label classification problem has been attracting much
attention of researchers in machine learning [4, 5, 6].
Label space dimension reduction (LSDR) is a new paradigm in multi-label classification [4, 5].
By viewing the set of multiple labels as a high-dimensional vector in some label space, LSDR
approaches use certain assumed or observed properties of the vectors to “compress” them. The
compression step transforms the original multi-label classification problem (with many labels) to a
small number of learning tasks. If the compression step, de-compression step, and learning steps
can be efficient and effective, LSDR approaches can be useful for multi-label classification because
of the appropriate use of joint information within the labels [5]. For instance, a representative LSDR
approach is the principal label space transformation [PLST; 5]. PLST takes advantage of the key
linear correlations between labels to build a small number of regression tasks.
LSDR approaches are homologous to the feature space dimension reduction (FSDR) approaches and
share similar advantages: saving computational power and storage without much loss of prediction
accuracy and improving performance by removing irrelevant, redundant, or noisy information [7].
There are two types of FSDR approaches: unsupervised and supervised. Unsupervised FSDR con-
siders only feature information during reduction, while supervised FSDR considers the additional
label information. A typical instance of unsupervised FSDR is principal component analysis [PCA;
8]. PCA transforms the features into a small number of uncorrelated variables. On the other hand,
the supervised FSDR approaches include supervised principal component analysis [9], sliced inverse
regression [10], and kernel dimension reduction [11]. In particular, for multi-label classification, a
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leading supervised FSDR approach is canonical correlation analysis [CCA; 6, 12] which is based
on linear projections in both the feature space and the label space. In general, well-tuned super-
vised FSDR approaches can perform better than unsupervised ones because of the additional label
information.
PLST can be viewed as the counterpart of PCA in the label space [5] and is feature-unaware. That is,
it considers only the label information during reduction. Motivated by the superiority of supervised
FSDR over unsupervised approaches, we are interested in studying feature-aware LSDR: LSDR that
considers feature information.
In this paper, we propose a novel feature-aware LSDR approach, conditional principal label space
transformation (CPLST). CPLST combines the concepts of PLST (LSDR) and CCA (supervised
FSDR) and can improve PLST through the addition of feature information. We derive CPLST by
minimizing an upper bound of the popular Hamming loss and show that CPLST can be accomplished
by a simple use of singular value decomposition. Moreover, CPLST can be flexibly extended by the
kernel trick with suitable regularization, thereby allowing the use of sophisticated feature informa-
tion to assist LSDR. The experimental results on real-world datasets confirm that CPLST can reduce
the number of learning tasks without loss of prediction performance. In particular, CPLST is usually
better than PLST and other related LSDR approaches.
The rest of this paper is organized as follows. In Section 2, we define the multi-label classification
problem and review related works. Then, in Section 3, we derive the proposed CPLST approach.
Finally, we present the experimental results in Section 4 and conclude our study in Section 5.

2 Label Space Dimension Reduction

The multi-label classification problem aims at finding a classifier from the input vector x to a label
set Y , where x ∈ Rd, Y ⊆ {1, 2, . . . ,K} and K is the number of classes. The label set Y is often
conveniently represented as a label vector, y ∈ {0, 1}K , where y[k] = 1 if and only if k ∈ Y .
Given a dataset D = {(xn,yn)}Nn=1, which contains N training examples (xn,yn), the multi-label
classification algorithm uses D to find a classifier h: X → 2{1,2,··· ,K} anticipating that h predicts y
well on any future (unseen) test example (x,y).
There are many existing algorithms for solving multi-label classification problems. The simplest and
most intuitive one is binary relevance [BR; 13]. BR decomposes the original datasetD intoK binary
classification datasets,Dk = {(xn,yn[k])}Nn=1, and learnsK independent binary classifiers, each of
which is learned from Dk and is responsible for predicting whether the label set Y includes label k.
When K is small, BR is an efficient and effective baseline algorithm for multi-label classification.
However, when K is large, the algorithm can be costly in training, prediction, and storage.
Facing the above challenges, LSDR (Label Space Dimension Reduction) offers a potential solution
to these issues by compressing the K-dimensional label space before learning. LSDR transforms D
into M datasets, where Dm = {(xn, tn[m])}Nn=1, m = 1, 2, . . . ,M , and M � K such that the
multi-label classification problem can be tackled efficiently without significant loss of prediction
performance. In particular, LSDR involves solving, predicting with, and storing the models for
only M , instead of K, learning tasks.
For instance, compressive sensing [CS; 4], a precursor of LSDR, is based on the assumption that the
label set vector y is sparse (i.e., contains few ones) to “compressed” y to a shorter code vector t by
projecting y on M random directions v1, · · · ,vM , where M � K can be determined according
to the assumed sparsity level. CS transforms the original multi-label classification problem into M
regression tasks with Dm = {(xn, tn[m])}Nn=1, where tn[m] = vT

myn. After obtaining a multi-
output regressor r(x) for predicting the code vector t, CS decodes r(x) to the optimal label set
vector by solving an optimization problem for each input instance x under the sparsity assumption,
which can be time-consuming.

2.1 Principal Label Space Transformation

Principal label space transformation [PLST; 5] is another approach to LSDR. PLST first shifts each
label set vector y to z = y − ȳ, where ȳ = 1

N

∑N
n=1 yn is the estimated mean of the label set

vectors. Then, PLST takes a matrix V that linearly maps z to the code vector t by t = Vz. Unlike
CS, however, PLST takes principal directions vm (to be introduced next) rather than the random
ones, and does not need to solve an optimization problem during decoding.
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In particular, PLST considers only a matrix V with orthogonal rows, and decodes r(x) to the pre-
dicted labels by h(x) = round(VT r(x)+ ȳ), which is called round-based decoding. Tai and Lin [5]
prove that when using round-based decoding and a linear transformation V that contains orthogonal
rows, the common Hamming loss for evaluating multi-label classifiers [14] is bounded by

Training Hamming Loss ≤ c
(∥∥∥r(X)− ZVT

∥∥∥2
F

+
∥∥∥Z− ZVTV

∥∥∥2
F

)
, (1)

where r(X) contains r(xn)T as rows, Z contains zTn as rows and c is a constant that depends on K
and N . The matrix ZVT then contains the code vector tTn as rows.

The bound can be divided into two parts. The first part is ‖r(X) − ZVT ‖2F , which represents
the prediction error from the regressor r(xn) to the desired code vectors tn. The second part is
‖Z − ZVTV‖2F , which stands for the encoding error for projecting zn into the closest vector in
span{v1, · · · ,vM}, which is VT tn.
PLST is derived by minimizing the encoding error [5] and finds the optimal M by K matrix V
by applying the singular value decomposition on Z and take the M right-singular vectors vm that
correspond to the M largest singular values. The M right-singular vectors are called the principal
directions for representing zn.
PLST can be viewed as a linear case of the kernel dependency estimation (KDE) algorithm [15].
Nevertheless, the general nonlinear KDE must solve a computationally expensive pre-image prob-
lem for each test input x during the prediction phase. The linearity of PLST avoids the pre-image
problem and enjoys efficient round-based decoding. In this paper, we will focus on the linear case
in order to design efficient algorithms for LSDR during both the training and prediction phases.

2.2 Canonical Correlation Analysis

A related technique that we will consider in this paper is canonical correlation analysis [CCA;
6], a well-known statistical technique for analyzing the linear relationship between two multi-
dimensional variables. Traditionally, CCA is regarded as a FSDR approach in multi-label classi-
fication [12]. In this subsection, we discuss whether CCA can also be viewed as an LSDR approach.
Formally, given an N by d matrix X with the n-th row being xT

n (assumed to be zero mean) as
well as an N by K matrix Z with the n-th row being zTn (assumed to be zero mean), CCA aims at
finding two lists of basis vectors, (w

(1)
x ,w

(2)
x , · · · ) and (w

(1)
z ,w

(2)
z , · · · ), such that the correlation

coefficient between the canonical variables c
(i)
x = Xw

(i)
x and c

(i)
z = Zw

(i)
z is maximized, under the

constraint that c
(i)
x is uncorrelated to all other c

(j)
x and c

(j)
z for 1 ≤ j < i. Kettenring [16] showed

that CCA is equivalent to simultaneously solving the following constrained optimization problem:

min
Wx,Wz

∥∥XWT
x − ZWT

z

∥∥2
F

subject to WxXTXWT
x = WzZ

TZWT
z = I, (2)

where Wx is the matrix with the i-th row (w
(i)
x )

T
, and Wz is the matrix with the i-th row (w

(i)
z )

T
.

When CCA is considered in the context of multi-label classification, X is the matrix that contains the
mean-shifted xT

n as rows and Z is the shifted label matrix that contains the mean-shifted yT
n as rows.

Traditionally, CCA is used as a supervised FSDR approach that discards Wz and uses only Wx to
project features onto a lower-dimension space before learning with binary relevance [12, 17].
On the other hand, due to the symmetry between X and Z, we can also view CCA as an ap-
proach to feature-aware LSDR. In particular, CCA is equivalent to first seeking projection direc-
tions Wz of Z, and then performing a multi-output linear regression from xn to Wzzn, under the
constraints WxXTXWT

x = I, to obtain Wx. However, it has not been seriously studied how to use
CCA for LSDR because Wz does not contain orthogonal rows. That is, unlike PLST, round-based
decoding cannot be used and it remains to be an ongoing research issue for designing a suitable
decoding scheme with CCA [18].

3 Proposed Algorithm
Inspired by CCA, we first design a variant that involves an appropriate decoding step. As suggested
in Section 2.2, CCA is equivalent to finding a projection that minimizes the squared prediction error
under the constraints WxXTXWT

x = WzZ
TZWT

z = I. If we drop the constraint on Wx in order
to further decrease the squared prediction error and change WzZ

TZWT
z = I to WzW

T
z = I in
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order to enable round-based decoding, we obtain

min
Wx,Wz

∥∥XWT
x − ZWT

z

∥∥2
F

subject to WzW
T
z = I (3)

Problem (3) preserves the original objective function of CCA and specifies that Wz must con-
tain orthogonal rows for applying round-based decoding. We call this algorithm orthogonally
constrained CCA (OCCA). Then, using the Hamming loss bound (1), when V = Wz and
r(x) = XWT

z , OCCA minimizes ‖r(x) − ZWT
z ‖ in (1) with the hope that the Hamming loss

is also minimized. In other words, OCCA is employed for the orthogonal directions V that are
“easy to learn” (of low prediction error) in terms of linear regression.
For every fixed Wz = V in (3), the optimization problem for Wx is simply a linear regression from
X to ZVT . Then, the optimal Wx can be computed by a closed-form solution WT

x = X†ZVT ,
where X† is the pseudo inverse of X. When the optimal Wx is inserted back into (3), the optimiza-
tion problem becomes min

VVT=I

∥∥XX†ZVT − ZVT
∥∥2
F

which is equivalent to

min
VVT=I

tr
(
VZT (I−H) ZVT

)
. (4)

The matrix H = XX† is called the hat matrix for linear regression [19]. Similar to PLST, by Eckart-
Young theorem [20], we can solve problem (4) by considering the eigenvectors that correspond to
the largest eigenvalues of ZT (H− I)Z.

3.1 Conditional Principal Label Space Transformation

From the previous discussions, OCCA captures the input-output relation to minimize the prediction
error in bound (1) with the “easy” directions. In contrast, PLST minimizes the encoding error in
bound (1) with the “principal” directions. Now, we combine the benefits of the two algorithms, and
minimize the two error terms simultaneously with the “conditional principal” directions. We begin
by continuing our derivation of OCCA, which obtains r(x) by a linear regression from X to ZVT .
If we minimize both terms in (1) together with such a linear regression, the optimization problem
becomes

min
W,VVT=I

c

(∥∥∥XWT − ZVT
∥∥∥2
F

+
∥∥∥Z− ZVTV

∥∥∥2
F

)
⇒ min

VVT=I
tr
(
VZT (I−H) ZVT −VTVZTZ− ZTZVTV + VTVZTZVTV

)
(5)

⇒ max
VVT=I

tr
(
VZTHZVT

)
(6)

Problem (6) is derived by a cyclic permutation to eliminate a pair of V and VT and combine the
last three terms of (5). The problem can again be solved by taking the eigenvectors with the largest
eigenvalues of ZTHZ as the rows of V. Such a matrix V minimizes the prediction error term and
the encoding error term simultaneously. The resulting algorithm is called conditional principal label
space transformation (CPLST), as shown in Algorithm 1.

Algorithm 1 Conditional Principal Label Space Transformation
1: Let Z = [z1 . . . zN ]

T with zn = yn − ȳ.
2: Preform SVD on ZTHZ to obtain ZTHZ = AΣB with σ1 ≥ σ2 ≥ · · · ≥ σN . Let VM

contain the top M rows of B.
3: Encode {(xn,yn)}Nn=1 to {(xn, tn)}Nn=1, where tn = VMzn.
4: Learn a multi-dimension regressor r(x) from {(xn, tn)}Nn=1.
5: Predict the label-set of an instance x by h(x) = round

(
VT

Mr(x) + ȳ
)
.

CPLST balances the prediction error with the encoding error and is closely related with bound (1).
Moreover, in contrast with PLST, which uses the key unconditional correlations, CPLST is feature-
aware and allows the capture of conditional correlations [14].
We summarize the three algorithms in Table 1, and we will compare them empirically in Section 4.
The three algorithms are similar. They all operate with an SVD (or eigenvalue decomposition)
on a K by K matrix. PLST focuses on the encoding error and does not consider the features
during LSDR, i.e. it is feature-unaware. On the other hand, CPLST and OCCA are feature-aware
approaches, which consider features during LSDR. When using linear regression as the multi-output
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Table 1: Summary of three LSDR algorithms
Algorithm Matrix for SVD LSDR Relation to bound (1)

PLST ZTZ feature-unaware minimizes the encoding error
OCCA ZT (H− I)Z feature-aware minimizes the prediction error
CPLST ZTHZ feature-aware minimizes both

regressor, CPLST simultaneously minimizes the two terms in bound (1), while OCCA minimizes
only one term of the bound.
In contrast to PLST, the two feature-aware approaches OCCA and CPLST must calculate the ma-
trix H and are thus slower than PLST if the dimension d of the input space is large.

3.2 Kernelization and Regularization

Kernelization—extending a linear model to a nonlinear one using the kernel trick [21]—and regu-
larization are two important techniques in machine learning. The former expands the power of the
linear models while the latter regularizes the complexity of the learning model. In this subsection,
we show that kernelization and regularization can be applied to CPLST (and OCCA).
In Section 3.1, we derive CPLST by using linear regression as the underlying multi-output regression
method. Next, we replace linear regression by its kernelized form with `2 regularization, kernel ridge
regression [22], as the underlying regression algorithm. Kernel ridge regression considers a feature
mapping Φ : X → F before performing regularized linear regression. According to Φ, the kernel
function k(x,x′) = Φ(x)T Φ(x′) is defined as the inner product in the space F . When applying
kernel ridge regression with a regularization parameter λ to map from X to ZV, if Φ(x) can be
explicitly computed, it is known that the closed-form solution is [22]

W = ΦT
(
λI + ΦΦT

)−1
ZVT = ΦT (λI + K)

−1
ZVT , (7)

where Φ is the matrix containing Φ(xn)T as rows, and K is the matrix with Kij = k(xi,xj) =
Φ(xi)

T Φ(xj). That is, K = ΦΦT and is called the kernel matrix of X.
Now, we derive kernel-CPLST by inserting the optimal W into the Hamming loss bound (1). When
substituting (7) into minimizing the loss bound (1) with r(X) = ΦW and letting Q = (λI+K)−1,

min
VVT=I

c

(∥∥ΦΦTQZVT − ZVT
∥∥2
F

+
∥∥∥Z− ZVTV

∥∥∥2
F

)
⇒ min

VVT=I

(∥∥KQZVT − ZVT
∥∥2
F

+
∥∥∥Z− ZVTV

∥∥∥2
F

)
⇒ max

VVT=I
tr
(
VZT (2KQ−QKKQ− I) ZVT

)
(8)

Notice that in equation (8), kernel-CPLST do not need to explicitly compute the matrix Φ and only
needs the kernel matrix K (that can be computed through the kernel function k). Therefore, a high or
even an infinite dimensional feature transform can be used to assist LSDR in kernel-CPLST through
a suitable kernel function. Problem (8) can again be solved by considering the eigenvectors with the
largest eigenvalues of ZT (2KQ−QKKQ) Z as the rows of V.

4 Experiment
In this section, we conduct experiments on eight real-world datasets, downloaded from Mulan [23],
to validate the performance of CPLST and other LSDR approaches. Table 2 shows the number of la-
bels of each dataset. Because kernel ridge regression itself, kernel-CPLST need to invert an N by N
matrix, we can only afford to conduct a fair comparison using mid-sized datasets. In each run of the
experiment, we randomly sample 80% of the dataset for training and reserve the rest for testing. All
the results are reported with the mean and the standard error over 100 different random runs.

Table 2: The number of labels of each dataset
Dataset bib. cor. emo. enr. gen. med. sce. yea.
# Labels (K) 159 374 6 53 27 45 6 14

We take PLST, OCCA, CPLST, and kernel-CPLST in our comparison. We do not include Com-
pressive Sensing [13] in the comparison because earlier work [24] has shown that the algorithm is
more sophisticated while being inferior to PLST. We conducted some side experiments on CCA [6]
for LSDR (see Subsection 2.2) and found that it is at best comparable to OCCA. Given the space
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Figure 1: yeast: test results of LSDR algorithm when coupled with linear regression

constraints, we decide to only report the results on OCCA. In addition to those LSDR approaches,
we also consider a simple baseline approach [24], partial binary relevance (PBR). PBR randomly
selects M labels from the original label set during training and only learns those M binary classi-
fiers for prediction. For the other labels, PBR directly predicts −1 without any training to match the
sparsity assumption as exploited by Compressive Sensing [13].

4.1 Label Space Dimension Reduction with Linear Regression

In this subsection, we couple PBR, OCCA, PLST and CPLST with linear regression. The yeast
dataset reveals clear differences between the four LSDR approaches and is hence taken for presenta-
tion here, while similar differences have been observed on other datasets as well. Figure 1(a) shows
the test Hamming loss with respect to the possible M (labels) used. It is clear that CPLST is better
than the other three approaches. PLST can reach similar performance to CPLST only at a larger M .
The other two algorithms, OCCA and PBR, are both significantly worse than CPLST.
To understand the cause of the different performance, we plot the (test) encoding error ‖Z −
ZVTV‖2F , the prediction error ‖XWT − ZVT ‖2F , and the loss bound (1) in Figure 1. Figure 1(b)
shows the encoding error on the test set, which matches the design of PLST. Regardless of the ap-
proaches used, the encoding error decreases to 0 when using all 14 dimensions because the {vm}’s
can span the whole label space. As expected, PLST achieves the lowest encoding error across every
number of dimensions. CPLST partially minimizes the encoding error in its objective function, and
hence also achieves a decent encoding error. On the other hand, OCCA is blind to and hence worst
at the encoding error. In particular, its encoding error is even worse than that of the baseline PBR.

Figure 1(c) shows the prediction error ‖XWT − ZVT ‖2F on the test set, which matches the design
of OCCA. First, OCCA indeed achieves the lowest prediction error across all number of dimensions.
PLST, which is blind to the prediction error, reaches the highest prediction error, and is even worse
than PBR. The results further reveal the trade-off between the encoding error and the prediction
error: more efficient encoding of the label space are harder to predict. PLST takes the more efficient
encoding to the extreme, and results in worse prediction error; OCCA, on the other hand, is better
in terms of the prediction error, but leads to the least efficient encoding.
Figure 1(d) shows the scaled upper bound (1) of the Hamming loss, which equals the sum of the en-
coding error and the prediction error. CPLST is designed to knock down this bound, which explains
its behavior in Figure 1(d) and echoes its superior performance in Figure 1(a). In fact, Figure 1(d)
shows that the bound (1) is quite indicative of the performance differences in Figure 1(a). The results
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Table 3: Test Hamming loss of PLST and CPLST with linear regression
Dataset Algorithm M = 20%K 40% 60% 80% 100%
bibtex PLST 0.0129± 0.0000 0.0125± 0.0000 0.0124± 0.0000 0.0123± 0.0000 0.0123± 0.0000

CPLST 0.0127± 0.0000 0.0124± 0.0000 0.0123± 0.0000 0.0123± 0.0000 0.0123± 0.0000
corel5k PLST 0.0094± 0.0000 0.0094± 0.0000 0.0094± 0.0000 0.0094± 0.0000 0.0094± 0.0000

CPLST 0.0094± 0.0000 0.0094± 0.0000 0.0094± 0.0000 0.0094± 0.0000 0.0094± 0.0000
emotions PLST 0.2207± 0.0020 0.2064± 0.0023 0.1982± 0.0022 0.2013± 0.0020 0.2040± 0.0022

CPLST 0.2189± 0.0019 0.2059± 0.0022 0.1990± 0.0022 0.2015± 0.0021 0.2040± 0.0022
enron PLST 0.0728± 0.0004 0.0860± 0.0005 0.0946± 0.0006 0.1006± 0.0007 0.1028± 0.0007

CPLST 0.0729± 0.0004 0.0864± 0.0005 0.0943± 0.0006 0.1006± 0.0007 0.1028± 0.0007
genbase PLST 0.0169± 0.0004 0.0040± 0.0002 0.0012± 0.0001 0.0009± 0.0001 0.0007± 0.0001

CPLST 0.0168± 0.0004 0.0041± 0.0002 0.0012± 0.0001 0.0008± 0.0001 0.0007± 0.0001
medical PLST 0.0346± 0.0004 0.0407± 0.0005 0.0472± 0.0005 0.0490± 0.0005 0.0497± 0.0006

CPLST 0.0346± 0.0004 0.0406± 0.0005 0.0471± 0.0005 0.0490± 0.0005 0.0497± 0.0006
scene PLST 0.1809± 0.0004 0.1718± 0.0006 0.1566± 0.0007 0.1321± 0.0008 0.1106± 0.0008

CPLST 0.1744± 0.0004 0.1532± 0.0005 0.1349± 0.0005 0.1209± 0.0007 0.1106± 0.0008
yeast PLST 0.2150± 0.0008 0.2052± 0.0009 0.2033± 0.0009 0.2020± 0.0009 0.2022± 0.0009

CPLST 0.2069± 0.0008 0.2041± 0.0009 0.2024± 0.0009 0.2020± 0.0009 0.2022± 0.0009
(those within one standard error of the lower one are in bold)

Table 4: Test Hamming loss of LSDR algorithm with M5P
Dataset Algorithm M = 20%K 40% 60% 80% 100%
bibtex PLST 0.0130± 0.0001 0.0128± 0.0001* 0.0128± 0.0001 0.0127± 0.0001* 0.0127± 0.0001*

CPLST 0.0129± 0.0001* 0.0128± 0.0001* 0.0127± 0.0001* 0.0127± 0.0001* 0.0127± 0.0001*
corel5k PLST 0.0094± 0.0000* 0.0094± 0.0000* 0.0094± 0.0000* 0.0094± 0.0000* 0.0094± 0.0000*

CPLST 0.0094± 0.0000* 0.0094± 0.0000* 0.0094± 0.0000* 0.0094± 0.0000* 0.0094± 0.0000*
emotions PLST 0.2213± 0.0030 0.2109± 0.0030 0.2039± 0.0029 0.2051± 0.0029 0.2063± 0.0030

CPLST 0.2209± 0.0031* 0.2085± 0.0032* 0.2004± 0.0031* 0.2020± 0.0031* 0.2046± 0.0031*
enron PLST 0.0490± 0.0002 0.0488± 0.0002* 0.0489± 0.0002* 0.0490± 0.0002* 0.0490± 0.0002*

CPLST 0.0489± 0.0003* 0.0489± 0.0003 0.0490± 0.0003 0.0490± 0.0003* 0.0490± 0.0003*
genbase PLST 0.0215± 0.0004* 0.0202± 0.0004* 0.0195± 0.0003* 0.0194± 0.0003* 0.0194± 0.0003*

CPLST 0.0215± 0.0004* 0.0202± 0.0004* 0.0195± 0.0003* 0.0195± 0.0003 0.0195± 0.0003
medical PLST 0.0127± 0.0002 0.0099± 0.0002* 0.0097± 0.0002 0.0097± 0.0002 0.0097± 0.0002

CPLST 0.0126± 0.0002* 0.0099± 0.0002* 0.0096± 0.0002* 0.0096± 0.0002* 0.0096± 0.0002*
scene PLST 0.1802± 0.0005 0.1688± 0.0007 0.1540± 0.0008 0.1396± 0.0011 0.1281± 0.0008

CPLST 0.1674± 0.0005 0.1538± 0.0006* 0.1428± 0.0007* 0.1289± 0.0007* 0.1268± 0.0008*
yeast PLST 0.2162± 0.0008 0.2082± 0.0009 0.2071± 0.0009 0.2064± 0.0009* 0.2067± 0.0009

CPLST 0.2083± 0.0009* 0.2064± 0.0009* 0.2063± 0.0009* 0.2064± 0.0009* 0.2066± 0.0009*
(those with the lowest mean are marked with *; those within one standard error of the lowest one are in bold)

demonstrate that CPLST explores the trade-off between the encoding error and the prediction error
in an optimal manner to reach the best performance for label space dimension reduction.
The results of PBR and OCCA are consistently inferior to PLST and CPLST across most of the
datasets in our experiments [25] and are not reported here because of space constraints. The test
Hamming loss achieved by PLST and CPLST on other datasets with different percentage of used
labels are reported in Table 3. In most datasets, CPLST is at least as effective as PLST; in bibtex,
scene and yeast, CPLST performs significantly better than PLST.
Note that in the medical and enron datasets, both PLST and CPLST overfit when using many
dimensions. That is, the performance of both algorithms would be better when using fewer dimen-
sions (than the full binary relevance, which is provably equivalent to either PLST or CPLST with
M = K when using linear regression). These results demonstrate that LSDR approaches, like their
feature space dimension reduction counterparts, can potentially help resolve the issue of overfitting.

4.2 Coupling Label Space Dimension Reduction with the M5P Decision Tree

CPLST is designed by assuming a specific regression method. Next, we demonstrate that the input-
output relationship captured by CPLST is not restricted for coupling with linear regression, but can
be effective for other regression methods in the learning stage (step 4 of Algorithm 1). We do so
by coupling the LSDR approaches with the M5P decision tree [26]. M5P decision tree is a non-
linear regression method. We take the implementation from WEKA [27] for M5P with the default
parameter setting.
The experimental results are shown in Table 4. The relations between PLST and CPLST when
coupled with M5P are similar to the ones when coupled with linear regression. In particular, in
the yeast, scene, and emotions, CPLST outperforms PLST. The results demonstrate that the
captured input-output relation is also effective for regression methods other than linear regression.

4.3 Label Space Dimension Reduction with Kernel Ridge Regression

In this subsection, we conduct experiments for demonstrating the performance of kernelization and
regularization. For kernel-CPLST, we use the Gaussian kernel k(xi,xj) = exp

(
−γ‖xi − xj‖2

)
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Table 5: Test Hamming loss of LSDR algorithm with kernel ridge regression
Dataset Algorithm M = 20%K 40% 60% 80% 100%
bibtex PLST 0.0151± 0.0000 0.0151± 0.0000 0.0151± 0.0000 0.0151± 0.0000 0.0151± 0.0000

kernel-CPLST 0.0127± 0.0000 0.0123± 0.0000 0.0121± 0.0000 0.0120± 0.0000 0.0120± 0.0000
corel5k PLST 0.0094± 0.0000 0.0094± 0.0000 0.0094± 0.0000 0.0094± 0.0000 0.0094± 0.0000

kernel-CPLST 0.0092± 0.0000 0.0092± 0.0000 0.0092± 0.0000 0.0092± 0.0000 0.0092± 0.0000
emotions PLST 0.2218± 0.0020 0.2074± 0.0023 0.1983± 0.0026 0.2000± 0.0025 0.2002± 0.0025

kernel-CPLST 0.2231± 0.0020 0.2071± 0.0024 0.1981± 0.0025 0.1973± 0.0027 0.1988± 0.0027
enron PLST 0.0460± 0.0002 0.0462± 0.0002 0.0466± 0.0002 0.0468± 0.0002 0.0469± 0.0002

kernel-CPLST 0.0453± 0.0002 0.0454± 0.0002 0.0455± 0.0002 0.0455± 0.0002 0.0456± 0.0002
genbase PLST 0.0169± 0.0004 0.0039± 0.0002 0.0014± 0.0001 0.0010± 0.0001 0.0008± 0.0001

kernel-CPLST 0.0170± 0.0004 0.0040± 0.0002 0.0013± 0.0001 0.0009± 0.0001 0.0008± 0.0001
medical PLST 0.0136± 0.0002 0.0106± 0.0002 0.0103± 0.0002 0.0102± 0.0002 0.0102± 0.0002

kernel-CPLST 0.0131± 0.0002 0.0098± 0.0002 0.0096± 0.0002 0.0096± 0.0002 0.0096± 0.0002
scene PLST 0.1713± 0.0004 0.1468± 0.0006 0.1173± 0.0008 0.0932± 0.0011 0.0731± 0.0007

kernel-CPLST 0.1733± 0.0004 0.1470± 0.0006 0.1179± 0.0007 0.0905± 0.0007 0.0717± 0.0007
yeast PLST 0.2030± 0.0008 0.1913± 0.0009 0.1892± 0.0009 0.1882± 0.0009 0.1881± 0.0009

kernel-CPLST 0.2018± 0.0008 0.1904± 0.0009 0.1875± 0.0009 0.1869± 0.0009 0.1868± 0.0009
(those within one standard error of the lower one are in bold)

during LSDR and take kernel ridge regression with the same kernel and the same regularization
parameter as the underlying multi-output regression method. We also couple PLST with kernel ridge
regression for a fair comparison. We select the Gaussian kernel parameter γ and the regularization
parameter λ with a grid search on (log2 λ, log2 γ) using a 5-fold cross validation using the sum of
the Hamming loss across all dimensions. The details of the grid search can be found in the Master’s
Thesis of the first author [25].
When coupled with kernel ridge regression, the comparison between PLST and kernel-CPLST in
terms of the Hamming loss is shown in Table 5. kernel-CPLST performs well for LSDR and out-
performs the feature-unaware PLST in most cases. In particular, in five out of the eight datasets,
kernel-CPLST is significantly better than PLST regardless of the number of dimensions used. In
addition, in the medical and enron datasets, the overfitting problem is eliminated with regular-
ization (and parameter selection), and hence kernel-CPLST not only performs better than PLST with
kernel ridge regression, but also is better than the (unregularized) linear regression results in Table 3.
From the previous comparison between CPLST and PLST, CPLST is at least as good as, and usually
better than, PLST. The difference between CPLST and PLST is small but consistent, and does sug-
gest that CPLST is a better choice for label-space dimension reduction. The results provide practical
insights on the two types of label correlation [14]: unconditional correlation (feature-unaware) and
conditional correlation (feature-aware). The unconditional correlation, exploited by PLST and other
LSDR algorithms, readily leads to promising performance in practice. On the other hand, there is
room for some (albeit small) improvements when exploiting the conditional correlation properly like
CPLST.

5 Conclusion

In this paper, we studied feature-aware label space dimension reduction (LSDR) approaches, which
utilize the feature information during LSDR and can be viewed as the counterpart of supervised
feature space dimension reduction. We proposed a novel feature-aware LSDR algorithm, condi-
tional principal label space transformation (CPLST) which utilizes the key conditional correlations
for dimension reduction. CPLST enjoys the theoretical guarantee in balancing between the predic-
tion error and the encoding error in minimizing the Hamming loss bound. In addition, we extended
CPLST to a kernelized version for capturing more sophisticated relations between features and la-
bels. We conducted experiments for comparing CPLST and its kernelized version with other LSDR
approaches. The experimental results demonstrated that CPLST is the best among the LSDR ap-
proaches when coupled with linear regression or kernel ridge regression. In particular, CPLST is
consistently better than its feature-unaware precursor, PLST. Moreover, the input-output relation
captured by CPLST can be utilized by regression method other than linear regression.
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