Checklist

- 1. For all authors...
 - (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes] Section 1
 - (b) Did you describe the limitations of your work? [Yes] Section 7
 - (c) Did you discuss any potential negative societal impacts of your work? [Yes] Section 7
 - (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]
- 2. If you are including theoretical results...
 - (a) Did you state the full set of assumptions of all theoretical results? [N/A]
 - (b) Did you include complete proofs of all theoretical results? [N/A]
- 3. If you ran experiments...
 - (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] Supplemental material
 - (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] Section 4, Section 4.1, Appendix D
 - (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes] Table 3, Table 4, Table 5
 - (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] Section 4.1
- 4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 - (a) If your work uses existing assets, did you cite the creators? [Yes] Section 4, Section 4.1
 - (b) Did you mention the license of the assets? [Yes] Section 4, Section 4.1
 - (c) Did you include any new assets either in the supplemental material or as a URL? [Yes] Supplemental material
 - (d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [Yes] Section 4, Section 4.1. All assets are distributed under the MIT license.
 - (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [Yes] Section 4
- 5. If you used crowdsourcing or conducted research with human subjects...
 - (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
 - (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
 - (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? $[\rm N/A]$

A Derivation of Variational Log-Partition Function

$$\begin{aligned} \max_{q} & \underset{q(x)}{\mathbb{E}} \left[f_{\theta}(x) \right] + H(q) \\ &= \max_{q} \int_{x} q(x) f_{\theta}(x) \, dx - \int_{x} q(x) \log \left(q(x) \right) \, dx \\ &= \max_{q} \int_{x} q(x) \log \left(\frac{\exp \left(f_{\theta}(x) \right)}{q(x)} \right) \, dx \\ &= \max_{q} \int_{x} q(x) \log \left(\frac{\exp \left(f_{\theta}(x) \right)}{q(x)} \right) \, dx - \log Z(\theta) + \log Z(\theta) \\ &= \max_{q} \int_{x} q(x) \log \left(\frac{\exp \left(f_{\theta}(x) \right) / Z(\theta)}{q(x)} \right) \, dx + \log Z(\theta) \\ &= \max_{q} - \operatorname{KL} \left(q(x) \| p_{\theta}(x) \right) + \log Z(\theta) \\ &= \log Z(\theta) \end{aligned}$$

B 2C Loss as a Variational Lower Bound of Entropy

In Section 2.4 we use 2C loss as a lower bound of the entropy. Here we provide the proof.

Given samples (x_1, y) from $p(x_1)p(y|x_1)$ and additional M - 1 samples $x_2, \ldots x_M$, Eq. (10) in [40] have shown that the InfoNCE loss [47] is a lower bound of mutual information:

$$I(X;Y) \ge \mathbb{E}\left[\frac{1}{M}\sum_{i=1}^{M}\log\frac{\exp(f(x_i,y_i))}{\frac{1}{M}\sum_{j=1}^{M}\exp(f(x_i,y_j))}\right]$$

where the expectation is over M independent samples from the joint distribution: $\Pi_j p(x_j, y_j)$ and f can be any function.

Let

$$f(x_i, y_j) = \begin{cases} l(x_i)^\top e(y_i)/t, & \text{for } i = j\\ l(x_i)^\top l(x_j)/t, & \text{for } i \neq j, \end{cases}$$

We have

$$I(X;Y) \ge \mathbb{E}\left[\frac{1}{M}\sum_{i=1}^{M}\log\left(\frac{\exp\left(l(x_i)^{\top}e(y_i)/t\right)}{\exp(l(x_i)^{\top}e(y_i)/t) + \sum_{j=1}^{M}\left[i \neq j\right]\exp\left(l(x_i)^{\top}l(x_j)/t\right)}\right)\right],$$

which is Eq. (7) in [16].

Since H(X) = I(X;Y) + H(X|Y) and $H(X|Y) \ge 0$, $H(X) \ge I(X;Y)$. Therefore, 2C loss is a variational lower bound of H(X).

C Implementation Issue of Hinge Loss

In Section 2.2 and Section 2.3, we derive the loss functions \mathcal{L}_{d_1} and \mathcal{L}_{d_2} as the loss in Wasserstein GAN [2]. In practice, we use the hinge loss as proposed in Geometric GAN [26] for better convergence. An intuitive combination of \mathcal{L}_{d_1} and \mathcal{L}_{d_2} can be as following:

$$\operatorname{Hinge}(f_{\theta}(x_{\operatorname{real}}, y), f_{\theta}(x_{\operatorname{fake}}, y)) + \alpha \cdot \operatorname{Hinge}(h_{\theta}(x_{\operatorname{real}}), h_{\theta}(x_{\operatorname{fake}})),$$
(16)

where $Hinge(\cdot)$ is the hinge loss function proposed in [26].

The property of the hinge loss encourages the output value of $f_{\theta}(x_{\text{real}}, y), h_{\theta}(x_{\text{real}})$ to 1, and $f_{\theta}(x_{\text{fake}}, y), h_{\theta}(x_{\text{fake}})$ to -1, which leads to better stability in optimization generally. However, since $h_{\theta}(x) = \log \sum_{y} \exp(f_{\theta}(x)[y])$, we notice that encouraging the output of both f_{θ}, h_{θ} into the same scale harms the optimization. Therefore, we use the following combination instead:

$$\operatorname{Hinge}(f_{\theta}(x_{\operatorname{real}}, y) + \alpha \cdot h_{\theta}(x_{\operatorname{real}}), f_{\theta}(x_{\operatorname{fake}}, y) + \alpha \cdot h_{\theta}(x_{\operatorname{fake}})).$$
(17)

The new formulation leads to more stable optimization and is less sensitive to the parameter α empirically.

D Experimental Setup Details

We use hinge loss [26] and apply spectral norm [35] on all models to stabilize the training. We adopt the self-attention technique [50] and horizontal random flipping [52] to provide better generation quality. We apply moving average update [17, 31, 49] for generators after 1,000 generator updates for CIFAR-10 and 20,000 generator updates for Tiny ImageNet with a decay rate of 0.9999. We follow the setting of 2C-loss in [16], using $\lambda_c = 1$ and 512-dimension linear projection layer for CIFAR-10 and 768-dimension linear projection layer for Tiny ImageNet. We use Adam [19] optimizer with batch size 64 for CIFAR-10 and batch size 256 for Tiny ImageNet. The training takes 150,000 steps for CIFAR-10 and 100,000 steps for Tiny ImageNet.

E Training Algorithm

Input: Unconditional GAN loss weight: α . 2C loss weight: λ_c . Classification loss weight: λ_{clf} . Parameters of the discriminator and the generator: (θ, ϕ) . **Output:** (θ, ϕ)

```
 \begin{array}{l} \mbox{Initialize } (\theta, \phi) \\ \mbox{for } \{1, \dots, n_{iter}\} \mbox{do} \\ \mbox{for } \{1, \dots, n_{dis}\} \mbox{do} \\ \mbox{Sample } \{(x_i, y_i)\}_{i=1}^m \sim p_d(x, y) \\ \mbox{Sample } \{z_i\}_{i=1}^m \sim p(z) \\ \mbox{Calculate } \mathcal{L}_D \mbox{ by Eq. (11)} \\ \mbox{$\theta \leftarrow - Adam(\mathcal{L}_D, lr_d, \beta_1, \beta_2)$} \\ \mbox{end for} \\ \mbox{Sample } \{(y_i)\}_{i=1}^m \sim p_d(y) \mbox{ and } \{z_i\}_{i=1}^m \sim p(z) \\ \mbox{Calculate } \mathcal{L}_G \mbox{ by Eq. (12)} \\ \mbox{$\phi \leftarrow - Adam(\mathcal{L}_G, lr_g, \beta_1, \beta_2)$} \\ \mbox{end for} \\ \mbox{end for} \\ \mbox{end for} \end{array}
```

F Discriminator Designs of Existing cGANs and their ECGAN Counterparts

Fig. 2 depicts the discriminator designs of existing cGANs and their ECGAN counterparts.

G Images Generated by ECGAN

Fig. 3, Fig. 4, Fig. 5 shows the images generated by ECGAN for CIFAR-10, Tiny ImageNet, and ImageNet respectively.

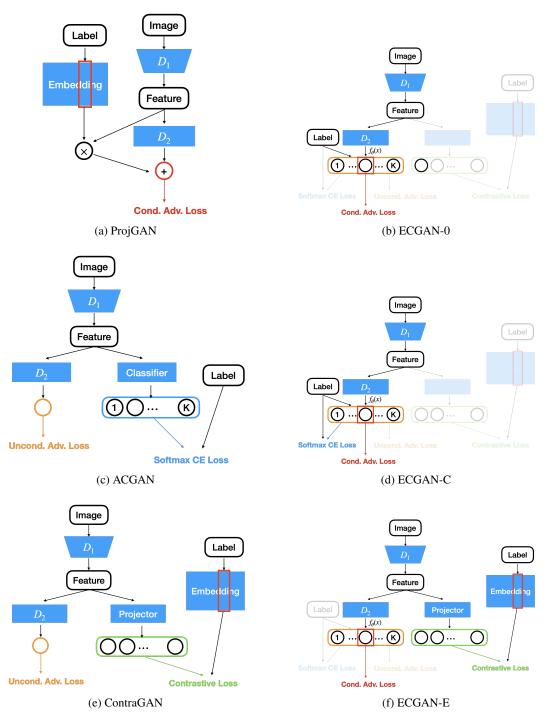


Figure 2: Discriminator Designs of Existing cGANs and their ECGAN Counterparts

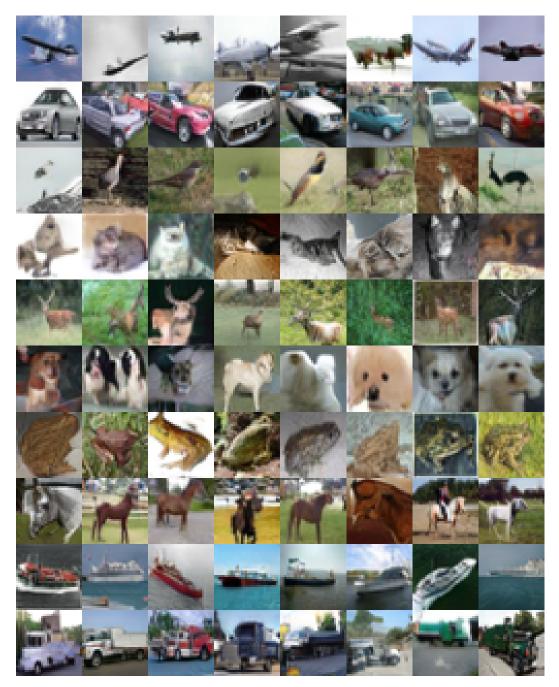


Figure 3: CIFAR-10 images generated by ECGAN-UC (FID: 7.89, Inception Score: 10.06, Intra-FID: 41.42)

Figure 4: Tiny ImageNet images generated by ECGAN-UC (FID: 17.16, Inception Score: 17.77, Intra-FID: 201.66)

Figure 5: ImageNet images generated by ECGAN-UCE (FID: 8.491, Inception Score: 80.685)