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A Derivation of Variational Log-Partition Function
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B 2C Loss as a Variational Lower Bound of Entropy

In Section 2.4 we use 2C loss as a lower bound of the entropy. Here we provide the proof.

Given samples (x1, y) from p(x1)p(y|x1) and additional M − 1 samples x2, . . . xM , Eq. (10) in [40]
have shown that the InfoNCE loss [47] is a lower bound of mutual information:
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where the expectation is over M independent samples from the joint distribution: Πjp(xj , yj) and f
can be any function.
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We have
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which is Eq. (7) in [16].

Since H(X) = I(X;Y ) +H(X|Y ) and H(X|Y ) ≥ 0, H(X) ≥ I(X;Y ). Therefore, 2C loss is a
variational lower bound of H(X).

C Implementation Issue of Hinge Loss

In Section 2.2 and Section 2.3, we derive the loss functions Ld1 and Ld2 as the loss in Wasser-
stein GAN [2]. In practice, we use the hinge loss as proposed in Geometric GAN [26] for better
convergence. An intuitive combination of Ld1 and Ld2 can be as following:

Hinge(fθ(xreal, y), fθ(xfake, y)) + α · Hinge(hθ(xreal), hθ(xfake)), (16)
where Hinge(·) is the hinge loss function proposed in [26].

The property of the hinge loss encourages the output value of fθ(xreal, y), hθ(xreal) to 1, and
fθ(xfake, y), hθ(xfake) to −1, which leads to better stability in optimization generally. However,
since hθ(x) = log

∑
y exp(fθ(x)[y]), we notice that encouraging the output of both fθ, hθ into the

same scale harms the optimization. Therefore, we use the following combination instead:
Hinge(fθ(xreal, y) + α · hθ(xreal), fθ(xfake, y) + α · hθ(xfake)). (17)

The new formulation leads to more stable optimization and is less sensitive to the parameter α
empirically.
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D Experimental Setup Details

We use hinge loss [26] and apply spectral norm [35] on all models to stabilize the training. We adopt
the self-attention technique [50] and horizontal random flipping [52] to provide better generation
quality. We apply moving average update [17, 31, 49] for generators after 1,000 generator updates for
CIFAR-10 and 20,000 generator updates for Tiny ImageNet with a decay rate of 0.9999. We follow
the setting of 2C-loss in [16], using λc = 1 and 512-dimension linear projection layer for CIFAR-10
and 768-dimension linear projection layer for Tiny ImageNet. We use Adam [19] optimizer with
batch size 64 for CIFAR-10 and batch size 256 for Tiny ImageNet. The training takes 150,000 steps
for CIFAR-10 and 100,000 steps for Tiny ImageNet.

E Training Algorithm
Input: Unconditional GAN loss weight: α. 2C loss weight: λc. Classification loss weight: λclf.
Parameters of the discriminator and the generator: (θ, φ).
Output: (θ, φ)

Initialize (θ, φ)
for {1, . . . , niter} do

for {1, . . . , ndis} do
Sample {(xi, yi)}mi=1 ∼ pd(x, y)
Sample {zi}mi=1 ∼ p(z)
Calculate LD by Eq. (11)
θ ←− Adam(LD, lrd, β1, β2)

end for
Sample {(yi)}mi=1 ∼ pd(y) and {zi}mi=1 ∼ p(z)
Calculate LG by Eq. (12)
φ←− Adam(LG, lrg, β1, β2)

end for

F Discriminator Designs of Existing cGANs and their ECGAN
Counterparts

Fig. 2 depicts the discriminator designs of existing cGANs and their ECGAN counterparts.

G Images Generated by ECGAN

Fig. 3, Fig. 4, Fig. 5 shows the images generated by ECGAN for CIFAR-10, Tiny ImageNet, and
ImageNet respectively.
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(a) ProjGAN (b) ECGAN-0

(c) ACGAN (d) ECGAN-C

(e) ContraGAN (f) ECGAN-E

Figure 2: Discriminator Designs of Existing cGANs and their ECGAN Counterparts
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Figure 3: CIFAR-10 images generated by ECGAN-UC (FID: 7.89, Inception Score: 10.06, Intra-FID:
41.42)
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Figure 4: Tiny ImageNet images generated by ECGAN-UC (FID: 17.16, Inception Score: 17.77,
Intra-FID: 201.66)
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Figure 5: ImageNet images generated by ECGAN-UCE (FID: 8.491, Inception Score: 80.685)
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