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Abstract—We formulate a framework for applying error-
correcting codes (ECC) on multi-label classification problems.
The framework treats some base learners as noisy channels
and uses ECC to correct the prediction errors made by the
learners. An immediate use of the framework is a novel ECC-
based explanation of the popular random k-label-sets (RAKEL)
algorithm using a simple repetition ECC. Using the framework,
we empirically compare a broad spectrum of off-the-shelf ECC
designs for multi-label classification. The results not only demon-
strate that RAKEL can be improved by applying some stronger
ECC, but also show that the traditional Binary Relevance
approach can be enhanced by learning more parity-checking
labels. Our study on different ECC also helps understand the
trade-off between the strength of ECC and the hardness of the
base learning tasks. Furthermore, we extend our study to ECC
with either hard (binary) or soft (real-valued) bits by designing
a novel decoder. We demonstrate that the decoder improves the
performance of our framework.

Index Terms—Multi-label classification, error-correcting codes.

I. INTRODUCTION

MULTI-LABEL classification is an extension of tradi-

tional multi-class classification. In particular, the lat-

ter aims at accurately associating one single label with an

instance, while the former aims at associating a label set.

Because of the increasing application needs in domains like

music categorization [1] and scene analysis [2], multi-label

classification is attracting much research attention in recent

years.

Error-correcting code (ECC) roots from the information

theoretic pursuit of communication [3]. In particular, the ECC

studies how to accurately recover a desired signal block after

transmitting the block’s encoding through a noisy communica-

tion channel. When the desired signal block is the single label

(of some instances) and the noisy channel consists of some

binary classifiers, it has been shown that a suitable use of the

ECC could improve the association (prediction) accuracy of

multi-class classification [4]. Several designs, including some

classic ECC [4] and some adaptively constructed ECC [5], [6],

have reached promising empirical performance for multi-class

classification.

While the benefits of the ECC are well established for

multi-class classification, the corresponding use for multi-

label classification remains an ongoing research direction. [7]

takes the first step in this direction by proposing a multi-label
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classification approach that applies a classic ECC, the Bose-

Chaudhuri-Hocquenghem (BCH) code. The work is followed

by some extensions to the convolution code [8]. Although the

approach shows some good experimental results over existing

multi-label classification approaches, a more rigorous study re-

mains needed to understand the advantages and disadvantages

of different ECC designs for multi-label classification and will

be the main focus of this work.

In this work, we formalize the framework for applying the

ECC on multi-label classification. The framework is more

general than both existing ECC studies for multi-class clas-

sification [4] and for multi-label classification [7]. Then, we

conduct a thorough study with a broad spectrum of classic

ECC designs: repetition code, Hamming code, BCH code,

and low-density parity-check code. The four designs cover

the simplest ECC idea to the state-of-the-art ECC in com-

munication systems. Interestingly, such a framework allows

us to give a novel ECC-based explanation to the random k-

label sets (RAKEL) algorithm, which is popular for multi-

label classification. In particular, RAKEL can be viewed as a

special type of repetition code coupled with a batch of simple

and internal multi-label classifiers.

We empirically demonstrate that RAKEL can be improved

by replacing its repetition code with the Hamming code, a

slightly stronger ECC. Furthermore, even better performance

can be achieved when replacing the repetition code with

the BCH code. When compared with the traditional Binary

Relevance (BR) approach without the ECC, multi-label clas-

sification with the ECC can perform significantly better. The

empirical results justify the validity of the ECC framework.

In addition, we design a new decoder for linear ECC by

using multiplications to approximate exclusive-OR operations.

This decoder is able to handle not only ordinary binary bits

from the channels, called hard inputs, but also real-valued

bits, called soft inputs. For multi-label classification using the

ECC, the soft inputs can be used to represent the confidence

of the internal classifiers. Our newly designed decoder allows

a proper use of the detailed confidence information to produce

more accurate predictions. The experimental results show that

this decoder indeed improves the performance of the ECC

framework with soft inputs.

The paper is organized as follows. First, we introduce

the multi-label classification problem in Section I-A, and

present related works in Section I-B. Section II illustrates

the framework and demonstrates its effectiveness. Section III

presents a new decoder for hard or soft inputs. We empirically

study the performance of the framework and the proposed

decoder in Section IV. Finally we conclude in Section V.
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A short version of the paper appeared in the 2011 Asian

Conference on Machine Learning [9]. The paper was then

enriched by the novel decoder for dealing with soft bits, the

comparison with other ECC designs, and broader experiments.

The paper is also the core of the first author’s M.S. thesis [10].

A. Problem Setup

Multi-label classification aims at mapping an instance x ∈
R

d to a label-set Y ⊆ L = {1, 2, . . . ,K}, where K is the

number of classes. Following the hypercube view of [11], the

label set Y can be represented as a binary vector y of length

K, where y[i] is 1 if the ith label is in Y , and 0 otherwise.

Consider a training dataset D = {(xn,yn)}
N
n=1. A multi-label

classification algorithm uses D to locate a multi-label classifier

h : Rd → {0, 1}K such that h(x) predicts y well on future test

examples (x,y).
There are several loss functions for evaluating whether ỹ =

h(x) predicts y well. Two common ones are:

• subset 0/1 loss: ∆0/1(ỹ,y) = Jỹ 6= yK.

• Hamming loss: ∆HL(ỹ,y) =
1
K

K
∑

i=1

Jỹ[i] 6= y[i]K.

[12] show that the two loss functions focus on differ-

ent statistics of the underlying probability distribution from

a Bayesian perspective. While a wide range of other loss

functions exist [13], in this paper we only focus on 0/1
and Hamming because they connect tightly with the ECC

framework that will be discussed.1

B. Related Works

The hypercube view [11] unifies many existing problem

transformation approaches [13], which transform multi-label

classification into one or more reduced learning tasks. For

instance, one simple problem transformation approach is called

Binary Relevance (BR), which learns one binary classifier

per individual label. Another simple problem transformation

approach is called label powerset (LP), which transforms

multi-label classification to one multi-class classification task

with a huge number of extended labels. One popular problem

transformation approach that lies between BR and LP is called

random k-label sets (RAKEL) [13], which transforms multi-

label classification into many multi-class classification tasks

with a smaller number of extended labels.

Some existing problem transformation approaches focus

on compressing the label-set vector y [11], [14]—removing

the redundancy within the binary signals (label sets) to form

shorter codewords—which follows a classic task in informa-

tion theory based on Shannon’s first theorem [3]. Another

classic task in information theory aims at expansion—adding

redundancy in the (longer) codewords to ensure robust decod-

ing against noise contamination. The power of expansion is

characterized by Shannon’s second theorem [3]. The error-

correcting code (ECC) targets towards using the power of

expansion systematically. In particular, the ECC works by

encoding a block of signal to a longer codeword b before

1We follow the final remark of [12] to only focus on the loss functions that
are related to our algorithmic goals.

passing it through the noisy channel and then decoding the

received codeword b̃ back to the block appropriately. Then,

under some assumptions [15], the block can be perfectly

recovered—resulting in zero block-decoding error; in some

cases, the block can only be almost perfectly recovered—

resulting in a few bit-decoding errors.

If we take the “block” as the label set y for every example

(x,y) and a batch of base learners as a channel that outputs the

contaminated block b̃, the block-decoding error corresponds

to ∆0/1 while the bit-decoding error corresponds to a scaled

version of ∆HL. Such a correspondence motivates us to study

whether suitable ECC designs can be used to improve multi-

label classification, which will be formalized in Section II.

Most of the commonly-used ECC in communication sys-

tems are binary ECC. That is, the codeword b is a binary

vector. We are going to apply this kind of ECC on multi-label

classification, and will review some of them in Section II-A.

Another kind of ECC is real-valued ECC, which uses real-

valued vectors as the codewords. [16] and [17] take this

direction and design special encoding and decoding functions

for multi-label classification. [16] uses canonical correlation

analysis to find the most linearly-predictable transform of the

original labels; [17] uses metric learning to locate a good

encoding function. Both works take approximate Bayesian

inference for decoding.

II. ML-ECC FRAMEWORK

We now describe the proposed ECC framework in detail.

The main idea is to use an ECC encoder enc(·) : {0, 1}K →
{0, 1}M to expand the original label set y ∈ {0, 1}K to

a codeword b ∈ {0, 1}M that contains redundant informa-

tion. Then, instead of learning a multi-label classifier h(x)
between x and y, we learn a multi-label classifier h̃(x) be-

tween x and the corresponding b. In other words, we transform

the original multi-label classification problem into another

(larger) multi-label classification task. During prediction, we

use h(x) = dec ◦ h̃(x), where dec(·) : {0, 1}M → {0, 1}K is

the corresponding ECC decoder, to get a multi-label prediction

ỹ ∈ {0, 1}K . The simple steps of the framework are shown

as follows:

• Parameter: an ECC with encoder enc(·) and decoder

dec(·); a base multi-label learner Ab

• Training: Given D = {(xn,yn)}
N
n=1,

1) ECC-encode each yn to bn = enc(yn);

2) Return h̃ = Ab

(

{(

xn,bn

)}

)

.

• Prediction: Given any x,

1) Predict a codeword b̃ = h̃(x);
2) Return h(x) = dec(b̃) by ECC-decoding.

This algorithm is simple and general. It can be coupled

with any block-coding ECC and any base learner Ab to form a

new multi-label classification algorithm. For instance, the ML-

BCHRF method [7] uses the BCH code (see Subsection II-A3)

as the ECC and BR on Random Forest as the base learner Ab.

Note that [7] did not describe why ML-BCHRF may lead to

improvements in multi-label classification. Next, we show a

simple theorem that connects the ECC framework with ∆0/1.
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Many ECCs can guarantee to correct up to m bit flipping

errors in a codeword of length M . We will introduce some of

those ECC in Section II-A. Then, if ∆HL of h̃ is low, the ECC

framework guarantees that ∆0/1 of h is low. The guarantee is

formalized as follows.

Theorem 1: Consider an ECC that can correct up to m
bit errors in a codeword of length M . Then, for any T test

examples {(xt,yt)}
T
t=1, let bt = enc(yt). If

∆HL(h̃) =
1

T

T
∑

t=1

∆HL(h̃(xt),bt) ≤ ǫ,

then h = dec ◦ h̃ satisfies

∆0/1(h) =
1

T

T
∑

t=1

∆0/1(h(xt),yt) ≤
Mǫ

m+ 1
.

Proof: When the average Hamming loss of h̃ is at most ǫ,
h̃ makes at most ǫTM bits of error on all bt. Since the ECC

corrects up to m bits of errors in one bt, an adversarial has to

make at least m+1 bits of errors on bt to make h(xt) different

from yt. The number of such bt can be at most ǫTM
m+1 . Thus,

∆0/1(h) is at most ǫTM
T (m+1) .

From Theorem 1, it appears that we should simply use some

stronger ECC, for which m is larger. Nevertheless, note that

we are applying the ECC in a learning scenario. Thus, ǫ
is not a fixed value, but depends on whether Ab can learn

well from D̃. Stronger ECC usually contains redundant bits

that come from complicated compositions of the original bits

in y, and the compositions may not be easy to learn. The

trade-off has been revealed when applying the ECC to multi-

class classification [6]. Next, we study the ECC with different

strength and empirically verify the trade-off in Section IV.

A. Review of Classic ECC

Next, we review four ECC designs that will be used in the

empirical study. The four designs cover a broad spectrum of

practical choices in terms of strength.

1) Repetition Code: One of the simplest ECCs is repetition

code (REP) [15], for which every bit in y is repeated ⌊M
K ⌋ or

⌊M
K ⌋ + 1 times in b during encoding. The decoding takes a

majority vote using the received copies of each bit. Because

of the majority vote, repetition code corrects up to mREP =
⌊ M
2K − 1

2⌋ bit errors in b. We will discuss the connection

between REP and the RAKEL algorithm in Section II-B.

2) Hamming on Repetition Code: A slightly more compli-

cated ECC than REP is called the Hamming code (HAM) [18],

which can correct mHAM = 1 bit error in b by adding some

parity check bits (exclusive-OR operations of some bits in y).

One typical choice of HAM is HAM(7, 4), which encodes

any y with K = 4 to b with M = 7. Note that mHAM = 1
is worse than mREP when M is large. Thus, we consider

applying HAM(7, 4) on every 4 (permuted) bits of REP. That

is, to form a codeword b of M bits from a block y of K
bits, we first construct an REP of 4⌊M/7⌋ + (M mod 7)
bits from y; then for every 4 bits in the REP, we add 3
parity bits to b using HAM(7, 4). The resulting code will be

named Hamming on Repetition (HAMR). During decoding,

the decoder of HAM(7, 4) is first used to recover the 4-bit

sub-blocks in the REP. Then, the decoder of REP (majority

vote) takes place.

It is not hard to compute mHAMR by analyzing the REP and

HAM parts separately. When M is a multiple of 7, mHAMR =
2 · ⌊ 2M

7K − 1
2⌋, which is generally better than mREP especially

when M
K is large. Thus, HAMR is slightly stronger than REP

for ECC purposes. We include HAMR in our study to verify

whether a simple inclusion of some parity bits for the ECC can

readily improve the performance for multi-label classification.

3) Bose-Chaudhuri-Hocquenghem Code: BCH [19], [20]

code can be viewed as a sophisticated extension of HAM and

allows correcting multiple bit errors. BCH with length M =
2p − 1 has (M −K) parity bits, and it can correct mBCH =
M−K

p bits of error [15], which is in general stronger than REP

and HAMR. The caveat is that the decoder of BCH is more

complicated than the ones of REP and HAMR.

We include BCH in our study because it is one of the

most popular ECCs in real-world communication systems. In

addition, we compare BCH with HAMR to see if a strong

ECC can do better for multi-label classification.

4) Low-density Parity-check Code: Low-density parity-

check code (LDPC) [15] is recently drawing much research

attention in communications. LDPC shares an interesting

connection between ECC and Bayesian learning [15]. While

it is difficult to state the strength of LDPC in terms of a single

mLDPC , LDPC has been shown to approach the theoretical

limit in some special channels [21], which makes it a state-

of-the-art ECC. We choose to include LDPC in our study to

see whether it is worthwhile to go beyond BCH with more

sophisticated encoder/decoders.

B. ECC View of RAKEL

RAKEL is a multi-label classification algorithm proposed

by [13]. Define a k-label set as a size-k subset of L. Each

iteration of RAKEL randomly selects a (different) k-label set

and builds a multi-label classifier on the k labels with a Label

Powerset (LP). After running for R iterations, RAKEL obtains

a size-R ensemble of LP classifiers. The prediction on each

label is done by a majority vote from classifiers associated

with the label.

Equivalently, we can draw (with replacement) M = Rk
labels first before building the LP classifiers. Then, selecting

k-label sets is equivalent to encoding y by a variant of REP,

which will be called RAKEL repetition code (RREP). Similar

to REP, each bit y[i] is repeated several times in b since label

i is involved in several k-label sets. After encoding y to b,

each LP classifier, called k-powerset, acts as a sub-channel that

transmits a size-k sub-block of the codeword b. The prediction

procedure follows the decoder of the usual REP.

The ECC view above decomposes the original RAKEL

into two parts: the ECC and the base learner Ab. We will

empirically study how the two parts affect the performance of

multi-label classification in Section IV.

C. Comparison to Real-valued Codewords

As mentioned in Section I-B, [16] and [17] propose using

real-valued ECC for multi-label classification. There are two
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major differences between the real-valued ECC and the binary

ECC. In terms of codewords, the real-valued codewords of [16]

and [17] are linear combinations of labels. On the other hand,

the binary codewords introduced in Section II-A are parity

checks (exclusive-OR) of labels, which is a linear combination

of labels under Galois field GF2.

In terms of base learners, the transformed learning tasks of

real-valued codewords are regression instead of classification.

In [16] and [17], the regression task of each codeword bit is

learned separately, which is like applying the BR base learner.

On the other hand, the transformed learning task of binary

codewords can be learned with other base learners such as

k-powerset.

III. GEOMETRIC DECODER FOR LINEAR ECC

The real-valued codewords motivate us to design a new

decoder for binary ECC in the ML-ECC framework. The goal

of the new decoder is to utilize the channel measurement

information, i.e. the real-valued confidence for the bit to be 1.

Such information is available to the decoder when using the

BR base learner (channel) with probabilistic outputs. The real-

valued confidence may help improve the performance of the

ML-ECC framework by focusing more on the highly-confident

bits.

The off-the-shelf ECC decoders usually do not exploit the

channel measurement information, but take advantages of the

algebraic structure of the ECC to locate possible bit errors.

From the hypercube view, they decode a vertex of {0, 1}M

(binary prediction on codewords) to a vertex of {0, 1}K

(binary prediction on labels). The proposed decoder, on the

contrary, utilizes the information and takes the geometry of the

hypercube into account to perform interior-to-interior decoding

from [0, 1]M to [0, 1]K . That is, the proposed decoder is a

soft-input soft-output decoder. The soft input bits contain the

channel measurement information, and the value of each bit

represents the confidence in the bit being 1. The soft prediction

of labels are the confidence in whether the label presents. For

evaluation, the soft predictions are then rounded to {0, 1}K as

in [11]. We call the proposed decoder geometric decoder, and

call the off-the-shelf decoders algebraic decoders.

Here, we focus on linear codes, whose encoding function

can be written as a matrix-vector multiplication under Galois

field GF2. All the repetition code, Hamming code, BCH code,

and LDPC code are linear codes. Let G be the generating

matrix of a linear code, gij ∈ {0, 1}. The encoding is done by

b = enc(y) = G · y (mod 2), or equivalently we may write

the formula in terms of exclusive-OR (XOR) operations:

bi =
⊕

j:gij=1

yj

That is, the codeword bit bi is the result of XOR of some label

bits yj . The XOR operations are equivalent to multiplications

if we map 1 → −1 and 0 → 1. By defining b̂i = 1− 2bi and

ŷj = 1− 2yj , the encoding can also be written as

b̂i =
∏

j:gij=1

ŷj

We denote this form as multiplication encoding.

It is difficult to generalize the XOR operation from binary

to real values, but multiplication by itself can be defined

on real values. We take this advantage and use it to form

our geometric decoder. Our geometric decoder would find

the ỹ that minimizes the L2 distance between b̃ and the

multiplication encoding result of the ỹ:

decgeo(b̃) = argmin
ỹ∈[0,1]K

M
∑

i=1



(1− 2b̃i)−
∏

j:gij=1

(1− 2ỹj)





2

Note that the squared L2 distance between codewords is

an approximation of the Hamming distance in binary space

{0, 1}M .

For repetition code, since only one yj is considered for

each bi, the optimal solution of the problem would be the

same as averaging over the predictions on the same label for

each label. However, for general linear codes, it is difficult to

find the global optimum since the optimization problem may

not be convex. Instead, we may apply a variant of coordinate

descent optimization to find a local minimum. That is, in

each step we optimize only one ỹj while fixing other ỹj .

To optimize one ỹj , we only have to solve a second-order

single-variable optimization problem, which enjoys an efficient

analytic solution.

The benefit of using soft output geometric decoder is that the

multiplication-approximated XOR preserves some geometric

information. That is, close points in [0, 1]K would also be

close after multiplication encoding. Moreover, approximating

XOR by multiplication allows us to consider soft input, i.e.

confidence information, during decoding.

IV. EXPERIMENTS

First we compare RREP, HAMR, BCH, and LDPC with

the ML-ECC framework on seven real-world datasets in

different domains: scene, emotions, yeast, tmc2007,

genbase, medical, and enron [22] using the algebraic

decoder. The number of classes (K) is shown in Table I. All

the results are reported with the mean and standard error on

random splitting test set over 30 runs. The sizes of training

and testing sets are set according to the sizes in original

datasets. Note that for tmc2007 dataset, which contains

28596 instances in total, we randomly sample 5% for training

and another 5% for testing in each run.

We set RREP with k = 3. Then, for each ECC, we

first consider a 3-powerset with either Random Forest, non-

linear support vector machine (SVM), or logistic regression

as the multi-class classifier inside the 3-powerset. Note that

we randomly permute the bits of b and apply an inverse

permutation on b̃ for those ECC other than RREP to ensure

that each 3-powerset works on diverse sub-blocks. In addition

to the 3-powerset base learners, we also consider BR base

learners in Subsection IV-D.

We take the default Random Forest from Weka [23] with

60 trees. For the non-linear SVM, we use LIBSVM [24] with

the Gaussian kernel and choose (C, γ) by cross validation on

training data from {2−5, 2−3, · · · , 27} × {2−9, 2−7, · · · , 21}.



TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 1, JANUARY 2007 5

In addition, we use LIBLINEAR [25] for the logistic regres-

sion and choose the parameter C by cross validation from

{2−5, 2−3, · · · , 27}.

A. Validity of ML-ECC Framework

First, we demonstrate the validity of the ML-ECC frame-

work. We fix the codeword length M to about 20 times larger

than the number of labels K. The numbers are in the form

2p − 1 for integer p because the BCH code only works on

such lengths. More experiments on different codeword lengths

are presented in Section IV-B. Here the base multi-label

learner is the 3-powerset with Random Forests. Following

the description in Section II-B, RREP with the 3-powerset

is exactly the same as RAKEL with k = 3.

The results on 0/1 loss is shown in Figure 1(a). HAMR

achieves lower ∆0/1 than RREP on 5 out of the 7 datasets

(scene, emotions, yeast, tmc2007, and medical) and

achieves similar ∆0/1 with RREP on the other 2. This verifies

that using some parity bits instead of repetition improves

the strength of ECC, which in turn improves the 0/1 loss.

Along the same direction, BCH performs even better than

both HAMR and RREP, especially on medical dataset.

The superior performance of BCH justifies that the ECC is

useful for multi-label classification. On the other hand, another

sophisticated code, LDPC, gets higher 0/1 loss than BCH on

every dataset, and even higher 0/1 loss than RREP on the

emotions and yeast datasets, which suggest that LDPC

may not be a good choice for the ECC framework.

Next we look at ∆HL shown in Figure 1(b). The Hamming

loss of HAMR is comparable to that of RREP, where each

wins on two datasets. BCH beats both HAMR and RREP on

the tmc2007, genbase, and medical datasets but loses

on the other four datasets. LDPC has the highest Hamming

loss among the codes on all datasets. Thus, simpler codes like

RREP and HAMR perform better in terms of ∆HL. A stronger

code like BCH may guard ∆0/1 better, but it can pay more in

terms of ∆HL.

Similar results show up when using the Gaussian SVM

or logistic regression as the base learner instead of Random

Forest, as shown in Tables I and II. The boldface entries are

the lowest-loss ones for the given dataset and base learner. The

results validate that the performance of multi-label classifica-

tion can be improved by applying the ECC. More specifically,

we may improve the RAKEL algorithm by learning some

parity bits instead of repetitions. Based on this experiment,

we suggest that using HAMR for multi-label classification

will improve the ∆0/1 while maintaining comparable ∆HL

with RAKEL. If we use BCH instead, we will improve ∆0/1

further but may pay for ∆HL.

B. Comparison of Codeword Length

Now, we compare on the length of codewords M . With

larger M , the codes can correct more errors but the base

learners have to take longer time to train. By experimenting

different M , we may find a better trade-off between perfor-

mance and efficiency.

The performance of the ECC framework with different

codeword lengths on the scene dataset is shown on Figure 2.

Here, the base learner is again the 3-powerset with Random

Forests. The codeword length M varies from 31 to 127, which

is about 5 to 20 times of number of labels L. We do not

include shorter codewords because their performance are not

stable. Note that BCH only allows M = 2p − 1 and thus we

conduct experiments of BCH on those codeword lengths.

We first look at the 0/1 loss in Figure 2(a). The horizontal

axis indicates the codeword length M and the vertical axis

is the 0/1 loss on the test set. We see that ∆0/1 of RREP

stays around 0.335 no matter how long the codewords are.

This implies that the power of repetition bits reaches its limit

very soon. For example, when all the 3-powerset combinations

of labels are learned, additional repetitions give very limited

improvements. Therefore, methods using repetition bits only,

such as RAKEL, cannot take advantage from the extra bits in

the codewords.

The ∆0/1 of HAMR and BCH are slightly decreasing

with M , but the differences between M = 63 and M = 127
are generally small (smaller than the differences between

M = 31 and M = 63, in particular). This indicates that

learning some parity bits provides additional information for

prediction, which cannot be learned easily from repetition bits,

and such information remains beneficial for longer codewords,

comparing to repetition bits. One reason is that the number of

3-powerset combinations of parity bits is exponentially more

than that of combinations of labels. The performance of LDPC

is not as stable as the other codes, possibly because of its

sophisticated decoding step. Somehow, we still see that its

∆0/1 decreases slightly with M .

Figure 2(b) shows ∆HL versus M for each ECC. The ∆HL

of RREP is the lowest among the codes when M is small, but it

remains almost constant when M ≥ 63, while ∆HL of HAMR

and BCH are still decreasing. This matches our finding that

extra repetition bits give limited information. When M = 127,

BCH is comparable to RREP in terms of ∆HL. HAMR is even

better than RREP at that codeword length, and becomes the

best code regarding ∆HL. Thus, while a stronger code like

BCH may guard ∆0/1 better, it can pay more in terms of

∆HL.

As stated in Sections I-A and II, the base learners serve as

the channels in the ECC framework and the performance of

base learners may be affected by the codes. Therefore, using a

strong ECC does not always improve multi-label classification

performance. Next, we verify the trade-off by measuring the

bit error rate ∆BER of h̃, which is defined as the Hamming

loss between the predicted codeword h̃(x) and the actual

codeword b. Higher bit error rate implies that the transformed

task is harder.

Figure 2(c) shows the ∆BER versus M for each ECC.

RREP has almost constant bit error rate. HAMR also has

nearly constant bit error rate but at a higher value. The bit

error rate of BCH is similar to that of HAMR when the

codeword is short, but the bit error rate increases with M .

One explanation is that some of the parity bits are harder to

learn than repetition bits. The ratio between repetition bits and

parity bits of both RREP and HAMR codes is a constant of
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Fig. 1. Performance of ML-ECC using the 3-powerset with Random Forests: (a) 0/1 loss (b) Hamming loss

TABLE I
0/1 LOSS OF ML-ECC USING 3-POWERSET BASE LEARNERS

scene emotions yeast tmc2007 genbase medical enron
base (K=6) (K=6) (K=14) (K=22) (K=27) (K=45) (K=53)
learner ECC (M=127) (M=127) (M=255) (M=511) (M=511) (M=1023) (M=1023)

Random RREP (RAKEL) .3394± .0025 .6472± .0060 .7939± .0022 .7738± .0025 .0295± .0021 .6508± .0024 .8866± .0038
Forests HAMR .2849± .0020 .6381± .0060 .7789± .0021 .7693± .0024 .0276± .0021 .6420± .0029 .8855± .0036

BCH .2669± .0020 .6361± .0059 .7764± .0021 .7273± .0018 .0263± .0020 .4598± .0036 .8659± .0039
LDPC .3057± .0023 .6616± .0048 .8080± .0024 .7728± .0022 .0288± .0021 .5238± .0032 .8830± .0036

Gaussian RREP (RAKEL) .2856± .0016 .7759± .0055 .7601± .0023 .7196± .0024 .0295± .0025 .3679± .0036 .8725± .0041
SVM HAMR .2639± .0017 .7736± .0050 .7530± .0021 .7162± .0023 .0303± .0026 .3641± .0031 .8693± .0042

BCH .2576± .0017 .7744± .0053 .7429± .0017 .7095± .0020 .0255± .0019 .3394± .0027 .8477± .0045
LDPC .2780± .0020 .8040± .0044 .7574± .0021 .7403± .0019 .0285± .0021 .3856± .0031 .8666± .0041

Logistic RREP (RAKEL) .3601± .0019 .6949± .0070 .8161± .0017 .7408± .0024 .3593± .0078 .5507± .0254 .8762± .0035
Regression HAMR .3293± .0017 .6955± .0058 .8061± .0019 .7383± .0025 .2275± .0099 .5268± .0230 .8754± .0035

BCH .3148± .0018 .7068± .0046 .7899± .0020 .7233± .0024 .0250± .0018 .3797± .0044 .8504± .0042
LDPC .3655± .0028 .7295± .0056 .8082± .0024 .7562± .0027 .0325± .0018 .4516± .0083 .8653± .0038

TABLE II
HAMMING LOSS OF ML-ECC USING 3-POWERSET BASE LEARNERS

base scene emotions yeast tmc2007 genbase medical enron
learner ECC (M=127) (M=127) (M=255) (M=511) (M=511) (M=1023) (M=1023)

Random RREP (RAKEL) .0755± .0006 .1770± .0018 .1884± .0007 .0674± .0003 .0012± .0001 .0182± .0001 .0477± .0004
RandoForest HAMR .0746± .0006 .1795± .0020 .1894± .0008 .0671± .0003 .0012± .0001 .0180± .0001 .0479± .0004

BCH .0753± .0007 .1855± .0021 .1928± .0008 .0662± .0003 .0011± .0001 .0159± .0001 .0506± .0004
LDPC .0819± .0007 .1912± .0019 .2012± .0007 .0734± .0003 .0013± .0001 .0192± .0002 .0538± .0005

Gaussian RREP (RAKEL) .0719± .0005 .2432± .0021 .1853± .0007 .0613± .0003 .0013± .0001 .0112± .0001 .0449± .0004
SVM HAMR .0724± .0005 .2490± .0023 .1868± .0006 .0610± .0003 .0013± .0001 .0111± .0001 .0449± .0004

BCH .0739± .0006 .2644± .0019 .1898± .0008 .0629± .0003 .0010± .0001 .0114± .0001 .0516± .0006
LDPC .0755± .0006 .2634± .0027 .1917± .0007 .0679± .0003 .0014± .0001 .0140± .0001 .0530± .0005

Logistic RREP (RAKEL) .0915± .0005 .2026± .0025 .1993± .0007 .0634± .0003 .0179± .0006 .0190± .0011 .0453± .0003
Regression HAMR .0910± .0005 .2070± .0024 .2003± .0007 .0634± .0003 .0102± .0005 .0176± .0009 .0454± .0003

BCH .0920± .0005 .2233± .0022 .2051± .0008 .0653± .0003 .0013± .0001 .0137± .0003 .0505± .0004
LDPC .0989± .0007 .2202± .0021 .2054± .0007 .0701± .0003 .0024± .0002 .0187± .0006 .0528± .0004
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Fig. 2. Performance on scene vs. codeword length (ML-ECC using the 3-powerset with Random Forests): (a) 0/1 loss (b) Hamming loss (c) bit-error rate
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M (RREP has no parity bits, and HAMR has 3 parity bits

for every 4 repetition bits), while BCH has more parity bits

with larger M . The different bit error rates justify the trade-off

between the strength of the ECC and the hardness of the base

learning tasks. With more parity bits, one can correct more bit

errors, but may have harder tasks to learn; when using fewer

parity bits or even no parity bits, one cannot correct many

errors, but will enjoy simpler learning tasks.

Similar results show up in other datasets with all three

base learners. The performance on the yeast dataset with

the 3-powerset and Random Forests is shown in Figure 3.

Because the number of labels in the yeast dataset is about

twice of that in the scene dataset, the codeword length here

ranges from 63 to 255, which is also about twice longer than

that in the experiments on the scene dataset. Again, we

see that the benefits of parity bits remain valid for longer

codewords than repetition bits and that more parity bits cause

the transformed task harder to learn. This result points out the

trade-off between the strength of the ECC and the hardness of

the base learning tasks.

C. Bit Error Analysis

To further analyze the difference between different ECC

designs, we zoom in to M = 127 of Figure 2. The instances

are divided into groups according to the number of bit errors

at that instance. The relative frequency of each group, i.e.,

the ratio of the group size to the total number of instances, is

plotted in Figure 4(a). The average ∆0/1 and ∆HL of each

group are also plotted in Figure 4(b) and 4(c). The curve of

each ECC forms two peak regions in Figure 4(a). Besides the

peak at 0, which means no bit error happens on the instances,

the other peak varies from one code to another. The positions

of the peaks suggest the hardness of the transformed learning

task, similar to our findings in Figure 2(c).

We can clearly see the difference on the strength of dif-

ferent ECC from Figure 4(b). BCH can tolerate up to 31-

bit errors, but its ∆0/1 sharply increases over 0.8 for 32-bit

errors. HAMR can correct 13-bit errors perfectly, and its ∆0/1

increases slowly when more errors occur. Both RREP and

LDPC can perfectly correct only 9-bit errors, but LDPC is

able to sustain a low ∆0/1 even when there are 32-bit errors.

It would be interesting to study the reason behind this long

tail from a Bayesian network perspective.

We can also look at the relation between the number of bit

errors and ∆HL, as shown in Figure 4(c). The BCH curve

grows sharply when the number of bit errors is larger than

31, which links to the inferior performance of BCH over

RREP in terms of ∆HL. The LDPC curve grows much slower,

but its right-sided peak in Figure 4(a) still leads to higher

overall ∆HL. On the other hand, RREP and HAMR enjoy a

better balance between the peak position in Figure 4(a) and

the growth in Figure 4(c) and thus lower overall ∆HL.

Figure 4(a) suggests that the transformed learning task

of more sophisticated ECC is harder. The reason is that

sophisticated ECC contains many parity bits, which are the

exclusive-or of labels, and the parity bits are harder to learn

by the base learners. We demonstrate this in Figure 5 using

scene dataset (6 labels) and fixing M = 127. The codeword

bits are divided into groups according to the number of labels

XOR’ed to form the bit. The relative frequency of each group

is plotted in Figure 5(a). We can see that all codeword bits

of RREP are formed by 1 label, and the bits of HAMR are

formed by 1 or 3 labels. For BCH and LDPC, the number of

labels XOR’ed in the bits may be none (0) to all (6) labels,

while most of the bits are the XOR of half of the labels (3
labels).

Next we show how well the base learners learned on each

group in Figure 5(b). Here the base learner is 3-powerset

with Random Forests. The figure suggests that the parity bits

(XOR’ing 2 or more labels) result in harder learning tasks and

higher bit error rates than original labels (XOR’ing 1 label).

One exception is the bits XOR’ed from all (6) labels, which is

easier to learn than original labels. The reason is that the bit

XOR’ed from all labels is equivalent to the indicator of odd

number of labels, and a constant predictor works well for this

because in the scene dataset about 92% of all instances has

1 or 3 labels. Since BCH and LDPC have many bits XOR’ed

from 2-4 labels, their bit error rates are higher than RREP and

HAMR as shown in Figure 2(c).

These findings also appear on other datasets and other base

learners, such as medical dataset (45 labels, M = 1023)

shown in Figure 6. BCH and LDPC have many bits XOR’ed

from about half of the labels, and the transformed learning

tasks of such bits are harder to learn than that of original

labels.

D. Comparison with Binary Relevance

In addition to the 3-powerset base learners, we also consider

BR base learners, which simply build a classifier for each

bit in the codeword space. Note that if we couple the ECC

framework with RREP and BR, the resulting algorithm is

almost the same as the original BR. For example, using RREP

and BR with SVM is equivalent to using BR with bootstrap

aggregated SVM.

We first compare the performance between the ECC designs

using the BR base learner with Random Forests. The result

on 0/1 loss is shown in Figure 7(a). From the figure, we can

see that BCH and HAMR reaches superior performance to

other ECC, with BCH being a better choice. RREP (BR), on

the other hand, leads to the worst 0/1 loss. The result again

justifies the usefulness of coupling BR with the ECC instead

of only the original y. Note that LDPC also performs better

than BR on two datasets, but is not as good as HAMR and

BCH. Thus, over-sophisticated ECC like LDPC may not be

necessary for multi-label classification.

In Figure 7(b), we present the results on ∆HL. In contrast

to the case when using the 3-powerset base learner, here both

HAMR and BCH can achieve better ∆HL than RREP (BR)

in most of the datasets. HAMR wins on three datasets, while

BCH wins on four. Thus, coupling stronger ECC with the

BR base learner can improve both ∆0/1 and ∆HL. However,

LDPC performs worse than BR in term of ∆HL, which

again shows that LDPC may not be suitable for multi-label

classification.
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Fig. 3. Performance on yeast vs. codeword length (ML-ECC using the 3-powerset with Random Forests): (a) 0/1 loss (b) Hamming loss (c) bit-error rate
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Fig. 4. Bit errors and losses on the scene dataset with M = 127: (a) relative frequency (b) 0/1 loss (c) Hamming loss vs. number of bit errors

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of labels XOR’ed

R
el

at
iv

e 
F

re
qu

en
cy

 

 

RREP (RAKEL)
HAMR
BCH
LDPC

(a)

0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

number of labels XOR’ed

B
it 

E
rr

or
 R

at
e

 

 

RREP (RAKEL)
HAMR
BCH
LDPC

(b)

Fig. 5. Parity bits on the scene dataset, 6 labels, 127-bit codeword: (a) relative frequency (b) bit error rate vs. number of labels XOR’ed
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Fig. 6. Parity bits on the medical dataset, 45 labels, 1023-bit codeword: (a) relative frequency (b) bit error rate vs. number of labels XOR’ed
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Fig. 7. Performance of ML-ECC using Binary Relevance with Random Forests: (a) 0/1 loss (b) Hamming loss

Experiments with other base learners also support similar

findings, as shown in Tables III and IV. Notice that HAMR

performs better than BCH when using Gaussian SVM base

learners. Thus, extending BR by learning some more parity

bits and decoding them suitably by the ECC is a superior

algorithm over the original BR.

Comparing Tables I and III, we see that using 3-powerset

achieves lower 0/1 loss than using BR in most of the cases.

However, in terms of ∆HL, as shown in Tables II and IV,

there is no clear winner between the 3-powerset and BR.

E. Validity of the Geometric Decoder

The previous experiment shows that using either HAMR

or BCH code improves the performance of Binary Relevance

learners. Now we are going to examine whether the proposed

geometric decoder can further improve the result. We empir-

ically compare the off-the-shelf algebraic decoder with hard

inputs, the proposed geometric decoder with hard inputs and

the proposed geometric decoder with soft inputs. Note that

hard inputs are the direct binary bits in the codeword, and soft

inputs contain the confidence that the bits are 1. We include the

hard-input geometric decoder into comparison to see whether

the geometric decoder is competitive to the algebraic ones

when the base learner does not provide soft inputs.

When using BR base learners, Random Forests from

WEKA, Gaussian SVM from LIBSVM, and logistic regression

from LIBLINEAR all support outputting the confidence for

binary classification, which is naturally taken as the soft input.

The results on the BCH code using the Gaussian SVM base

learner is shown in Figure 8. We can see from Figure 8(a)

that in terms of ∆0/1, both geometric decoders are signifi-

cantly better than the algebraic one, especially on emotions

and yeast dataset, and the soft-input geometric decoder is

slightly better than or similar to the hard-input one.

From Figure 8(b), we can see that the soft-input geometric

decoder is much better than the hard-input one in terms of

∆HL, but the algebraic decoder is usually the best here.

The reason may be that the geometric decoder minimizes the

distance between approximated enc(ỹ) and b̃ in the codeword

space. However, the BCH code does not preserve the Ham-

ming distance during encoding and decoding between {0, 1}K

and {0, 1}M , so the geometric decoder, which minimizes

the distance in [0, 1]M (and approximately in {0, 1}M ), may

not be suitable to the Hamming loss (Hamming distance in

{0, 1}K ). But when taking confidence information as soft

input, the geometric decoder can perform better on Hamming

loss, and become comparable to the algebraic decoder some-

times.

The result shows that the proposed geometric decoder on

BCH code is better than the ordinary algebraic decoder for

∆0/1, but not for ∆HL. Also, the soft input is useful for the

geometric decoder in terms of both ∆0/1 and ∆HL.

Next we look at the HAMR code. On 0/1 loss shown

in Figure 9(a), the geometric decoders are better than the

algebraic one except on the genbase and enron datasets

where all decoders have similar 0/1 loss. Among the hard-

input and soft-input geometric decoders, there is no clear

winner. In terms of Hamming loss in Figure 9(b), the soft-

input geometric decoder performs the best. Its Hamming loss

is significantly lower than the that of the hard-input geometric

decoder and the algebraic decoder on scene, emotions,

and tmc2007 dataset, and similar to them on other datasets.

Comparing the hard-input geometric and algebraic decoders,

there is no significant difference.

The result again shows that the proposed geometric decoder

on HAMR code is better than the ordinary algebraic decoder

for ∆0/1, but not for ∆HL. But with soft input, the geometric

decoder can give lower ∆HL.

Similar results show up when using other base learners, as

shown in Table V and VI. The bold-face entries are the best

entries on each dataset given the ECC and base learner. From

this experiment we see that using the hard-input geometric

decoder instead of the off-the-shelf algebraic one leads to

improvement on ∆0/1, but pay for ∆HL. If using the soft-

input geometric decoder, the harm of ∆HL is mitigated and

the improvement on ∆0/1 is strengthened. Therefore, the soft-

input geometric decoder is a better choice for the ML-ECC

framework.

F. Comparison with Real-valued ECC

Our ML-ECC framework only considers binary ECC. Here,

we compare our ML-ECC framework with real-valued ECC

methods: coding with canonical correlation analysis (CCA-

OC) [16] and max-margin output coding (MaxMargin) [17],

as discussed in Section II-C.
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TABLE III
0/1 LOSS OF ML-ECC USING BR BASE LEARNERS

base scene emotions yeast tmc2007 genbase medical enron
learner ECC (M=127) (M=127) (M=255) (M=511) (M=511) (M=1023) (M=1023)

Random RREP (BR) .4398± .0023 .6822± .0055 .8332± .0016 .7715± .0023 .0303± .0020 .6546± .0025 .8872± .0036
Forest HAMR .3212± .0021 .6574± .0050 .7910± .0020 .7578± .0025 .0288± .0019 .6387± .0025 .8851± .0036

BCH .2562± .0020 .6404± .0060 .7792± .0019 .7149± .0022 .0250± .0019 .4567± .0034 .8737± .0038
LDPC .3995± .0026 .6903± .0058 .8338± .0015 .7735± .0024 .0312± .0022 .5601± .0032 .8876± .0035

Gaussian RREP (BR) .3376± .0023 .8414± .0052 .7955± .0017 .7281± .0025 .0273± .0021 .3721± .0037 .8720± .0041
SVM HAMR .2876± .0018 .8073± .0043 .7681± .0022 .7215± .0025 .0243± .0022 .3675± .0036 .8718± .0042

BCH .2552± .0018 .7809± .0050 .7515± .0015 .7053± .0024 .0255± .0019 .3499± .0030 .8561± .0043
LDPC .3161± .0022 .8523± .0042 .7963± .0018 .7515± .0023 .0243± .0017 .4226± .0034 .8782± .0037

Logistic RREP (BR) .4821± .0024 .7396± .0049 .8531± .0016 .7458± .0026 .5084± .0068 .5784± .0282 .8759± .0035
Regression HAMR .4050± .0020 .7175± .0054 .8282± .0015 .7405± .0024 .3509± .0089 .5499± .0247 .8740± .0036

BCH .3291± .0020 .6982± .0048 .8094± .0020 .7205± .0022 .0295± .0018 .4022± .0076 .8579± .0038
LDPC .4659± .0028 .7507± .0056 .8565± .0019 .7694± .0027 .0528± .0031 .5396± .0149 .8795± .0036

TABLE IV
HAMMING LOSS OF ML-ECC USING BR BASE LEARNERS

base scene emotions yeast tmc2007 genbase medical enron
learner ECC (M=127) (M=127) (M=255) (M=511) (M=511) (M=1023) (M=1023)

Random RREP (BR) .0858± .0005 .1809± .0018 .1903± .0006 .0662± .0003 .0013± .0001 .0183± .0001 .0474± .0003
Forest HAMR .0726± .0005 .1781± .0017 .1878± .0007 .0652± .0002 .0012± .0001 .0179± .0001 .0474± .0003

BCH .0717± .0006 .1826± .0018 .1898± .0008 .0638± .0003 .0010± .0001 .0152± .0001 .0494± .0004
LDPC .0832± .0006 .1877± .0020 .1963± .0006 .0721± .0003 .0014± .0001 .0203± .0001 .0529± .0004

Gaussian RREP (BR) .0743± .0005 .2461± .0020 .1866± .0006 .0621± .0003 .0012± .0001 .0113± .0001 .0450± .0004
SVM HAMR .0717± .0004 .2472± .0023 .1861± .0007 .0616± .0003 .0010± .0001 .0112± .0001 .0451± .0004

BCH .0739± .0006 .2569± .0030 .1880± .0007 .0619± .0003 .0010± .0001 .0117± .0001 .0487± .0005
LDPC .0742± .0005 .2538± .0019 .1908± .0006 .0688± .0003 .0011± .0001 .0153± .0001 .0517± .0005

Logistic RREP (BR) .1024± .0006 .2062± .0018 .2000± .0007 .0641± .0003 .0347± .0007 .0212± .0014 .0455± .0003
Regression HAMR .0959± .0006 .2047± .0022 .2003± .0007 .0635± .0003 .0186± .0005 .0191± .0011 .0452± .0003

BCH .0955± .0006 .2172± .0023 .2037± .0008 .0638± .0003 .0024± .0002 .0161± .0006 .0472± .0004
LDPC .1038± .0006 .2133± .0019 .2044± .0008 .0705± .0004 .0050± .0004 .0234± .0011 .0517± .0004

(M=127) (M=127) (M=255) (M=511) (M=511) (M=1023) (M=1023)
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Fig. 8. Performance of ML-ECC with hard-/soft-input geometric decoders and algebraic decoder on the BCH code using BR and SVM: (a) 0/1 loss (b)
Hamming loss
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Fig. 9. Performance of ML-ECC with hard-/soft-input geometric decoders and algebraic decoder on the HAMR code using BR and SVM: (a) 0/1 loss (b)
Hamming loss
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TABLE V
0/1 LOSS OF ML-ECC WITH HARD-/SOFT-INPUT GEOMETRIC DECODERS AND BR

base scene emotions yeast tmc2007 genbase medical enron
learner ECC decoder (M=127) (M=127) (M=255) (M=511) (M=511) (M=1023) (M=1023)

Random HAMR alg-hard .3212± .0021 .6574± .0050 .7910± .0020 .7578± .0025 .0288± .0019 .6387± .0025 .8851± .0036
Forest HAMR geo-hard .3111± .0021 .6480± .0051 .7833± .0022 .7566± .0026 .0280± .0019 .6377± .0027 .8845± .0036

HAMR geo-soft .3294± .0021 .6584± .0053 .7976± .0020 .7588± .0025 .0271± .0017 .6373± .0027 .8848± .0036
Gaussian HAMR alg-hard .2876± .0018 .8073± .0043 .7681± .0022 .7215± .0025 .0243± .0022 .3675± .0036 .8718± .0042
SVM HAMR geo-hard .2829± .0017 .7927± .0051 .7650± .0023 .7205± .0024 .0231± .0021 .3671± .0036 .8720± .0042

HAMR geo-soft .2782± .0016 .8155± .0048 .7705± .0021 .7176± .0022 .0233± .0022 .3627± .0035 .8716± .0043
Logistic HAMR alg-hard .4050± .0020 .7175± .0054 .8282± .0015 .7405± .0024 .3509± .0089 .5499± .0247 .8740± .0036
Regression HAMR geo-hard .3969± .0022 .7097± .0059 .8270± .0016 .7399± .0024 .3541± .0099 .5514± .0249 .8744± .0036

HAMR geo-soft .3875± .0024 .7177± .0069 .8284± .0016 .7379± .0024 .2777± .0107 .5301± .0229 .8723± .0036
Random BCH alg-hard .2562± .0020 .6404± .0060 .7792± .0019 .7149± .0022 .0250± .0019 .4567± .0034 .8737± .0038
Forest BCH geo-hard .2462± .0019 .6304± .0049 .7217± .0022 .6917± .0020 .0255± .0018 .4130± .0037 .8429± .0038

BCH geo-soft .2526± .0020 .6264± .0049 .7287± .0022 .6949± .0024 .0250± .0018 .4157± .0037 .8371± .0043
Gaussian BCH alg-hard .2552± .0018 .7809± .0050 .7515± .0015 .7053± .0024 .0255± .0019 .3499± .0030 .8561± .0043
SVM BCH geo-hard .2503± .0018 .7371± .0051 .7203± .0018 .6975± .0025 .0255± .0019 .3431± .0034 .8428± .0045

BCH geo-soft .2505± .0019 .7350± .0050 .7212± .0021 .6966± .0030 .0253± .0020 .3376± .0035 .8376± .0045
Logistic BCH alg-hard .3291± .0020 .6982± .0048 .8094± .0020 .7205± .0022 .0295± .0018 .4022± .0076 .8579± .0038
Regression BCH geo-hard .3164± .0017 .6886± .0046 .7698± .0019 .7102± .0021 .0422± .0026 .3704± .0048 .8362± .0040

BCH geo-soft .3142± .0016 .6787± .0046 .7713± .0023 .7112± .0025 .0395± .0026 .3670± .0046 .8475± .0040

TABLE VI
HAMMING LOSS OF ML-ECC WITH HARD-/SOFT-INPUT GEOMETRIC DECODERS AND BR

base scene emotions yeast tmc2007 genbase medical enron
learner ECC decoder (M=127) (M=127) (M=255) (M=511) (M=511) (M=1023) (M=1023)

Random HAMR alg-hard .0726± .0005 .1781± .0017 .1878± .0007 .0652± .0002 .0012± .0001 .0179± .0001 .0474± .0003
Forest HAMR geo-hard .0718± .0006 .1768± .0017 .1872± .0007 .0651± .0003 .0012± .0001 .0179± .0001 .0474± .0003

HAMR geo-soft .0726± .0005 .1763± .0018 .1873± .0007 .0651± .0002 .0011± .0001 .0179± .0001 .0474± .0003
Gaussian HAMR alg-hard .0717± .0004 .2472± .0023 .1861± .0007 .0616± .0003 .0010± .0001 .0112± .0001 .0451± .0004
SVM HAMR geo-hard .0716± .0005 .2508± .0023 .1858± .0007 .0615± .0003 .0009± .0001 .0112± .0001 .0450± .0004

HAMR geo-soft .0701± .0004 .2441± .0020 .1855± .0007 .0611± .0003 .0010± .0001 .0111± .0001 .0450± .0004
Logistic HAMR alg-hard .0959± .0006 .2047± .0022 .2003± .0007 .0635± .0003 .0186± .0005 .0191± .0011 .0452± .0003
Regression HAMR geo-hard .0956± .0006 .2065± .0023 .2002± .0007 .0634± .0003 .0187± .0006 .0192± .0011 .0453± .0003

HAMR geo-soft .0920± .0006 .2032± .0024 .1990± .0007 .0631± .0003 .0134± .0005 .0180± .0010 .0453± .0003
Random BCH alg-hard .0717± .0006 .1826± .0018 .1898± .0008 .0638± .0003 .0010± .0001 .0152± .0001 .0494± .0004
Forest BCH geo-hard .0728± .0006 .1895± .0017 .1968± .0010 .0643± .0003 .0010± .0001 .0154± .0001 .0566± .0005

BCH geo-soft .0703± .0006 .1822± .0016 .1910± .0008 .0622± .0003 .0010± .0001 .0150± .0002 .0535± .0004
Gaussian BCH alg-hard .0739± .0006 .2569± .0030 .1880± .0007 .0619± .0003 .0010± .0001 .0117± .0001 .0487± .0005
SVM BCH geo-hard .0735± .0005 .2761± .0031 .1952± .0007 .0649± .0003 .0010± .0001 .0126± .0001 .0577± .0006

BCH geo-soft .0721± .0006 .2614± .0028 .1911± .0007 .0624± .0003 .0011± .0001 .0121± .0001 .0534± .0005
Logistic BCH alg-hard .0955± .0006 .2172± .0023 .2037± .0008 .0638± .0003 .0024± .0002 .0161± .0006 .0472± .0004
Regression BCH geo-hard .0957± .0006 .2312± .0027 .2116± .0007 .0673± .0003 .0054± .0004 .0154± .0004 .0558± .0004

BCH geo-soft .0913± .0006 .2170± .0026 .2067± .0008 .0640± .0003 .0046± .0003 .0141± .0003 .0526± .0004

The experiment setting is basically the same, but we only

use scene and emotions datasets, with Random Forests

or logistic regression base learners. Both real-valued ECC

methods limit their codeword length to at most twice of the

number of labels, and the codeword contains K binary bits

for original labels and at most K real-valued bits. In the

following experiment, we take all 2K binary and real-valued

bits for the real-valued ECC methods. There is a parameter

λ in decoding for balancing the two parts, and we set it to 1
(equally weighted). For our ML-ECC framework, we consider

HAMR and BCH code with the proposed soft-input geometric

decoder, and use 127-bit binary codewords. Besides the 0/1
loss and the Hamming loss, we also report micro and macro

F1 score following [16] and [17].

The results on Random Forests learners are shown in

Table VII, and the results on logistic regression learners are

shown in Table VIII. It can be seen that with a stronger base

learner like Random Forests, the HAMR and BCH codes are

better than both real-valued ECC methods on the two datasets

and on most of the measures. With the logistic regression

learner, while BCH code performs the best on scene dataset,

it only wins on 0/1 loss on emotions dataset. The real-

valued ECC methods give higher micro and macro F1 score

than HAMR and BCH on the emotions dataset. The reason

may be that the power of logistic regression base learner

is limited, and the parity bits of HAMR and BCH are too

difficult for the base learner. On the other hand, the code

generated by CCA-OC and MaxMargin methods are easier to

learn for such a linear model. The results demonstrate that

the proposed binary-ECC-based framework coupled with a

sufficiently sophisticated base learner is a better choice for

multi-label classification with ECC.

V. CONCLUSION

We presented a framework for applying the ECCs on multi-

label classification. We then studied the use of four classic

ECC designs, namely the RREP, HAMR, BCH, and LDPC.

We showed that RREP can be used to give a new perspective of

the RAKEL algorithm as a special instance of the framework

with the k-powerset as the base learner.
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TABLE VII
COMPARISON BETWEEN ML-ECC AND REAL-VALUED ECC METHODS

USING RANDOM FORESTS BASE LEARNERS

scene

ECC 0/1 loss Hamming loss Micro-F1 Macro-F1

HAMR-geo-soft .329± .002 .073± .001 .771± .002 .774± .002
BCH-geo-soft .253± .002 .070± .001 .794± .002 .801± .002
CCA-OC .317± .001 .093± .000 .732± .001 .740± .001

emotions

ECC 0/1 loss Hamming loss Micro-F1 Macro-F1

HAMR-geo-soft .658± .005 .176± .002 .702± .003 .676± .003
BCH-geo-soft .626± .005 .182± .002 .715± .003 .698± .003
CCA-OC .673± .002 .202± .001 .692± .001 .682± .001

TABLE VIII
COMPARISON BETWEEN ML-ECC AND REAL-VALUED ECC METHODS

USING LOGISTIC REGRESSION BASE LEARNERS

scene

ECC 0/1 loss Hamming loss Micro-F1 Macro-F1

HAMR-geo-soft .388± .002 .092± .001 .716± .002 .720± .002
BCH-geo-soft .314± .002 .091± .001 .734± .002 .740± .001
CCA-OC .360± .001 .109± .000 .688± .001 .695± .001
MaxMargin .365± .002 .111± .001 .682± .002 .689± .003

emotions

ECC 0/1 loss Hamming loss Micro-F1 Macro-F1

HAMR-geo-soft .718± .007 .203± .002 .654± .005 .631± .005
BCH-geo-soft .679± .005 .217± .003 .665± .004 .650± .004
CCA-OC .681± .002 .207± .001 .679± .001 .672± .001
MaxMargin .686± .003 .210± .001 .677± .001 .668± .001

We conducted experiments with the four ECC designs on

various real-world datasets. The experiments further clarified

the trade-off between the strength of the ECC and the hardness

of the base learning tasks. Experimental results demonstrated

that several ECC designs can lead to a better use of the trade-

off. For instance, HAMR is superior over RREP for the k-

powerset base learners because it leads to a new algorithm

that is better than the original RAKEL in terms of 0/1 loss

while maintaining a comparable level of Hamming loss; BCH

is another superior design, which could significantly improve

RAKEL in terms of 0/1 loss. When compared with the

traditional BR algorithm, we showed that using a stronger ECC

like HAMR or BCH can lead to better performance in terms

of both 0/1 and Hamming loss.

The results justify the validity and usefulness of the frame-

work when coupled with some classic ECC. An interesting

future direction is to consider adaptive ECC like the ones

studied for multi-class classification [5], [6].

Besides the framework, we also presented a novel geometric

decoder for general linear code based on approximating the

XOR operation by multiplication. This decoder is capable of

not only taking hard input as algebraic decoders, but also

taking soft input from the channel into account. The soft

input may be gathered from the base learner channels as their

confidence of an instance to be in one class. The experimental

result on this new decoder demonstrated that this decoder

outshines the ordinary decoder in terms of 0/1 loss and using

soft input from the Binary Relevance learner further improves

the performance of this decoder on Hamming loss. It remains

an interesting research problem on appropriately gathering soft

input from the k-powerset learner.
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