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ABSTRACT

Tropical cyclone (TC) is a type of severe weather systems
that occur in tropical regions. Accurate estimation of TC
intensity is crucial for disaster management. Moreover, the
intensity estimation task is the key to understand and forecast
the behavior of TCs better. Recently, the task has begun
to attract attention from not only meteorologists but also
data scientists. Nevertheless, it is hard to stimulate joint
research between both types of scholars without a benchmark
dataset to work on together. In this work, we release a such
a benchmark dataset, which is a new open dataset collected
from satellite remote sensing, for the TC-image-to-intensity
estimation task. We also propose a novel model to solve this
task based on the convolutional neural network (CNN). We
discover that the usual CNN, which is mature for object
recognition, requires several modifications when being used
for the intensity estimation task. Furthermore, we combine
the domain knowledge of meteorologists, such as the rotation-
invariance of TCs, into our model design to reach better
performance. Experimental results on the released benchmark
dataset verify that the proposed model is among the most
accurate models that can be used for TC intensity estimation,
while being relatively more stable across all situations. The
results demonstrate the potential of applying data science
for meteorology study.
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1 INTRODUCTIONS

Tropical cyclone (TC, also called as typhoon, hurricane, or
cyclone) is a type of severe weather system that forms and
develops on the warm tropical ocean. If a TC makes landfall,
it could cause a significant threat to life and property. The
intensity of a TC, which is defined as the maximum sustained
surface wind near the TC center, is one of the most critical
parameters for TC warning and disaster management. For
instance, [30] showed that the power relationship between
TC intensity and damage might range between 4 and 12.
Therefore, pursuing an accurate estimation of TC intensity is
an important task for meteorologists and weather forecasters.

Note that in-situ measurement of TC intensity is difficult
because TCs spend most of their lifetime on the open ocean.
Therefore, the observations from satellite remote sensing serve
as primary sources of TC information due to their global
coverage and high temporal frequency. Although satellite
remote sensing is not capable of directly measuring the wind
near the surface, satellite imagery of cloud, water vapor,
and precipitation can be used as proxies for estimating TC
intensity indirectly [19, 27].

In meteorology, the development of TC intensity estimation
nowadays highly relies on constructing informative features
for the estimation task. In particular, Section 2 introduces
several models based on first calculating informative features
and parameters from the satellite images, and then apply
various types of regression models to solve the estimation
task. Nevertheless, even for experienced meteorologists, it
can be difficult to identify informative features for the diverse
TCs in different life stages and in different basins. Many
current models thus rely on relatively few human-constructed
features (usually fewer than 10), which makes the models
somewhat restricted in capacity.

In the data science side, ever since AlexNet was proposed in
2012 [11], deep learning techniques have been flourishing for
various types of estimation tasks. One important advantage
of deep learning techniques is automatic feature construction,
which has started to successfully replace human-constructed
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features in many estimation tasks, such as object recognition.
In this study, we aim to replicate the success by applying
Convolutional Neural Network (CNN) in deep learning to
solve the TC-image-to-intensity regression task (shorthanded
“image regression” task). The study provides an alternative
to current models that rely on human-constructed features.

Recently, tasks related to our image regression task has
begun to draw attentions from data scientists [15, 21]. To
facilitate the data scientists in studying the image regression
task together with meteorologists, we also collect and publish
an open benchmark dataset in this study. The details of
the dataset will be described in Section 3. Then, Section 4
describes our proposed CNN model for the image regression
task. The model is extensively compared against state-of-the-
art models for the image regression task in Section 5. The
results demonstrate that the proposed model outperforms
most of the state-of-the-art models, and justify the validity
and potential of applying CNN on the image regression task.
We summarize our findings in Section 6.

2 RELATED WORK

One of the basic ideas of using satellite imagery to estimate
TC intensity is that TCs associated with similar cloud fea-
tures may have similar intensity. The Dvorak technique is the
most widely used methodology that estimates TC intensity
based on TC cloud features observed from geostationary satel-
lites [2, 27]. This methodology correlates TC intensities to
various cloud patterns of central and banding features in the
infrared images. However, it takes significant time to master
in the Dvorak technique and its regional nuances and adjust-
ments. Furthermore, the inherent subjectivity of the storm
center selection and scene type determination procedures
compromises the stability of the forecasting skill. During the
last three decades, several revised Dvorak techniques have
been developed [18, 29]. The Advanced Dvorak Technique
(ADT) [18, 19] is the latest released version and currently
used for operational TC intensity estimation. ADT reduces
the subjectivity by using computer-based algorithms for rec-
ognizing cloud features. Besides, ADT is about the first one
to apply linear regression on estimating TC intensity.

In additional to Dvorak-based techniques, other parameters
calculated from the infrared satellite images are proposed
to correlate with TC intensity. A promising and relatively
new parameter is the deviation angle variance (DAV), which
determines the symmetry level of a TC by evaluating the
gradient of the cloud top temperature [22, 23]. Besides, several
other parameters are also used for correlating TC cloud
feature to TC intensity, such as mean and standard deviation
of cloud top temperature in 14 radius ring around a TC [3],
and slope of TC cloud top in the inner-core [24].

Meanwhile, ever since ADT [18] took linear regression into
the model, various regression methods have also been applied
for TC intensity estimation. Here are some examples:

(1) [22] used a nonlinear sigmoid equation to describe the
relationship between DAV and TC intensity.

(2) [3] used the k-nearest-neighbor algorithm on TCs with
similar intensity based on satellite images.

(3) [32] introduced a multiple linear regression model that
considers seven different parameters of TC cloud char-
acteristics.

(4) [31] introduced a machine learning method called rele-
vance vector machine (RVM) for TC intensity estima-
tion.

Recently, some researchers started to apply CNN in classi-
fying TCs by intensity. In 2017, [15] divided TCs into classes
based on maximum sustained wind speed with 5-knots inter-
vals. They first pre-trained their model on ImageNet, then
fine-tune the model by the cross-entropy loss on the TC clas-
sification dataset. In 2018, [21] divided TCs into 8 categories,
each with physical meanings in meteorology. The intervals
between these categories are ranged from 12 to 29 knots.
The authors also visualized the features extracted from CNN.
Both works have reached remarkable results. Nevertheless,
arguably solving the image regression task is different from
solving a classification task. First, compared with the regres-
sion task, a classification task loses some information because
different intensities are clipped into one interval. Second, the
classification task generally does not take the magnitude of
the “classification” error into account. That is, misclassifying
a 80-knot TC to a 30-knot-class is the same as misclassifying
the TC to a 70-knot-class. The difference calls for a true
end-to-end regression model for the TC intensity estimation
task.

3 THE TROPICAL CYCLONE FOR
IMAGE-TO-INTENSITY
REGRESSION DATASET (TCIR)

Although atmospheric researchers started to estimate TC
intensity using satellite data since the 1970s, TC data still
remains less accessible to most data scientists. To let people
start investigating TC estimation tasks more conveniently, we
collect the Tropical Cyclone for Image-to-intensity Regression
(TCIR) dataset. TCIR serves as an open benchmark dataset
for data scientists to evaluate TC intensity estimation models
fairly. The dataset can be downloaded at

https://www.csie.ntu.edu.tw/∼htlin/program/TCIR

along with simple usage explanations.

3.1 Sources

Satellite observations comprising TCIR are from two open
sources:

GridSat [4, 8],Gridded Satellite Data: GridSat is a long-term
dataset of global infrared window brightness temperatures,
including three channels: IR1, WV, and VIS. This dataset
includes data from most meteorological geostationary satel-
lites every three hours since 1981. The resolution is 7/100
degree latitude/longitude.

CMORPH [6], CPC MORPHing technique: CMORPH pre-
cipitation rates from 2003 to 2016 were included into TCIR.
CMORPH provides global precipitation analyses at relatively

https://www.csie.ntu.edu.tw/~htlin/program/TCIR


Rotation-blended CNNs for Tropical Cyclone Intensity Regression KDD ’18, August 19–23, 2018, London, United Kingdom

(a) IR1 (b) WV

(c) VIS (d) PMW

Figure 1: An example of the four channels from
TCIR. Note that they are scaled to the range [0,
256) and drawn in gray scale.

high spatial and temporal resolution, which uses precipita-
tion estimates derived from low orbit microwave satellite
observations exclusively and whose features are transported
via spatial propagation information obtained entirely from
geostationary satellite IR1 data. The resolution of CMORPH
is 0.25-degree every three hours.

3.2 Channels

Note that because CMORPH was unavailable before 2002,
TCIR includes data starting from 2003. Each data point
contains 4 channels, including

0 IR1: Infrared
1 WV: Water vapor
2 VIS: Visible light channel
3 PMW: Passive micro-wave rainrate

In Fig. 1, we scale each channel to the range [0, 256) and
draw them as gray scale images. The images allow us to
understand each channel better. From the figure, we can see
that IR1 and WV provide similar information. Also, a closer
look reveals that the VIS channel is very unstable because of
the daylight situation. In particular, more than half of the
frames during the night have very noisy VIS channel images.

3.3 Frames

A total of 47916 frames from 861 TCs in western North Pacific,
eastern North Pacific, and Atlantic ocean are collected by
TCIR (Table 1).1

1After the acceptance of KDD, we have added TCs in some other
regions, such as the Southern Hemisphere.

Region # TCs # Frames

West Pacific 379 20060
East Pacific 247 14149
Atlantic 235 13707

Total 861 47916

Table 1: Data Amount included in TCIR

For each frame, there are 201× 201 data points, and the
resolution is 7/100 degree lat/lon. That is, the width and
height of a frame are 14 degrees lat/lon, and the distance
between 2 grids is about 4 km. Note that the center of TCs
are all placed at the middle grid of each frame. Also, the
original resolution of the PMW channel from CMORPH is
1/4 degree lat/lon, to unify the size of all 4 channels, we
rescale PMW channel to be about 4 times larger by linear
interpolation.

Furthermore, because the data are collected by satellite,
some of the values could be missing or damaged. We just left
them there as NaN. It is up to the data scientists to decide
how to handle those NaN value when feeding the dataset into
models.

3.4 Other TC information

TCIR also provides the information from TC best-track data,
which could be considered as the truth when developing the
regression models. We used the best-tracks from Joint Ty-
phoon Warning Center (JTWC) for TCs in western North
Pacific (WP); and the best-tracks from the revised Atlantic
hurricane database (HURDAT2) for TCs in eastern North
Pacific (EP) and Atlantic Ocean (AL) from 2003 to 2016.
The TC information provided in TCIR includes TC center
location, intensity, (i.e., the maximum sustained wind, in kt),
minimum sea-level pressure, and size (i.e., the mean of radii
of 35-knot wind in the four quadrants, in nmi). Note that
these values are tuned and finalized afterward based on all
observation that is available, and can be very different from
the real-time estimations in meaning. We believe that esti-
mating the size can be the next important task for estimating
TC property from images.

While the best-track information can be taken as ground
truth, they are still some “estimation” in nature and can
suffer from some inherent noise. Thus, for the image regression
task, an error within 10 knots is generally acceptable.

4 PROPOSED METHOD

We start by pointing out the properties of our image regres-
sion task. In particular, we discuss its differences to the image
classification task that comes with many mature techniques,
and we discuss its known specialties obtained from the me-
teorologists. We then illustrate how the properties can be
leveraged to properly design our proposed model.
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Figure 2: Model structure for CNN-TC

4.1 Comparison to image classification

Convolutional Neural Network (CNN) is a mature family
of deep learning models for image classification tasks such
as digit identification [12] and object recognition [10]. This
work extends from those mature models to solve our image
regression task. In our initial study, we directly applied some
popular and classical CNN models such as AlexNet [11] and
VGGNet [25] on our image regression task. We then observed
some major differences between our task and typical image
classification ones, and proposed some careful modifications
to address the differences and improve the performance. We
summarize those differences in four aspects below.

Output. The most obvious difference between our task and
the classification one is the type of output variable. Classi-
fication aims for a discrete output within a finite number
of classes. The goal is generally transformed to producing a
soft vector that represents the conditional probability of each
class given the image, and the maximum-probability class
can be taken as the output. The cross-entropy loss function
is commonly used to measure the difference between the
predicted soft vector and the one-hot-encoded class identity.
[11, 25]

Because only the maximum within the soft vector is taken
as the discrete output, it suffices to focus on the relative
magnitude within the soft vector for accurate classification.
Our task, however, demands predicting the actual magnitude
of the intensity, which is a continuous variable. We take the
mean squared error (MSE) as the loss function in our task,
and will discuss how the change of loss function affects our
model design in Section 4.2 and Section 4.3.

Target. Many image classification tasks aim at locating par-
ticular object(s) within the image within some particular
area. The objects can often be distinguished from the back-
ground by clear contours. For our image regression task, the

TC images are mashy, continuous and do not come with
contours. Then, techniques like (maximum) pooling in image
classification CNNs cannot be used to enhance the activation
of the object contour over the background. We will discuss
this issue in more detail in Section 4.3.

Position. Image classification tasks are usually less sensitive
to the location of the objects within the image. Thus, it is
possible to preprocess the original dataset by augmenting
randomly-cropped version of the images to improve the per-
formance of the classification model, as done by AlexNet [11].

Our image regression task, however, comes with an aligned
dataset where the cyclone center is within the middle of every
TC image. According to the domain knowledge of meteorol-
ogists, critical factors for predicting the intensity usually
lies within a range of 2 degrees (lat/lon) from the center.
Random-cropping, which causes the center to shift within
the image, will then make it harder for the model to capture
the critical factors and can be harmful instead of helpful to
the performance. We will discuss other preprocessing steps
that help the model capture the critical factors more easily
in Section 4.4.

Orientation. In addition to random cropping, other data
augmentation techniques for image classification include hor-
izontal flipping and small-angle rotations. For instance, VG-
GNet [25] studied the importance of horizontal flipping. Big-
angle rotations are seldom used for image classification be-
cause there are common poses for many discrete objects—for
instance, a car is usually not upside down.

The TC images, however, should perhaps not be flipped
horizontally, because flipping violates an important domain
knowledge that all TCs in the Northern Hemisphere should
rotate counterclockwise, given that the TCs used in this study
are all in the Northern Hemisphere. On the other hand, it
appears possible to rotate the TC images by arbitrary degrees
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to hint the “symmetry” of different parts of the image for
contributing to the intensity prediction. The idea of using
rotation for augmentation leads to a significant improvement
in performance, and will be discussed further in Section 4.4.

Considering the quality and quantity of the images within
the TCIR dataset, we decide to take the AlexNet [11] as our
base CNN structure for this initial study instead of deeper
ones like VGGNet [25] or GoogLeNet [26]. We then modify
AlexNet to our proposed CNN-TC model by addressing the
four aspects of differences above. Meanwhile, we also lighten
the structure so that no pre-training is needed. In the next
sections, we illustrate our modifications, as depicted in Fig. 2.

4.2 Initialization

Properly initializing the weights of deep models like CNN
allows the models to start learning in a better mode without
being trapped at bad local optima or flatlands. A common
and simple strategy is to initialize each weight randomly from
a normal distribution with zero mean and a standard devia-
tion within [0.1, 0.5]. Recently, it is shown that a standard

deviation of
√

2/ ln d, where d is the number of inputs, leads
to robust performance [20]. There are also more sophisticated
strategies like layer-sequential unit-variance (LSUV) [16] for
assisting the deep models.

The strategies discussed above have been studied mostly
for image classification tasks, which only care about the
relative magnitude between classes within the soft vector,
as discussed. For our image regression task that requires
the actual magnitude to be accurate, it turns out that the
strategies above make the weights and the outputs too large,
causing slow and unstable convergence.

After some studies of different initialization strategies, we
figure out that the randomly-normal strategy with a standard
deviation of 0.01, which is much smaller than those being used
for image classification, suffices to ensure stable convergence.
For simplicity, we take the 0.01-standard-deviation strategy
for our CNN-TC model in all experiments.

4.3 Removal of Pooling and Dropout

Removal of pooling. The pooling technique in standard
CNNs aims to reduce computational complexity by keeping
the statistics of a group of features instead of their original
values. There are two popular pooling strategies: maximum-
pooling and average-pooling. The former keeps the maximum
within the group, which effectively emphasizes more impor-
tant information like contours. The latter keeps the average
of the group, which removes variations within the group to
possibly be more noise-resistant. We have discussed in Sec-
tion 4.1 that maximum-pooling may not be effective for our
image regression task because the lack of contours. Next,
we illustrate the situation in more detail, and provide toy
examples to explain why the average pooling may also not
be effective.

Note that every patch within the TC image could provide
information on the intensity of the TC. For instance, a patch

that contains no clouds is as important as a patch that is full
of steady clouds in intensity prediction. Consider the three
matrices below with values representing the density level of
clouds at some locations:

1 1 1 1
1 4 4 1
1 4 4 1
1 1 1 1

 ,


0 0 0 0
0 4 4 0
0 4 4 0
0 0 0 0

 ,


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


Arguably the first two “TCs” are different because the

former comes with more clouds in total. But if we apply
a 2 × 2 maximum-pooling on the matrices, the first two
matrices become indistinguishable, as follows. The toy ex-
ample demonstrates the potential harmfulness of applying
maximum-pooling in terms of dropping some secondary “mag-
nitude” information.[

4 4
4 4

]
,

[
4 4
4 4

]
,

[
1 1
1 1

]
On the other hand, the last two “TCs” are also different

because one comes with a larger cloud density near the
center. If we apply a 2× 2 average-pooling on the matrices,
the last two matrices become indistinguishable, as follows.
The toy example demonstrates the potential harmfulness of
applying average-pooling in terms of dropping the “contrast”
information. [

1.75 1.75
1.75 1.75

]
,

[
1 1
1 1

]
,

[
1 1
1 1

]
Because of the potential harmness of the pooling techniques

on our image regression task, we decide to remove all pooling
layers in our proposed CNN-TC model.

Figure 3: A simplified illustration of dropout layers

Removal of dropout. Dropout is a mature regularization
technique for deep learning. Figure 3 shows a simplified
illustration of how dropout works. Suppose that we have a
keep rate p = 50%, in the training stage, we will randomly
drop a individual nodes in the probability of 1 − p = 0.5.
But as for keeping the expected value for each node to be
the same, we will multiply the remain vector by the factor
of p−1 = 2. This operation help us to maintain L1 distance
to be about the same. Nevertheless, the L2 distance would
become approximately

√
p times larger.

As mentioned in Section 4.1, we focus on actual magnitude
of the intensity in this task. But with the usage of dropout
layers, regressor would get inputs with longer L2 length during
the training stage. Therefore, when we stop to dropout in
validation stage, we conjecture that the feature vector became
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smaller in L2 length and the outcome estimation would be
more likely to under estimate. We will verify the conjecture
with some experiments in Section 5.2.

Several works have found that dropout layers can cause
some troubles, such as [5] when coupled with batch normal-
ization, and [13] for the trouble of variance shift. Based on
the verification of our conjecture above and the troubles
in the literature, we decide to remove all dropout layers
completely while using the data augmentation techniques
described below for regularization.

4.4 Preprocessing

Before feeding images into the CNN-TC model for training,
we have 3 important preprocessing steps: dropping 2 channels,
middle-cropping, and random rotating.

According to Fig. 1, the information provided by IR1 and
WV are similar. We thus decide to drop one of them to
prevent accidental overfitting on correlated features. Given
that IR1 is often a more critical channel for meteorologists to
judge intensity, we keep IR1 and drop WV. Meanwhile, since
the quality of VIS channel is unstable and strongly affected
by the daylight, we decide to drop VIS channel in this study,
leaving its potential for future studies.

The reason of middle-cropping is to drop less-important
area in the data. For example, in Fig. 1, we can see that this
TC only lied in the center part of the frame. From the domain
knowledge of meteorologists, critical factors of intensity lie
in the area which are less than 2 degrees (lat/lon) from the
center. Recall that the distance between 2 nearby points in
TCIR is 0.07 degree. 4/0.07 ≈ 57.1. To make sure we discard
no important information, we crop the image to 64 × 64,
which is slight larger than 57. And since TC centers are
already placed in the center, we can conveniently crop from
the center part of image.

As mentioned in Section 4.1. We need different ways to
do data augmentation in this image regression task. Taking
advantage of the property that TC data is rotation invariant,
we rotate the TC images by arbitrary degrees before training.
Rotating the original image would cause white spaces in
the corners. Nevertheless, the issue can be easily solved by
performing rotation before middle-cropping. The rotation
acts as an alternative regularization technique (to the dropout
one that we have removed).

4.5 Blending by rotation

Given the capability of the proposed CNN-TC model to ac-
cept rotated images, we decide to systematically leverage
rotation with a mature machine learning technique shows
blending. Blending multiple estimations properly is known
to reduce the variance of estimation towards more stable
performance. Here we simply apply blending the estimations
of the models trained with images rotated by different angels.
We rotate our images by evenly distributed angles ranged
from 0-360. That is, if we plan to blend the estimations from
4 models, each will be trained by images rotated with 0, 90,

180, 270 degrees, respectively. In Section 5.3, we conduct ex-
periments to test the effect of blending different estimations.

5 EXPERIMENT AND ANALYSIS

In this section, we first conduct experiments to show how
we can get better results by removing dropout layer and
use rotating instead to fight against overfitting. Second, we
explore the effect of rotation-blending.

Then, we compare CNN-TC with some models which are
now used in operational applications. Our results reveal a high
potential for CNN-TC to be used in real-world applications.
Also, we compared CNN-TC with other works for intensity
estimation. The result also shows that our model can reach
better performance.

5.1 Experiment Settings

Before training, to let the model learn more easily, we stan-
dardize every value by

xstandardized =
x−mean of the channel

standard deviation of the channel

As TCIR is originally collected from satellite, there exist
some damaged values. There are two groups of them, one
is NaN values, and another is extremely large values. Since
we standardized data with mean and standard deviation, to
prevent mean from being strongly impacted by these large
values, we replace a value with 0 if it is originally greater
than 103. For those NaN values, we directly assign them as
0.

We use the data of TCs during 2003-2014 as training data
and TCs during 2015-2016 for validation. There are 40348
frames from 730 TCs in the training data and 7569 frames
from 131 TCs in the validation data. We take the following
key parameters:

(1) Epochs numbers: stop at 500 epochs
(2) Learning rate: 5× 10−4

(3) Regularization parameter: 10−5 for every weight.

5.2 Dropout

As mentioned in Section 4.3, we think that a dropout layer
could influence the feature’s L2 distance during training stage
and thus make the model more likely to underestimate during
validation stage. In this experiment, two models were trained
in identical structures and epoch numbers, except that one
with dropout and another without dropout. We calculated
error distance from 7569 validation frames and sort them in
ascending order, so that we can know the error distance at
every percentage. The result is shown in Fig. 4.

We can clearly observe that when training with dropout
layers, 26.5% frames are underestimated by more than 10
knots, while only 7% frames are overestimated by more than
10 knots. But after removing dropout layers, the error dis-
tributed like a Gaussian distribution, divided into both sides
evenly. We also discover that with more epoch trained, the
level of underestimate became more serious. Therefore, we
removed dropout layer from CNN-TC.
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(a) With dropout

(b) Without dropout

Figure 4: Line chart of error distribution. In the
chart, we can observe that using dropout in regres-
sion task would cause underestimate.

5.3 Rotate and Blending

Rotation-blending is a special but intuitive design which can
hardly apply to other classical image classification task. To
show the effect of rotation-blending, in this experiment, we
test different numbers of estimations to be blended. The
result is shown in Fig. 5.

Comparing to the learning curve of not using rotation-
blending, we can see that rotation-blending provided remark-
able improvements. Moreover, with more estimations we used
for blending, we can receive better results. The improvement
slows down after we extend our blending number to over 9.
To balance between computation loading and performance,
we use 10 as our blending number.

5.4 Results

In this subsection, we will use TCs during 2015-2016 to
evaluate our performance.

First, our result is compared to three models, which are
used in operational intensity estimations nowadays: ADT,
AMSU, and SATCON. We collected their raw estimations

Figure 5: Learning curve of validation MSE using dif-
ferent number of blending estimations. Notice that
we optimized our model only on a single rotated
image, blending is completed during the validation
stage.

from Cooperative Institute for Meteorological Satellite Stud-
ies websites (CIMSS) [1].

In Fig. 6, X-axis represents the true values and Y-axis
represents the estimated values. Notice that the frame count
n is different for 4 methods, the reason will be described
below.

ADT [17, 18] (Advanced Dvorak Technique) is generally
better for strong TCs, but as for fitting better in stronger
frames, it usually overestimates those weaker TCs. Further-
more, when the outcome predictions are less than a threshold
(about 25 – 30 knots), ADT will directly abandon those
predictions. These traits can be observed clearly in Fig. 6-(b)

AMSU [7] (Advanced Microwave Sounding Unit) uses low
earth orbit satellites instead of geosynchronous satellites.
Thus, the estimation can be provided only when the satellites
ran across the TCs. Comparing to ADT, AMSU is known to
be better for weaker TCs than for those stronger ones.

SATCON [28] (SATellite CONsensus) is the combination
of ADT, AMSU, and some other minor methods. It could
be taken as some heuristic blending guidelines depending
on ocean region, estimated intensity level from each model,
and more. SATCON is a model that highly rely on expert’s
human intelligence, and is unable to estimate TC intensity
when estimation from ADT is unavailable or AMSU samples
are not enough.

In Table 2, we show the average RMSE (root mean square
error) for each model and each region. Notice that ADT and
SATCON both have fine-tuned their model for each region.
Comparatively speaking, CNN-TC provided stable estimation
for all cases by a single model. In the future, we can also
consider fine-tuning CNN-TC for each different ocean regions
to shoot for even better results.

In Fig. 7, we show several examples for full life cycle
TCs. Recall that AMSU uses low-Earth-orbit satellites so the
estimation is not continuous. CNN-TC is designed as single
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(a) CNN-TC (b) ADT

(c) AMSU (d) SATCON

Figure 6: Comparison with three models for oper-
ational intensity estimations. X-axis represents the
true values and Y-axis represents the estimated val-
ues. Data during 2015 2016 are used for verification

West Pacific East Pacific Atlantic Overall

CNN-TC 12.25 9.42 9.27 10.59
ADT 12.25 10.57 12.87 11.79
AMSU 15.68 13.76 11.39 14.10
SATCON 9.90 8.80 8.42 9.21

Table 2: RMSE for data during 2015-2016 of ADT,
AMSU, SATCON, and CNN-TC. ADT and SAT-
CON fine-tuned their model for each region, that
is, their result is from 3 different models. In con-
trast, CNN-TC is a single model optimized for all
data from 3 regions.

frame estimation task. While both of ADT and SATCON
have been smoothed, we have not done any smoothing in
CNN-TC. However, we can clearly see that after smoothing,
CNN-TC can produce an even better performance.

In Fig. 7-(f), the case we show is the second strongest
TC in the history. We can observe that ADT perform better
when the TC is extremely strong, and SATCON can also
rely on ADT to perform well in such condition by heuristic
rules. Comparatively speaking, CNN-TC strongly depends
on the data amount for training neural networks. When such
extremely strong frames are very rare, unavoidable CNN-TC
would be weaker in this condition. This issue can possibly be
alleviated in the future by using cost-sensitive losses.

RMSE (knots)

Kossin et al. (2007) 13.20 [9]
FASI 12.70 [3]
Improved DAV-T 12.70 [23]
TI index 9.34 2[14]
Y. Zhao et al. (2016) 12.01 [32]
J. Miller et al. (2017) 10.00 3

R. Pradhan et al. (2018) 10.18 4

ADT 11.79
AMSU 14.10
SATCON 9.21

CNN-TC 10.59
CNN-TC(with smoothing) 9.45

Table 3: A rough comparison between RMSEs of
the models estimating typhoon intensities in other
works.

In Fig. 7-(d)(e)(f), we can observe that ADT and SATCON
will give up to estimate sometimes. In contrast, CNN-TC can
constantly produce close estimations.

5.5 Further enhancement

We designed the CNN-TC model on the image-to-intensity
regression task, using only a single frame to estimate the
TC intensity. To further test the potential of CNN-TC to be
used in real-world applications, here we experiment with a
one-sided smoothing, averaging a prediction with 2 previous
estimations, and received a significant improvement on our
estimation. The result can be seen in Fig. 8.

While one-side smoothing is only a casual method to do
smoothing, this experiment suggests that our estimation can
be significantly improved even with such an easy smoothing.
This also shows the potential for us to extend this task into
a sequence learning task for a better result on TC intensity
estimation and even forecast.

In the end of this section, we compare our RMSE to that
of other works. The details can be found in Table 3. We
should keep in mind that these works are evaluated with TC
data from different oceans and different years. For example,
although TI index exhibits an impressive result, they only use
5 TCs in 2011 for validation. Most model’s performances are
ranged from 10.00 ∼ 13.2 knots in RMSE, while SATCON
being the best with 9.21 knots in RMSE. With a simple
smoothing, CNN-TC can reach 9.45 knots in RMSE, which is
about as good as SATCON. Recall that SATCON depends on
other models to make estimations and can thus be unavailable
some time, while CNN-TC can constantly produce close
estimation by itself. The close RMSE between CNN-TC and

2Only 5 TCs in 2011 are used for validation.
3Originally classification task, not sure how the estimated intensities
are calculated from the classification results.
4Originally classification task, the estimated intensities are determined
as the weighted average of two highest categories with respect to their
probabilities.[21]
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(a) Atlantic 201615L (b) West Pacific 201504W (c) East Pacific 201502E

(d) Atlantic 201616L (e) West Pacific 201511W (f) East Pacific 201520E

Figure 7: Case studies from 6 different TCs. For each ocean regions, we choose 2 TCs to illustrate the
robustness of CNN-TC. The black line ”best track” stands for ”best tracking intensity”, are just the label we
provided in TCIR. It is revealed that CNN-TC can be further improved by smoothing techniques.

(a) Unsmoothed (b) Smoothed

Figure 8: After one-side smoothing with window
size=3, we can significantly improve our result from
10.59 to 9.45. The improved result is almost as good
as SATCON.

SATCON and the disadvantages of SATCON makes CNN-TC
a preferable model for the image regression task.

6 CONCLUSION

In this paper, we dived into the issue of TC intensity esti-
mation. First, we organized a new open dataset TCIR for
data scientists to further explore this issue. In this dataset,
we collected several remote sensing data from the satellites

and organized them into a format with which data scientists
would be relatively more familiar.

On the other hand, although meteorologists have already
achieved satisfactory results in intensity estimation by feature
engineering, we demonstrate the potential of deep learning
to hand in an even better result by automatic feature ex-
traction. We modified classical CNN structures to better fit
in this image-to-intensity regression task, which became our
proposed model CNN-TC. To our best knowledge, CNN-TC
is the first CNN model which can directly solve the image-
to-intensity regression task. Because of the insufficiency of
data in quality and quantity, we lighten our CNN structures
to prevent overfitting. CNN-TC not only defeated most of
the state-of-the-art models, but also justified its practical
superiority by being always available with a low estimation
error.

For future works, the TCIR dataset can be used to pre-
dicting other labels, such as size (also provided in TCIR as
label “R35”), which is closely related to the social impacts
of TCs. Previous studies suggested that meteorologists are
unable to estimate TC size well so far. This is because we still
do not have enough understanding for feature engineering of
estimating TC size. In view of the success in this work, it can
also be promising to use CNN for estimating the TC size. In
summary, this work opens a new door for data scientists to
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study meteorology problems with deep learning techniques
like CNN.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and the members of NTU
CLLab for valuable suggestions. This material is based upon
work supported by the Ministry of Science and Technology
of Taiwan under 106-2119-M-007-027.

REFERENCES
[1] [n. d.]. Cooperative Institute for Meteorological Satellite Studies.

http://tropic.ssec.wisc.edu/tropic.php. ([n. d.]). [Online; accessed
8-February-2018].

[2] Vernon F Dvorak. 1975. Tropical cyclone intensity analysis and
forecasting from satellite imagery. Monthly Weather Review 103,
5 (1975), 420–430.

[3] Gholamreza Fetanat, Abdollah Homaifar, and Kenneth R Knapp.
2013. Objective tropical cyclone intensity estimation using analogs
of spatial features in satellite data. Weather and Forecasting 28,
6 (2013), 1446–1459.

[4] Anand K Inamdar and Kenneth R Knapp. 2015. Intercomparison
of independent calibration techniques applied to the visible chan-
nel of the ISCCP B1 data. Journal of Atmospheric and Oceanic
Technology 32, 6 (2015), 1225–1240.

[5] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization:
Accelerating deep network training by reducing internal covariate
shift. In International conference on machine learning. 448–456.

[6] Robert J Joyce, John E Janowiak, Phillip A Arkin, and Pingping
Xie. 2004. CMORPH: A method that produces global precipitation
estimates from passive microwave and infrared data at high spatial
and temporal resolution. Journal of Hydrometeorology 5, 3 (2004),
487–503.

[7] Stanley Q Kidder, Mitchell D Goldberg, Raymond M Zehr, Mark
DeMaria, James FW Purdom, Christopher S Velden, Norman C
Grody, and Sheldon J Kusselson. 2000. Satellite analysis of tropical
cyclones using the Advanced Microwave Sounding Unit (AMSU).
Bulletin of the American Meteorological Society 81, 6 (2000),
1241–1259.

[8] Kenneth R Knapp, Steve Ansari, Caroline L Bain, Mark A
Bourassa, Michael J Dickinson, Chris Funk, Chip N Helms,
Christopher C Hennon, Christopher D Holmes, George J Huffman,
et al. 2011. Globally gridded satellite observations for climate
studies. Bulletin of the American Meteorological Society 92, 7
(2011), 893–907.

[9] JP Kossin, KR Knapp, DJ Vimont, RJ Murnane, and BA Harper.
2007. A globally consistent reanalysis of hurricane variability and
trends. Geophysical Research Letters 34, 4 (2007).

[10] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple
layers of features from tiny images. (2009).

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012.
Imagenet classification with deep convolutional neural networks.
In Advances in neural information processing systems. 1097–
1105.

[12] Yann LeCun. 1998. The MNIST database of handwritten digits.
http://yann. lecun. com/exdb/mnist/ (1998).

[13] Xiang Li, Shuo Chen, Xiaolin Hu, and Jian Yang. 2018. Un-
derstanding the Disharmony between Dropout and Batch Nor-
malization by Variance Shift. arXiv preprint arXiv:1801.05134
(2018).

[14] Chung-Chih Liu, Chian-Yi Liu, Tang-Huang Lin, and Liang-De
Chen. 2015. A satellite-derived typhoon intensity index using
a deviation angle technique. International Journal of Remote
Sensing 36, 4 (2015), 1216–1234.

[15] JJ Miller, Manil Maskey, and Todd Berendes. 2017. Using Deep
Learning for Tropical Cyclone Intensity Estimation. (2017).

[16] Dmytro Mishkin and Jiri Matas. 2015. All you need is a good
init. arXiv preprint arXiv:1511.06422 (2015).

[17] Timothy L Olander and CS Velden. 2012. The current status of
the UW-CIMSS Advanced Dvorak Technique (ADT). In 32nd
Conf. on Hurricanes and Tropical Meteorology.

[18] Timothy L Olander and Christopher S Velden. 2007. The advanced
Dvorak technique: Continued development of an objective scheme
to estimate tropical cyclone intensity using geostationary infrared
satellite imagery. Weather and Forecasting 22, 2 (2007), 287–298.

[19] Timothy L Olander and Christopher S Velden. 2009. Tropical
cyclone convection and intensity analysis using differenced infrared
and water vapor imagery. Weather and Forecasting 24, 6 (2009),
1558–1572.

[20] Andre Perunicic. 2017. Choosing Weights: Small Changes, Big Dif-
ferences. https://intoli.com/blog/neural-network-initialization/.
(2017). [Online; accessed 25-July-2017].

[21] Ritesh Pradhan, Ramazan S Aygun, Manil Maskey, Rahul Ra-
machandran, and Daniel J Cecil. 2018. Tropical Cyclone Intensity
Estimation Using a Deep Convolutional Neural Network. IEEE
Transactions on Image Processing 27, 2 (2018), 692–702.

[22] Elizabeth A Ritchie, Genevieve Valliere-Kelley, Miguel F Piñeros,
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