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ABSTRACT

Many real-world data mining applications need varying cost
for different types of classification errors and thus call for
cost-sensitive classification algorithms. Existing algorithms
for cost-sensitive classification are successful in terms of min-
imizing the cost, but can result in a high error rate as the
trade-off. The high error rate holds back the practical use
of those algorithms. In this paper, we propose a novel cost-
sensitive classification methodology that takes both the cost
and the error rate into account. The methodology, called
soft cost-sensitive classification, is established from a multi-
criteria optimization problem of the cost and the error rate,
and can be viewed as regularizing cost-sensitive classifica-
tion with the error rate. The simple methodology allows
immediate improvements of existing cost-sensitive classifi-
cation algorithms. Experiments on the benchmark and the
real-world data sets show that our proposed methodology in-
deed achieves lower test error rates and similar (sometimes
lower) test costs than existing cost-sensitive classification al-
gorithms.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning; H.2.8 [Database
Management]: Database Applications—Data mining
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1. INTRODUCTION
Classification is important for machine learning and data

mining [16,17]. Traditionally, the regular classification prob-
lem aims at minimizing the rate of misclassification errors.
In many real-world applications, however, different types
of errors are often charged with different costs. For in-
stance, in bacteria classification, mis-classifying a Gram-
positive species as a Gram-negative one leads to totally in-
effective treatments and is hence more serious than mis-
classifying a Gram-positive species as another Gram-positive
one [24,31]. Similar application needs are shared by targeted
marketing, information retrieval, medical decision making,
object recognition and intrusion detection [1, 14, 15, 26, 33,
34], and can be formalized as the cost-sensitive classification
problem. In fact, cost-sensitive classification can be used to
express any finite-choice and bounded-loss supervised learn-
ing problems [5]. Thus, it has been attracting much research
attention in recent years, in terms of both new algorithms
and new applications [4,6,23,24,27,34,36].

Studies in cost-sensitive classification often reveal a trade-
off between costs and error rates [23,27,36]. Mature regular
classification algorithms can achieve significantly lower er-
ror rates than their cost-sensitive counterparts, but result
in higher expected costs; state-of-the-art cost-sensitive clas-
sification algorithms can reach significantly lower expected
cost than their regular classification counterparts, but are
often at the expense of higher error rates. In addition, cost-
sensitive classification algorithms are“sensitive”to large cost
components and can thus be conservative or even“paranoid”
in order to avoid making any big mistakes. The sensitivity
makes cost-sensitive classification algorithms prone to over-
fitting the data or the costs. In fact, it has been observed
that for some simpler classification tasks, cost-sensitive clas-
sification algorithms are inferior to regular classification ones
in terms of even the expected test cost because of the over-
fitting [27,36].

The expense of high error rates and the potential risk of
overfitting holds back the practical use of cost-sensitive clas-
sification algorithms. Arguably, applications call for classi-
fiers that can reach low costs and low error rates. The task
of obtaining such a classifier has been studied for binary



cost-sensitive classifier [30], but the more general task for
multi-class cost-sensitive classification is yet to be tackled.

In this paper, we propose a methodology to tackle the
task. The methodology takes both the costs and the er-
ror rates into account and matches the realistic needs bet-
ter. We name the methodology soft cost-sensitive classi-

fication to distinguish it from existing hard cost-sensitive

classification algorithms that focus on only the costs. The
methodology is designed by formulating the associated prob-
lem as a multicriteria optimization task [19]: one criterion
being the cost and the other being the error rate. Then,
the methodology solves the task by the weighted sum ap-
proach for multicriteria optimization [38]. The simplicity of
the weighted sum approach allows immediate reuse of mod-
ern cost-sensitive classification algorithms as the core tool.
In other words, with our proposed methodology, promising
(hard) cost-sensitive classification algorithms can be imme-
diately improved via soft cost-sensitive classification, with
performance guarantees on costs and error rates supported
by the theory behind multicriteria optimization.

We conduct experiments to validate the performance of
the proposed methodology on the benchmark and the real-
world data sets. Experimental results suggest that soft cost-
sensitive classification can indeed achieve both low costs and
low error rates. In particular, soft cost-sensitive classifica-
tion algorithms out-perform regular ones in terms of the test
costs on most of the data sets. In addition, soft cost-sensitive
classification algorithms reach significantly lower test error
rates than their hard siblings, while achieving similar (some-
times better) test costs. The observations are consistent
across four different sets of tasks: the traditional bench-
mark tasks in cost-sensitive classification for balancing class
influences [12], new benchmark tasks designed for examin-
ing the effect of using large cost components, the real-world
medical task for classifying bacteria [24], and the real-world
task for intrusion detection in KDD Cup 1999 [3].

The paper is organized as follows. We formally introduce
the regular and the cost-sensitive classification problems in
Section 2, and discuss related works on cost-sensitive clas-
sification. Then, we present the proposed methodology of
soft cost-sensitive classification in Section 3. We discuss the
empirical performance of the proposed methodology on the
benchmark and the real-world data sets in Section 4. Fi-
nally, we conclude in Section 5.

2. COST-SENSITIVE CLASSIFICATION
We shall start by defining the regular classification prob-

lem and extend it to the cost-sensitive one. Then, we briefly
review existing works on cost-sensitive classification.

In the regular classification problem, we are given a train-
ing set S = {(xn, yn)}Nn=1, where the input vector xn be-
longs to some domain X ⊆ R

D, the label yn comes from the
set Y = {1, . . . ,K} and each example (xn, yn) is drawn in-
dependently from an unknown distribution D on X×Y. The
task of regular classification is to use the training set S to
find a classifier g : X → Y such that the expected error rate
E(g) = E

(x,y)∼D
Jy 6= g(x)K is small,1 where the expected er-

ror rate E(g) penalizes every type of mis-classification error
equally.

1The Boolean operation J·K is 1 when the argument is true
and 0 otherwise.

Cost-sensitive classification extends regular classification
by charging different costs for different types of classifica-
tion errors. We adopt the example-dependent setting of
cost-sensitive classification, which is rather general and can
be used to express other popular settings [6, 23, 25, 27, 36].
The example-dependent setting couples each example (x, y)

with a cost vector c ∈ [0,∞)K , where the k-th compo-
nent of c quantifies the cost for predicting the example x
as class k. The cost c[y] of the intended class y is natu-
rally assumed to be 0, the minimum cost. Consider a cost-
sensitive training set Sc = {(xn, yn, cn)}Nn=1, where each
cost-sensitive training example (xn, yn, cn) is drawn inde-
pendently from an unknown cost-sensitive distribution Dc

on X × Y × [0,∞)K , the task of cost-sensitive classification
is to use Sc to find a classifier g : X → Y such that the
expected cost Ec(g) = E

(x,y,c)∼Dc

c[g(x)] is small.

One special case of the example-dependent setting is the
class-dependent setting, in which the cost vectors c are taken
from the y-th row of a cost matrix C : Y × Y → [0,∞)K .
Each entry C(y, k) of the cost matrix represents the cost for
predicting a class-y example as class k. The special case is
commonly used in some applications and some benchmark
experiments [23,24,27].

Regular classification can be viewed as a special case of
the class-dependent setting, which is in term a special case
of the example-dependent setting. In particular, take a cost
matrix that contains 0 in the diagonals and 1 elsewhere,
which equivalently corresponds to the regular cost vectors
c̄y with entries c̄y [k] = Jy 6= kK. Then, the expected cost
Ec(g) with respect to {c̄y} is the same as the expected error
rate E(g). In other words, regular classification algorithms
can be viewed as “wiping out” the given cost information
and replacing it with a näıve cost matrix. Intuitively, such
algorithms may not work well for cost-sensitive classification
because of the wiping out.

The intuition leads to the past decade of studying cost-
sensitive classification algorithms that respect the cost infor-
mation during training and/or prediction. The cost-sensitive
classification algorithms can be grouped into two categories:
the binary (K = 2) cases and the multiclass (K > 2) cases.
Binary cost-sensitive classification is well-understood in the-
ory and in practice. In particular, every binary cost-sensitive
classification problem can be reduced to a binary regular
classification one by re-weighting the examples based on the
costs [13, 39]. Multiclass cost-sensitive classification, how-
ever, is more difficult than the binary one, and is an ongoing
research topic.

MetaCost [12] is one of the earliest multiclass cost-sensitive
classification algorithms. It makes any regular classification
algorithm cost-sensitive by re-labeling the training exam-
ples. Somehow the re-labeling procedure depends on an
overly-ideal assumption, which makes it hard to rigorously
analyze the performance of MetaCost in theory. Many other
early approaches suffer from similar shortcomings [29].

In order to design multiclass cost-sensitive classification
algorithms with stronger theoretical guarantees, modern cost-
sensitive classification algorithms are mostly reduction-based,
which allows not only reusing mature existing algorithms for
cost-sensitive classification, but also extending existing the-
oretical results to the area of cost-sensitive classification.
For instance, [1] reduces the multiclass cost-sensitive classi-
fication problem into several multiclass regular classification
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Figure 1: a two-dimensional artificial data set

problems using a boosting-style method and some interme-
diate traditional classifiers. The reduction is somehow too
sophisticated for practical use. [40] derives another reduc-
tion approach from multiclass cost-sensitive classification to
multiclass regular classification based on re-weighting with
the solution to a linear system. The proposed reduction ap-
proach works with sound theoretical guarantees when the
linear system attains a non-trivial solution; otherwise the
approach decomposes the multiclass cost-sensitive classifi-
cation problem to several binary classification problems to
get an approximate solution [40].

There are many more studies on reducing multiclass cost-
sensitive classification to binary cost-sensitive classification
by decomposing the multiclass problem with a suitable struc-
ture and embedding the cost vectors into the weights for
the re-weighted binary classification problems. For instance,
cost-sensitive one-versus-one (CSOVO; [27]) and weighted
all-pair (WAP; [5]) are based on pairwise comparisons of
the classes. Another leading approach within the family is
cost-sensitive filter tree (CSFT; [6]), which is based on a
single-elimination tournament of competing classes.

Yet another family of approaches reduce the multiclass
cost-sensitive classification problem into regression ones by
embedding the cost vectors in the real-valued labels instead
of the weights [35]. A promising representative of the fam-
ily is to reduce to one-sided regression (OSR; [36]). Based
on some earlier comparisons on general benchmark data
sets [23,36], OSR, CSOVO and CSFT are some of the lead-
ing algorithms that can reach state-of-the-art performance.
Each algorithm corresponds to a popular sibling for regular
classification. In particular, the common one-versus-all de-
composition (OVA) [21] is the special case of OSR, the one-
versus-one decomposition (OVO) [21] is the special case of
CSOVO, and the modern filter tree decomposition (FT) [6]
is the special case of CSFT. The regular classification al-
gorithms, OVA, OVO and FT, do not consider any costs
during their training. On the other hand, the cost-sensitive
ones, OSR, CSOVO and CSFT, respect the costs faithfully
during their training.

3. SOFT COST-SENSITIVE

CLASSIFICATION
The difference between regular and cost-sensitive classifi-

cation is illustrated with a binary and two-dimensional arti-
ficial data set shown in Figure 1. Class 1 is generated from
a Gaussian distribution of standard deviation 4

5
; class 2 is

generated from a Gaussian distribution of standard devia-
tion 1

2
; the centers of the two classes are of

√
2 apart. We

Figure 2: the different goals of regular (green), cost-
sensitive (red) and soft cost-sensitive (blue) classifi-
cation algorithms

consider a cost matrix of

[

0 1
30 0

]

. Then, we enumerate

many linear classifiers in R
2 and evaluate their average errors

and average costs. The results are plotted in Figure 2. Each
black point represents the achieved (error, cost) of one lin-
ear classifier.2 We can see that there is a region of low-cost
linear classifiers, as circled in red. There is also a region
of low-error linear classifiers, as circled in green. Modern
cost-sensitive classification algorithms are designed to seek
for something in the red region, which contains classifiers
with a wide range of different errors. Traditional regular
classification algorithms, on the other hand, are designed to
locate something in the green region (without using the cost
information), which is far from the lowest achievable cost.
In other words, there is a trade-off between the cost and
the error, while cost-sensitive and regular classification each
takes the trade-off to the extreme.

Figure 2 motivates us to study the methodology for aim-
ing at the blue region instead. The region does not take
the trade-off between the cost and the error to the extreme,
and contains classifiers that are of low cost and low error.
Those classifiers match the real-world application needs bet-
ter, with the cost being the subjective measure of perfor-
mance and the error being the objective safety-check. The
blue region improves the green one (regular) by taking the
cost into account; the blue region also improves the red
one (cost-sensitive) by keeping the error under control. The
three regions, as depicted, are not meant to be disjoint. The
blue region may contain the better cost-sensitive classifiers
in its intersection with the green region, and the better reg-
ular classifiers in its intersection with the red region.

Figure 2 results from a simple artificial data set for the il-
lustrative purpose. When applying more sophisticated clas-
sifiers on real-world data sets, the set of achievable (error,
cost) may be of a more complicated shape—possibly non-
convex, for instance. Somehow the essence of the problem
remains the same: cost-sensitive classification only knocks
down the cost and results in a red region at the bottom;
regular classification only considers the error and lands on a
green region at the left; our proposed methodology focuses
on a blue region at the left-bottom, hopefully achieving the
better for both criteria.

Formally speaking, regular classification algorithm is a
process from S to g such that E(g) is small. Cost-sensitive
classification algorithm, on the other hand, is a process from
Sc to g such that Ec(g) is small. We now want a process

2Ideally, the points should be dense. The uncrowded part
comes from simulating with a finite enumeration process.



from Sc to g such that both E(g) and Ec(g) are small, which
can be written as

min
g

E(g) = [Ec(g), E(g)] subject to all feasible g. (1)

The vector E represents the two criteria of interest.
Such a problem belongs to multicriteria optimization [19],

which deals with multiple objective functions. The general
form of multicriteria optimization is

min
g

F(g) = [F1(g), F2(g), . . . , FM (g)]

subject to all feasible g, (2)

where M is the number of criteria. For a multicriteria op-
timization problem (2), often there is no global optimal so-
lution g∗ that is the best in terms of every dimension (cri-
terion) within F. Instead, the goal of (2) is to seek for the
set of “better” solutions, usually referred to as the Pareto-
optimal front [20]. Formally speaking, consider two feasible
candidates g1 and g2. The candidate g1 is said to domi-

nate g2 if Fm(g1) ≤ Fm(g2) for all m while Fi(g1) < Fi(g2)
for some i. The Pareto-optimal front is the set of all non-
dominated solutions [19].

Solving the multicriteria optimization problem is not an
easy task, and there are many sophisticated techniques, in-
cluding evolutionary algorithms like Non-dominated Sort-
ing Genetic Algorithms [11] and Strength Pareto Evolution-
ary [9]. One important family of techniques is to transform
the problem to a single-criterion optimization one that we
are more familiar with. A simple yet popular approach of the
family considers a non-negative linear combination of all the
criteria Fm, which is called the weighted sum approach [38].
In particular, the weighted sum approach solves the follow-
ing optimization problem:

min
g

M
∑

m=1

αmFm(g) subject to all feasible g, (3)

where αm ≥ 0 is the weight (importance) of the m-th cri-
terion. By varying the values of αm, the weighted sum ap-
proach identifies some of the solutions that are on the tan-
gential of the Pareto-optimal front [19]. The drawback of
the approach [10] is that not all the solutions within the
Pareto-optimal front can be found when the achievable set
of F(g) is non-convex.

We can reach the goal of getting a low-cost and low-error
classifier by formulating a multicriteria optimization prob-
lem with M = 2, F1(g) = Ec(g) and F2(g) = E(g). Without
loss of generality, let α1 = 1 − α and α2 = α for α ∈ [0, 1],
the weighted sum approach solves

min
g

(1− α)Ec(g) + αE(g), (4)

which is the same as

min
g

E
(x,y,c)∼Dc

(1− α)
(

c[g(x)]
)

+ α
(

c̄y [g(x)]
)

(5)

with the regular cost vectors c̄y defined in Section 2. For
any given α, such an optimization problem is exactly a cost-
sensitive classification one with modified cost vectors c̃ =
(1 − α)c + αc̄y . Then, modern cost-sensitive classification
algorithms can be applied to locate a decent g, which would
belong to the Pareto-optimal front with respect to Ec(g)
and E(g).

The weighted sum approach has also been implicitly taken
by other algorithms in machine learning. For instance, [32]
combines the pairwise ranking criterion and squared regres-
sion criterion and shows that the resulting algorithm achieves
the best performance on both criteria. Our proposed method-
ology similarly utilizes the simplicity of the weighted sum
approach to allow seamless reuse of modern cost-sensitive
classification algorithms. If other techniques for multicri-
teria optimization (such as evolutionary computation) are
taken instead, new algorithms need to be designed to ac-
company the techniques. Given the prevalence of promising
cost-sensitive classification algorithms (see Section 2), we
thus choose to study only the weighted sum approach.

The parameter α in (4) can be intuitively explained as a
soft control of the trade-off between costs and errors, with
α = 0 and α = 1 being the two extremes. The traditional
(hard) cost-sensitive classification problem is a special case
of soft cost-sensitive classification with α = 0. On the other
hand, the regular classification problem is a special case of
soft cost-sensitive classification with α = 1.

Another explanation behind (4) is regularization. From
Figure 2, there are many low-cost classifiers in the red re-
gion. When picking one classifier using only the limited
information in the training set Sc, the classifier can be over-
fitting. The added term αE(g) can be viewed as restricting
the number of low-cost classifiers by only favoring those with
lower error rates. This similar explanation can be found
from [30], which considers cost-sensitive classification in the
binary case. Furthermore, the restriction is similar to com-
mon regularization schemes, where a penalty term on com-
plexity is used to limit the number of candidate classifiers [2].

We illustrate the regularization property of soft-sensitive
classification with the data set vowel as an example. The
details of the experimental procedures will be introduced in
Section 4. The test cost of soft cost-sensitive classification
with various α when coupled with the one-sided regression
(OSR) algorithm is shown in Figure 3. For this data set,
the lowest test cost does not happen at α = 0 (hard cost-
sensitive) nor α = 1 (non cost-sensitive). By choosing the
regularization parameter α appropriately, some intermedi-
ate, non-zero values of α (soft cost-sensitive) could lead to
better test performance. The figure reveals the potential
of soft cost-sensitive classification not only to improve the
test error with the added αE(g) term during optimization,
but also to possibly improve the test cost with the effect of
regularization.
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Figure 3: the effect of the regularization parameter
α on soft cost-sensitive classification



4. EXPERIMENTS
In this section, we set up experiments to validate the use-

fulness of the proposed methodology of soft cost-sensitive
classification in various scenarios. We take three state-of-
the-art multiclass cost-sensitive classification algorithms (see
Section 2). Then we examine if the proposed methodology
can improve them. The three algorithms are one-sided re-
gression (OSR), cost-sensitive one-versus-one (CSOVO) and
cost-sensitive filter tree (CSFT). We also include their regu-
lar classification siblings, one-versus-all (OVA), one-versus-
one (OVO), and filter tree (FT) for comparisons. The other
state-of-the-art multiclass cost-sensitive classification algo-
rithms would also be compared in the longer version of this
paper.

We couple all the algorithms with the support vector ma-
chine (SVM) [37] with the perceptron kernel [28] as the inter-
nal learner for the reduced problem, and take LIBSVM [8] as
the SVM solver.3 The regularization parameter λ of SVM is
chosen within {210, 27, . . . , 2−2} and the parameter α for soft
cost-sensitive classification is chosen within {0, 0.1, . . . , 1}.
For the hard or soft cost-sensitive classification algorithms,
the best parameter setting is chosen by minimizing the 5-
fold cross-validation cost. For the regular classification al-
gorithms, which are not supposed to access any cost infor-
mation in training or in validation, the best parameter λ is
chosen by minimizing the 5-fold cross-validation error.

We consider four sets of tasks: the traditional benchmark
tasks for balancing the influence of each class, new bench-
mark tasks for emphasizing some of the classes, a real-world
biomedical task for classifying bacteria (see Section 1) and
the KDDCup 1999 task for the intrusion detection. The four
sets of broad tasks will demonstrate that soft cost-sensitive
classification is useful both as a general algorithmic method-
ology and as specific application tools.

4.1 Comparison on Benchmark Tasks
Twenty-two real-world data sets (iris, wine, glass, vehicle,

vowel, segment, dna, satimage, usps, zoo ,yeast, pageblock,
anneal, solar, splice, ecoli, nursery, soybean, arrhythmia, opt-

digits, mfeat, pendigit) are used in our experiment. To the
best of our knowledge, our experiment is the most exten-
sive empirical study on cost-sensitive classification in terms
of the number of data sets taken. All data sets come from
the UCI Machine Learning Repository [18] except usps [22].
In each run of the experiment, we randomly separate each
data set with 75% of the examples for training and the rest
25% for testing. All the input vectors in the training set are
linearly scaled to [0, 1] and then the input vectors in the test
set are scaled accordingly.

The data sets do not contain any cost information and we
make them cost-sensitive by adopting the randomized pro-
portional benchmark that was similarly used by [5, 27, 36].
In particular, the benchmark is class-dependent and is based
on a cost matrix C(y, k), where the diagonal entries C(y, y)
are 0, and the other entries C(y, k) are uniformly sampled

from
[

0, |{n:yn=k}|
|{n:yn=y}|

]

. This means that mis-classifying a rare

class as a frequent one is of a high cost in expectation. In
other words, the benchmark can be used to balance the in-
fluence of each class. We further scale every C(y, k) to [0, 1]
by dividing it with the largest component in C. We then

3We use the cost-sensitive SVM implementation at http:
//www.csie.ntu.edu.tw/~htlin/program/cssvm/

record the average test costs and their standard errors for all
algorithms over 20 random runs in Table 1. We also report
the average test errors in Table 2.

From Table 1, soft-OSR and soft-CSOVO usually result in
the lowest test cost. Most importantly, soft-OSR is among
the best algorithms (bold) on 17 of the 22 data sets, and
achieves the lowest cost on 8 of them. The follow-ups, OSR
and CSOVO, were the state-of-the-art algorithms in cost-
sensitive classification and reach promising performance of-
ten. Filter-tree-based algorithms (FT, CSFT, soft-CSFT)
are generally falling behind, and so are the regular classifi-
cation algorithms (OVA, OVO, FT). The results justify that
soft cost-sensitive classification can lead to similar and some-
times even better performance when compared with state-
of-art cost-sensitive classification algorithms.

On the other hand, when we move to Table 2, regular clas-
sification algorithms like OVA and OVO generally achieve
the lowest test errors. The hard cost-sensitive classification
ones result in the highest test errors; soft ones lie in between.

Overall, soft cost-sensitive classification is better than the
regular sibling in terms of the cost, the major criterion. It is
similar to (sometimes better than) the hard sibling in terms
of the cost, but usually better in terms of the error. We
further justify the claims above by comparing the average
test cost between soft cost-sensitive classification algorithms
with their corresponding siblings for regular classification
and hard cost-sensitive classification using a pairwise one-
tailed t-test of significance level 0.1, as shown in Table 3.
For each family of algorithms (OVA, OVO or FT), soft cost-
sensitive classification algorithms are generally among the
best of the three, and are significantly better than their reg-
ular siblings.

Table 4 shows the same t-test for comparing the test er-
rors between soft cost-sensitive classification algorithms and
their hard siblings. We see that soft-OSR improves OSR
on 16 of the 22 data sets in terms of the test error; soft-
CSOVO improves CSOVO on 13 of the 22; soft-CSFT im-
proves CSFT on 14 of the 22. Given the similar test costs be-
tween soft and hard cost-sensitive classification algorithms
in Table 3, the significant improvements on the test error
justify that soft cost-sensitive classification algorithms are
better choices for practical applications.

4.2 Comparison on New Benchmark Tasks:
Emphasizing Cost

Next, we explore the usefulness of the algorithms with a
different benchmark for generating the costs. Consider a
situation where one hopes to indicate some of the classes is
important. Traditionally, this task is done with re-weighting
the examples of those classes, which corresponds to scaling
the rows of the cost matrix. As discussed in Section 2,
cost-sensitive classification is more sophisticated than re-
weighting. In particular, it allows us to mark important
classes by scaling up some columns of the cost matrix. In
our benchmark, we scale up one random column of the regu-
lar cost matrix (that contains c̄y) by an emphasis parameter
w, and we call the benchmark emphasizing cost.
We vary the the emphasis parameter w between {102, 103,

. . . , 106} to examine the stability of the algorithms when
using large cost components. The results are shown in Fig-
ure 4. Due to the page limits, we only report the results of
OSR and soft-OSR on iris, vehicle, and segment. Results on
other data sets are similar and will be reported in a longer



Table 1: average test cost (·10−3) on benchmark data sets
data set OVA OSR soft-OSR OVO CSOVO soft-CSOVO FT CSFT soft-CSFT

iris 18.34±4.48 17.21±3.84 18.79±3.72 21.93±4.99 20.74±4.32 19.89±4.24 23.80±5.21 19.54±4.67 15.94±3.26∗

wine 12.98±3.37 13.42±2.55 14.34±2.76 15.04±4.05 11.45±3.53∗ 12.95±4.15 15.21±3.49 11.87±3.09 13.66±4.14
glass 159.19±10.37 126.84±9.71∗ 129.42±9.51 145.90±10.36 128.56±9.77 132.69±9.62 151.06±10.20 143.78±8.66 143.22±9.85
vehicle 114.14±9.08 95.33±10.29∗ 97.81±10.85 112.31±8.82 103.63±11.17 97.34±11.16 112.48±7.71 105.58±10.90 106.74±11.27
vowel 6.76±0.93 11.72±1.44 6.43±1.11 6.29±0.94∗ 9.58±1.08 6.82±0.90 9.53±1.31 13.71±1.58 11.87±1.47

segment 14.02±1.17 13.84±0.94 13.03±1.08∗ 14.15±1.18 14.00±1.11 14.10±1.31 15.01±1.33 14.17±1.15 15.36±1.26
dna 24.43±1.26 24.40±1.55 22.76±1.47∗ 24.51±1.37 28.26±2.04 24.51±1.52 27.94±2.34 31.49±2.09 29.23±2.28

satimage 40.20±2.08 35.04±2.16 34.86±2.11∗ 40.43±1.92 36.49±2.27 36.46±2.31 41.98±2.08 40.16±2.10 39.63±2.23
usps 6.87±0.28 7.32±0.23 6.58±0.27∗ 7.08±0.27 7.20±0.26 6.98±0.25 9.05±0.29 8.97±0.40 8.59±0.27
zoo 8.59±1.81 10.14±1.29 7.22±1.16 9.35±1.87 5.91±1.15 6.56±1.37 8.68±1.77 6.56±1.27 8.70±1.71
yeast 36.66±3.37 0.58±0.07 0.58±0.07 39.71±3.62 0.55±0.08∗ 0.55±0.08 38.97±3.88 0.62±0.09 0.64±0.09

pageblock 2.80±0.48 0.18±0.04 0.19±0.04 2.59±0.45 0.16±0.03 0.16±0.03 2.78±0.48 0.16±0.03 0.16±0.03∗

anneal 0.85±0.23 0.35±0.12∗ 0.38±0.13 0.83±0.23 0.61±0.16 0.67±0.17 0.85±0.23 0.58±0.16 0.65±0.16
solar 46.08±6.53 25.35±4.06 25.32±4.05 44.51±6.31 18.04±1.94 17.89±1.95∗ 47.18±7.14 20.54±2.64 20.43±2.06
splice 14.01±0.84 12.59±1.11∗ 12.85±0.71 13.97±0.76 17.06±1.26 13.28±0.88 16.64±0.79 18.19±1.62 16.06±1.17
ecoli 17.11±2.85 1.27±0.31 0.92±0.18 19.93±2.61 1.35±0.49 1.11±0.41 20.43±4.49 0.85±0.14∗ 1.96±1.13

nursery 0.62±0.20 0.00±0.00 0.00±0.00∗ 0.07±0.06 0.00±0.00 0.00±0.00 1.42±0.45 0.00±0.00 0.39±0.34
soybean 9.84±1.60 2.78±0.36 2.99±0.43 11.41±1.85 2.13±0.29 2.08±0.30∗ 9.61±1.57 3.07±0.52 3.97±0.55

arrhythmia 6.46±1.23 0.55±0.08 0.63±0.08 7.32±1.48 0.36±0.05∗ 0.37±0.05 8.69±1.78 0.57±0.19 0.55±0.17
optdigits 5.33±0.34 5.64±0.26 4.90±0.35∗ 4.98±0.26 6.12±0.32 5.23±0.31 6.23±0.34 7.67±0.43 6.57±0.35
mfeat 7.99±0.55 9.27±0.74 7.56±0.55∗ 8.74±0.59 8.36±0.61 8.70±0.64 11.74±0.76 11.23±0.89 10.87±0.83

pendigit 1.99±0.11 2.46±0.12 1.88±0.09∗ 1.88±0.10 1.95±0.08 1.95±0.08 2.12±0.11 2.36±0.11 2.43±0.19
# bold 5 10 17 3 12 15 0 6 3

(those with the lowest mean are marked with *; those within one standard error of the lowest one are in bold)

Table 2: average test error (%) on benchmark data sets
data set OVA OSR soft-OSR OVO CSOVO soft-CSOVO FT CSFT soft-CSFT

iris 4.21±0.78∗ 6.71±0.98 4.74±0.73 4.74±0.80 10.66±2.32 5.26±0.70 4.61±0.79 7.11±1.24 4.47±0.77
wine 1.78±0.43 4.00±0.62 2.44±0.38 2.11±0.51 1.78±0.51 1.67±0.52∗ 2.22±0.47 1.67±0.44 2.00±0.49
glass 28.52±0.82∗ 32.22±1.11 31.94±1.21 28.89±0.84 44.26±2.73 45.28±2.52 29.81±0.96 39.17±2.35 36.02±2.52
vehicle 20.66±0.62 24.15±0.83 22.78±0.73 20.31±0.67∗ 28.73±2.19 25.14±1.57 20.75±0.64 29.88±2.92 30.40±3.04
vowel 1.27±0.17∗ 5.38±0.47 1.88±0.27 1.29±0.18 5.93±0.63 1.43±0.17 1.94±0.24 6.25±1.43 2.74±0.39

segment 2.60±0.16∗ 3.69±0.27 2.76±0.15 2.60±0.15 5.57±0.95 4.11±0.59 2.78±0.15 4.30±0.62 3.43±0.35
dna 4.20±0.14 6.96±0.65 4.87±0.27 4.19±0.13∗ 7.90±0.80 5.81±0.85 4.81±0.24 9.14±1.52 5.32±0.30

satimage 7.19±0.10∗ 9.52±0.30 9.01±0.34 7.24±0.09 12.55±0.66 12.51±0.68 7.55±0.11 10.58±0.63 9.85±0.75
usps 2.19±0.07∗ 3.82±0.13 2.66±0.11 2.28±0.06 5.27±0.70 3.53±0.17 2.79±0.06 6.26±0.86 3.50±0.10
zoo 5.19±0.83 15.38±1.61 13.08±1.52 6.15±1.03 10.77±1.71 8.27±1.77 4.81±0.81∗ 12.69±2.54 6.35±1.47
yeast 40.38±0.64 73.76±0.55 73.68±0.55 39.27±0.56∗ 76.58±0.68 76.70±0.67 40.20±0.52 77.02±0.92 76.70±0.81

pageblock 3.22±0.09 39.25±4.36 38.54±4.74 3.06±0.08∗ 76.75±6.18 76.75±6.18 3.10±0.10 78.25±6.10 81.82±5.81
anneal 1.40±0.15∗ 8.78±0.94 6.98±1.13 1.51±0.15 19.02±4.24 10.60±4.53 1.47±0.17 11.31±1.94 9.47±4.40
solar 27.27±0.42 34.83±1.16 35.22±1.75 26.61±0.43∗ 47.49±3.30 47.83±3.12 27.27±0.46 46.15±3.12 43.48±2.85
splice 3.86±0.15∗ 7.68±1.16 5.21±0.56 3.92±0.12 13.34±2.69 8.13±2.60 4.62±0.18 9.59±1.46 6.52±0.74
ecoli 15.12±0.99 32.68±1.67 33.63±1.61 14.05±0.75∗ 37.80±3.30 38.45±3.19 16.85±1.14 36.73±2.72 40.89±3.85

nursery 0.11±0.02 33.33±0.17 31.02±1.54 0.02±0.01∗ 37.62±2.17 3.31±2.21 0.32±0.08 33.89±0.44 20.04±3.61
soybean 6.55±0.32∗ 24.53±0.82 21.67±1.42 7.46±0.34 39.06±3.51 40.12±3.76 7.13±0.38 35.41±2.48 28.48±3.40

arrhythmia 28.41±0.93 66.37±2.25 66.42±2.11 27.92±0.74∗ 85.18±2.49 83.05±3.37 30.40±0.62 88.81±2.47 86.15±3.12
optdigits 1.09±0.06 1.85±0.06 1.15±0.07 1.04±0.05∗ 2.25±0.09 1.36±0.12 1.35±0.05 2.14±0.24 1.55±0.05
mfeat 1.69±0.09∗ 3.10±0.18 1.84±0.11 1.86±0.08 4.32±0.53 2.50±0.22 2.45±0.10 3.89±0.37 2.99±0.38

pendigit 0.40±0.02 0.85±0.04 0.39±0.02 0.38±0.02∗ 0.65±0.03 0.42±0.02 0.45±0.02 0.62±0.04 0.52±0.03

(those with the lowest mean are marked with *; those within one standard error of the lowest one are in bold)

version of this paper. The figures plot the scaled test cost
Ec/w on different values of log10 w. From the three fig-
ures, we see that soft-OSR is better than OSR across all
w. When the emphasis is very high (like 106), OSR can be
conservative and “paranoid.” It avoids classifying any of the
test examples as the emphasized class, which results in the
worse performance. On the other hand, the curves of soft-
OSR remain mostly flat, which demonstrate that soft cost-
sensitive classification is less sensitive (paranoid) to large
cost components. The results again justify the superiority
of soft-OSR, a promising representative of soft cost-sensitive
classification, over its hard sibling.

4.3 Comparison on a Real-world Biomedical
Task

To test the validity of our proposed soft cost-sensitive
classification methodology on true applications, we use two
real-world data sets for our experiments. The first one is
a biomedical task [24], and the other one to be introduced
later is from KDDCup 1999 [3]. Both data sets go through

similar splitting and scaling procedures, as we did for the
benchmark data sets.

The biomedical task is on classifying the bacterial menin-
gitis, which is a serious and often life-threatening form of
the meningitis infection. The inputs are the spectra of bac-
terial pathogens extracted by the Surface Enhanced Ra-
man Scattering (SERS) platform [7]. In this paper, we call
the task SERS, which contains 79 clinical samples of ten
meningitis-causing bacteria species collected in the National
Taiwan University Hospital and 17 standard bacteria sam-
ples from American Type Culture Collection. The cost ma-
trix of SERS is shown in Table 5, which is specified by two
human physicians who are specialized in infectious diseases.

The results are shown in Table 6. Among the nine al-
gorithms, soft-CSOVO gets the lowest cost. If we compare
the other eight algorithms with soft-CSOVO using a pair-
wise one-tailed t-test of significance level 0.1, we see that
soft-CSOVO is significantly better than all other algorithms.
The results confirm the usefulness of soft cost-sensitive clas-
sification for this real-world task.
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Figure 4: test Ec/w of OSR and soft-OSR with the emphasizing cost for different emphasis parameter w

Table 3: comparisons on the test costs between the
algorithms and their soft cost-sensitive classification
sibling using a pairwise one-tailed t-test of signifi-
cance level 0.1

data set OVA OSR OVO CSOVO FT CSFT
iris ≈ ≈ ≈ ≈ © ≈

wine ≈ ≈ ≈ ≈ ≈ ≈

glass © ≈ ≈ ≈ ≈ ≈

vehicle © ≈ © © ≈ ≈

vowel ≈ © ≈ © ≈ ©
segment © © ≈ ≈ ≈ ≈

dna © © ≈ © ≈ ©
satimage © ≈ © ≈ © ≈

usps ≈ © ≈ ≈ © ≈

zoo ≈ © © ≈ ≈ ≈

yeast © ≈ © ≈ © ≈

pagblock © ≈ © ≈ © ≈

anneal © ≈ ≈ ≈ ≈ ≈

solar © ≈ © ≈ © ≈

splice © ≈ ≈ © ≈ ©
ecoli © ≈ © © © ≈

nursery © ≈ ≈ ≈ ≈ ≈

soybean © ≈ © ≈ © ≈

arrhythmia © ≈ © ≈ © ≈

optdigits © © ≈ © ≈ ©
mfeat ≈ © ≈ ≈ ≈ ≈

pendigit ≈ © ≈ ≈ × ≈

© : soft cost-sensitive algorithms significantly better
× : soft cost-sensitive algorithms significantly worse
≈ : otherwise

SERS is an interesting data set in which regular classifi-
cation algorithms like OVO or FT can perform better than
their hard cost-sensitive classification siblings like CSOVO
or CSFT. Given the small number of examples in SERS,
the phenomenon can be attributed to overfitting with re-
spect to the cost—i.e. over-using the cost information. Soft
cost-sensitive classification provides a balanced alternative
between over-using (hard) or not using (regular) the cost.
The balancing can lead to significantly lower test cost, as
demonstrated by the promising performance of soft-CSOVO
on this biomedical task.

4.4 Comparison on the KDD Cup 1999 Task
The KDDCup 1999 data set (kdd99) is another real-world

cost-sensitive classification task [3]. The task contains an in-
trusion detection problem for distinguishing the “good” and
“bad” connections. Following the usual procedure in litera-
ture [1], we extract a random 40% of the 10%-training set
for our experiments. The test set accompanied is not used

Table 4: comparison on the test errors between
the hard cost-sensitive classification algorithms and
their soft sibling using a pairwise one-tailed t-test of
significance level 0.1

data set OSR CSOVO CSFT
iris © © ©
wine © ≈ ≈

glass © ≈ ≈

vehicle © © ≈

vowel © © ©
segment © © ©
dna © © ©

satimage © © ©
usps © © ©
zoo © © ©
yeast ≈ ≈ ≈

pagblock ≈ ≈ ≈

anneal ≈ © ©
solar ≈ ≈ ≈

splice © ≈ ©
ecoli © ≈ ≈

nursery ≈ © ©
soybean © ≈ ©

arrhythmia ≈ ≈ ≈

optdigits © © ©
mfeat © © ©

pendigit © © ©
© : soft cost-sensitive algorithms significantly better
× : soft cost-sensitive algorithms significantly worse
≈ : otherwise

because of the known mismatch between training and test
distributions [1]. We take the given cost matrix in the com-
petition for our experiments.4

The results are listed in Table 7. While the cost-sensitive
classification algorithm OSR achieves the lowest test cost,
other algorithms (soft, hard, or regular) all result in similar
performance. The reason of the similar performance is be-
cause all the algorithms are of error rate less than 1% and
are thus of low costs. That is, the data set is easy to classify,
and there is almost no room for improvements. The easiness
is partly because the data set is highly imbalanced. In par-
ticular, the size of the majority class is over 8000 times more
than the size of the minority class.

To further compare the performance of the algorithms, we
consider a more challenging version of the real-world task.
The version is called kdd99-balanced, which is generated by

4http://www.kdd.org/kddcup/site/1999/files/
awkscript.htm



Table 5: cost matrix on SERS

`
`
`
`
`
`
`
`
`
`̀

real class
classify to

Ab Ecoli HI KP LM Nm Psa Spn Sa GBS

Ab 0 1 10 7 9 9 5 8 9 1
Ecoli 3 0 10 8 10 10 5 10 10 2
HI 10 10 0 3 2 2 10 1 2 10
KP 7 7 3 0 4 4 6 3 3 8
LM 8 8 2 4 0 5 8 2 1 8
Nm 3 10 9 8 6 0 8 3 6 7
Psa 7 8 10 9 9 7 0 8 9 5
Spn 6 10 7 7 4 4 9 0 4 7
Sa 7 10 6 5 1 3 9 2 0 7
Gbs 2 5 10 9 8 6 5 6 8 0

Table 6: experiment results on SERS, with t-test for
cost

error (%) cost (·100) t-test
OVA 23.0± 2.51 1.056 ± 0.097 ©
OSR 27.6± 2.27 0.986 ± 0.092 ©
soft-OSR 25.8± 2.80 1.024 ± 0.095 ©
OVO 23.2± 2.55 0.970 ± 0.106 ©
CSOVO 27.4± 1.53 1.150 ± 0.109 ©
soft-CSOVO 26.6± 2.55 0.906 ± 0.069 ∗
FT 23.0± 2.51 0.986 ± 0.092 ©
CSFT 27.6± 1.40 1.118 ± 0.090 ©
soft-CSFT 31.4± 4.09 1.054 ± 0.040 ©

∗ : best entry of cost
© : best entry significantly better in cost
≈ : otherwise

scaling down the y-th row of the cost matrix by the size of
the y-th class. The results on kdd99-balanced are shown in
Table 8. OSR remains to be the best algorithm, with com-
parable test cost to soft-OSR. Nevertheless, when comparing
the errors of OSR and soft-OSR, we see that soft-OSR can
reach lower test error. Similar results hold (even more sig-
nificantly) between CSOVO and soft-CSOVO, and between
CSFT and soft-CSFT. The results again demonstrate the
usefulness of soft cost-sensitive classification in reaching low
cost and low error on this real-world task.

5. CONCLUSIONS
We have explored the trade-off between the cost and the

error rate in cost-sensitive classification tasks, and have iden-
tified the practical needs to reach both low cost and low er-
ror rate. Based on the trade-off, we have proposed a simple
and novel methodology between traditional regular classi-
fication and modern cost-sensitive classification. The pro-
posed methodology, soft cost-sensitive classification, takes
both the cost and the error into account by a multicriteria
optimization problem. By using the weighted sum approach
to solving the optimization problem, the proposed methodol-
ogy allows immediate improvements of existing cost-sensitive
classification algorithms in terms of similar or sometimes
lower costs, and of lower errors. The significant improve-
ments have been observed on a broad range of benchmark
and real-world tasks in our extensive experimental study.

An immediate future work is to take more state-of-art
algorithms for comparison. Furthermore, instead of treating
the cost and error symmetrically in the methodology, an

Table 7: average test results on kdd99, with t-test
for cost

error (%) cost (·10−3) t-test
OVA 0.11± 0.003 1.84± 0.179 ≈

OSR 0.11± 0.003 1.80± 0.171 ∗
soft-OSR 0.11± 0.003 1.92± 0.178 ≈

OVO 0.10± 0.002 1.85± 0.174 ≈

CSOVO 0.11± 0.003 1.81± 0.169 ≈

soft-CSOVO 0.11± 0.003 1.82± 0.169 ≈

FT 0.10± 0.002 1.84± 0.170 ≈

CSFT 0.11± 0.003 1.83± 0.171 ≈

soft-CSFT 0.11± 0.003 1.83± 0.171 ≈

∗ : best entry of cost
© : best entry significantly better in cost
≈ : otherwise

Table 8: average test results on kdd99-balanced, with
t-test for cost

error (%) cost (·10−6) t-test
OVA 0.11± 0.00 2.35± 0.167 ©
OSR 2.96± 0.63 1.80± 0.157 ∗
soft-OSR 2.51± 0.53 1.85± 0.160 ≈

OVO 0.10± 0.00 2.49± 0.176 ©
CSOVO 3.12± 0.64 1.81± 0.128 ≈

soft-CSOVO 2.28± 0.40 1.82± 0.140 ≈

FT 0.10± 0.00 2.46± 0.178 ©
CSFT 2.70± 0.58 1.90± 0.148 ≈

soft-CSFT 1.46± 0.46 2.11± 0.183 ≈

∗ : best entry of cost
© : best entry significantly better in cost
≈ : otherwise

interesting future research direction is to consider them in an
asymmetric way that treats the cost as the major criterion
and the error as the minor one.

Our work reveals a new insight for cost-sensitive classifi-
cation in machine learning and data mining: Feeding in the
exact cost information for the machines to learn may not
be the best approach, much like how fitting the provided
data faithfully without regularization may lead to overfit-
ting. Our work takes the error rates to “regularize” the cost
information and leads to better performance. Another in-
teresting direction for future research is to consider other
types of regularization on the cost information.
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