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Optimizing 0/1 Loss for Perceptrons
by Random Coordinate Descent

Ling Li and Hsuan-Tien Lin

Abstract—The 0/1 loss is an important cost function for
perceptrons. Nevertheless it cannot be easily minimized by
most existing perceptron learning algorithms. In this paper, we
propose a family of random coordinate descent algorithms to
directly minimize the 0/1 loss for perceptrons, and prove their
convergence. Our algorithms are computationally efficient, and
usually achieve the lowest 0/1 loss compared with other algo-
rithms. Such advantages make them favorable for nonseparable
real-world problems. Experiments show that our algorithms are
especially useful for ensemble learning, and could achieve the
lowest test error for many complex data sets when coupled with
AdaBoost.

I. INTRODUCTION

The perceptron was first introduced by Rosenblatt [1] as a
probabilistic model for information processing in the brain.
It is simply a linear threshold classifier, which can be thought
as a hyperplane in the input space.

Given a set of examples with binary labels, an important
task of perceptron learning is to find a hyperplane that clas-
sifies the examples with the smallest number of mislabeling
errors. A data set that can be classified by some perceptron
without any mislabeling errors is called linearly separable,
or simply separable. For a separable set, the task of learning
is relatively easy and can be carried out by many existing
algorithms. For example, the perceptron learning rule [2]
is guaranteed to converge to a separating hyperplane in a
finite number of iterations. The hard-margin support vector
machine (SVM) can even find the separating hyperplane that
maximizes the minimal example margin [3].

However, these algorithms behave poorly when the data set
is nonseparable, which is a more common situation in real-
world problems. In such a situation, the perceptron learning
rule will not converge, and is very unstable in the sense
that the learned hyperplane might change from an optimal
one to a worst-possible one within a single trial [4]. The
optimization problem of the hard-margin SVM becomes
infeasible, and hence cannot be solved without modifications.
To tackle the nonseparable cases, many different algorithms
have been proposed (see Section II). Although those algo-
rithms appear quite different, they usually try to minimize
some cost functions of example margins. Note that the
number of mislabeling errors is proportional to a specific
cost function, the 0/1 loss.

The 0/1 loss is an important criterion for perceptron
learning. It captures the discrete nature of the binary clas-
sification (correct or incorrect), and partially indicates the

The authors are with the Learning Systems Group, Computer Science
Option, California Institute of Technology, Pasadena, CA 91125, USA
(email: {ling, htlin}@caltech.edu).

prediction power. A good 0/1 loss minimization algorithm
can be used either to obtain standalone perceptrons, or
to build more complex classifiers with many perceptrons.
However, the 0/1 loss cannot be directly minimized by most
existing perceptron algorithms, which is both because the
minimization problem is NP-complete [5], and because the
loss is neither convex nor smooth.

In this paper, we propose a family of new perceptron
algorithms to directly minimize the 0/1 loss. The central
idea is random coordinate descent, i.e., iteratively search-
ing along randomly chosen directions. An efficient update
procedure is used to exactly minimize the 0/1 loss along
the chosen direction. Both the randomness and the exact
minimization procedure help escape from local minima.
Theoretical analyses indicate that our algorithms globally
minimize the 0/1 loss with arbitrarily high probability under
simple settings, and perform random search towards an
optimal hyperplane efficiently. Experimental results further
demonstrate that our algorithms achieve the best 0/1 loss
most of the time when compared with other perceptron
algorithms, and are thus favorable base learners for ensemble
learning methods such as AdaBoost [6].

The paper is organized as follows. We discuss some of
the existing algorithms in Section II. We then introduce
our random coordinate descent algorithms, as well as their
convergence analyses, in Section III. Our algorithms are
compared with existing ones, both as standalone learners
and as base learners of AdaBoost, in Section IV. Finally,
we conclude in Section V.

II. RELATED WORK

We assume that the input space is a subset of R
m. A

perceptron consists of a weight vector (w1, . . . , wm) and a
bias term b (i.e., the negative threshold). To avoid treating
them separately, we use the notation w = (w0, w1, . . . , wm)
with w0 = b, and accordingly expand the original input
vector to x ∈ R

m+1 with x0 = 1. Then, the perceptron
performs classification by the sign of the inner product
between w and x, i.e., sign (〈w,x〉).

For a given training set {(xi, yi)}
N

i=1 with yi ∈ {−1, 1}
being the labels, let ρi = yi 〈w,xi〉 be the unnormalized
margin of the i-th example. Most perceptron algorithms try
to minimize some cost function based on ρi:

C(w) =

N
∑

i=1

ϕic (ρi) , (1)

where ϕi is the sample weight, and c (ρ) is a margin cost
function. Some common margin cost functions are listed
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TABLE I
SOME COMMON MARGIN COST FUNCTIONS

cost function c (ρ)
perceptron criterion max {0,−ρ}
SVM hinge loss max {0, 1 − ρ}
modified least-squares (max {0, 1 − ρ})2

0/1 loss [ρ ≤ 0]

in Table I. Note that many margin cost functions, including
the first three in Table I, can be viewed as monotonic and
continuous approximations of the 0/1 loss [7], which is a
direct measure of the classification performance.

The well-known perceptron learning rule (PLR) [2] per-
forms gradient descent on the perceptron criterion associated
with some individual (xi, yi). It updates the weight vector w

when it predicts wrongly on xi, i.e., when yi 〈w,xi〉 ≤ 0,

w ⇐ w + yixi. (2)

This update rule is applied repeatedly to every example in
the training set. If the training set is separable, the perceptron
convergence theorem [2] guarantees that a separating hyper-
plane can be found in finite time. However, if the training set
is nonseparable, the algorithm will never converge and there
is no guarantee for obtaining good perceptrons in terms of
the 0/1 loss.

The pocket algorithm [4] solves the convergence problem
of PLR at the price of much more computation. It runs PLR
while keeping “in its pocket” the best-till-now weight vector
in terms of the 0/1 loss. Although it can find an optimal
weight vector that minimizes the 0/1 loss with arbitrarily high
probability, the number of epochs required is prohibitively
large in practice [4]. This is partly because the algorithm aims
at minimizing the 0/1 loss, but only adopts (2) from PLR to
update the weight vector. Since PLR is very unstable when
the training set is nonseparable, much computation is wasted
on bad weight vectors.

In contrast to the pocket algorithm, which uses only the
best weight vector, Freund and Schapire [8] suggested com-
bining all the weight vectors that occurred in the trials of PLR
by a majority vote. One variant, which uses averaging instead
of voting, can produce a single perceptron. Since it was
shown that the voted- and the averaged-perceptron models
perform similarly in practice [8], we will only consider the
averaged-perceptron algorithm in this paper. The averaged-
perceptron algorithm operates with the perceptron criterion,
but does not explicitly minimize any cost functions. Thus,
the obtained perceptron is usually not the best minimizer of
either the perceptron criterion or the 0/1 loss.

When the margin cost function c(ρ) satisfies certain
smoothness assumptions, which is the case of all cost func-
tions in Table I except the 0/1 loss, the stochastic gradient
descent algorithm (SGD) [9] can be used to minimize the
associated C(w). For example, PLR is just a special case
of SGD with the perceptron criterion. However, because
the 0/1 loss has sharp transitions at ρ = 0, and zero gradients
elsewhere, it cannot be directly minimized by SGD.

Minimizing the 0/1 loss for perceptrons is a challenging

task. The problem is NP-complete [5], and hence determinis-
tic optimization is likely to be inefficient. In addition, general
numerical optimization cannot work because of the zero
gradients, non-convexity, and non-smoothness. Practically,
smooth and preferably convex approximations of the 0/1 loss
are usually considered instead.

Nevertheless, the 0/1 loss is important because it captures
the discrete nature of the binary classification (correct or
incorrect). It is thus interesting to see whether a decent
minimizer of the 0/1 loss could outperform minimizers of
other cost functions. In addition, a good 0/1 loss minimizer
can be useful in some practical cases. For example, adaptive
boosting (AdaBoost), one of the most popular ensemble
learning algorithms, expects an efficient and decent 0/1 loss
minimizer as the base learner [6]. Such a good base learner
could help AdaBoost in training speed and algorithmic
convergence. However, existing perceptron algorithms men-
tioned above usually cannot be good base learners (see
Section IV), because of slowness (e.g., pocket) and/or cost
function mismatch (e.g., averaged-perceptron).

III. RANDOM COORDINATE DESCENT

From now on, we will focus on the 0/1 loss for perceptrons
and propose a family of algorithms to directly minimize
it. The notation E(w), or the word error, will be used
to specifically represent C(w) with the 0/1 loss. Similar
to (2), our algorithms updates the perceptron weight vector
iteratively by choosing an update direction d and a proper
descent step α,

w ⇐ w + αd. (3)

We first show how to determine α for a given direction d,
and then discuss how we could choose d.
A. Finding Optimal Descent Step

Assume that an update direction d has been chosen. To
have the most decrease of E(w) along the direction d, we
determine the best step size α∗ by solving

min
α∈R

E(w + αd) =
N

∑

i=1

ϕi [yi 〈w + αd,xi〉 ≤ 0] . (4)

We can take a closer look at the error that (w + αd) makes
on an individual example (xi, yi). Let δi = 〈d,xi〉.

• When δi 6= 0, 〈w + αd,xi〉 = δi

(

δ−1
i

〈w,xi〉 + α
)

.
The error of (w + αd) on (xi, yi) is the same as the
error of a 1-D decision stump [10] with bias α on the
example

(

δ−1
i

〈w,xi〉 , yi sign (δi)
)

.
• When δi = 0, 〈w + αd,xi〉 = 〈w,xi〉. Thus, the error

does not change with α.
There exists a deterministic and efficient algorithm for mini-
mizing the training error for decision stumps [10]. Hence,
we can transform all training examples with δi 6= 0 us-
ing (xi, yi) 7→

(

δ−1
i

〈w,xi〉 , yi sign (δi)
)

, and then apply
the decision stump learning algorithm on the transformed
training set to decide the optimal descent step α∗. Such an
update procedure is illustrated in Fig. 1. Note that α∗ is not
restricted to be positive, and hence the direction d does not
need to be strictly descent.
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Input: A training set {(xi, yi)}
N

i=1, its sample weight {ϕi}
N

i=1,
the current w, and an update direction d

1: for i = 1 to N do {generate the 1-D training set}
2: δi ⇐ 〈d,xi〉
3: if δi 6= 0 then
4: x′

i ⇐ δ−1
i

〈w,xi〉, y′
i ⇐ yi sign (δi)

5: end if
6: end for
7: Find the optimal decision stump only for those {(x′

i, y
′
i)}

and {ϕi} with δi 6= 0 :

α
∗ ⇐ argmin

α∈R

X

i : δi 6=0

ϕi

ˆ

y
′
i · sign

`

x
′
i + α

´

≤ 0
˜

8: w ⇐ w + α∗
d

Fig. 1. The update procedure that solves (4)

Input: A training set, sample weight, and the number of epochs T
1: Initialize w

(1)

2: for t = 1 to T do
3: Generate a random update direction d

(t) ∈ R
m+1

4: Update w
(t) to w

(t+1) with the algorithm in Fig. 1
5: end for
6: return w

(T+1) as the perceptron weight vector

Fig. 2. Random coordinate descent (RCD) for perceptrons

B. Choosing Update Directions

There are many ways to choose an update direction. The
simplest way might be the cyclic coordinate descent (CCD).
It focuses on one basis vector in each epoch, and rotates
through the (m + 1) basis vectors repeatedly. Such a tech-
nique is commonly used when the cost function is not
differentiable.

To avoid getting stuck in some local minima potentially
caused by using fixed directions in a fixed order, we may
choose the update directions randomly. This method, together
with the update procedure, is called random coordinate
descent (RCD) and is depicted in Fig. 2. Note that CCD
can be thought as a degenerate variant of RCD. Below
we will discuss some other representative variants of RCD
algorithms.1

The simplest variant is called RCD-plain, in which the
update directions are independent and identically-distributed
random vectors. We have used two common distributions
for generating the random vectors. The first one, called the
uniform random vectors, picks each component of the vector
from a uniform distribution spanned over the corresponding
feature range. The other one uses Gaussian distribution
estimated from the corresponding feature statistics, and is
called the Gaussian random vectors.

Note that the final value of the bias, w0, can be in quite
different ranges from the other components of w, due to
the setting x0 = 1. Thus, it might be helpful to have an
update direction devoted to adjusting w0 only. If the zeroth
basis vector is additionally adopted as the update direction
every (m + 1) epochs, RCD-plain becomes RCD-bias.

Inspired by what PLR does, we may also use the gradient
of the perceptron criterion associated with a randomly picked

1More variants can be found in our earlier technical report [11].

example (xi, yi) as the update direction. We call this vari-
ant RCD-grad. The difference between PLR and RCD-grad
is that PLR does not pursue the optimal descent step.

C. Convergence of RCD

Next we analyze the convergence properties of RCD
algorithms, which follows from random search techniques in
optimization [12]. Note that both E(w) and RCD algorithms
are invariant to the magnitude of vectors w or d. For easier
analysis, we assume that every nonzero w

(t) or d
(t) is

normalized to unit length.
First, we show a general result of global convergence that

applies to RCD-plain and RCD-bias, with either uniform
or Gaussian random vectors.

Definition 1: We call
{

d
(t)

}∞

t=1
sufficiently random

if
∏

∞

t=1

(

1 − Pr
[

d
(t) ∈ A

])

= 0 for all A ⊆ S ∪ {0} with
nonzero measure, where S = {w : ‖w‖ = 1}.

Theorem 1: For an RCD algorithm with sufficiently ran-
dom directions

{

d
(t)

}∞

t=1
,

lim
t→∞

Pr
[

w
(t) minimizes E(w)

]

= 1. (5)

Proof: We extend from the global search convergence
theorem [12, page 20], which, together with the property
that E(w) is lower bounded and evaluates to discrete values,
implies the correctness of (5) under the following conditions:

1) S ∪ {0} is a measurable set; E(w) is measurable.
2) The directions

{

d
(t)

}∞

t=1
are sufficiently random.

3) The sequence
{

E(w(t))
}∞

t=1
is non-increasing,

and E(w(t+1)) ≤ E(d(t)).

The proof relies on the third condition, which holds be-
cause α∗ is the minimizer of E(w(t) + αd

(t)) in Fig. 1.
We can easily verify that the assumption of Theorem 1 is
satisfied by RCD-plain and RCD-bias, with either the uni-
form or the Gaussian random vectors. However, Theorem 1
does not fully reveal their efficiency. Next, we take RCD-
plain with the Gaussian random vectors d

(t) ∼ N (0, 1) as an
example, and show how it performs efficient random search.

Define B(w∗, R) as a hypersphere in R
m+1 with cen-

ter w
∗ and radius R. Let

A(w∗, R) = {w/ ‖w‖ : w ∈ B(w∗, R) \ {0}} ⊂ S.

An integration on S shows that when ‖w∗‖ = 1, the
probability of the direction d

(t) ∈ A(w∗, R) is

m · vm

∫ R

0

rm−2 d
√

1 − r2 ≥ vmRm, (6)

where vm is some constant [13]. Note that in the space
of weight w, the N hyperplanes 〈xi,w〉 = 0 cut the
surface S into different regions, each of which represents a
specific prediction pattern on the training set. Following the
analysis of Dunagan and Vempala [14], each region can be
approximately modeled by some A(w∗, R) with ‖w∗‖ = 1.2
Assume that w

∗ is from a region where E(w∗) < E(w(t)).

2Within the region, we choose a w
∗ such that R is maximized.
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Equation (6) gives a lower bound for locating the region in a
naive random search. However, RCD-plain can perform the
search more efficiently from the current w

(t):
Theorem 2: For the piece A(w∗, R) defined above, if the

angle between w
∗ and w

(t) is φ ∈ [0, π

2 ], then RCD-plain
with the standard Gaussian random vectors satisfies

Pr
[

E(w(t+1)) ≤ E(w∗)
]

≥ vmRm
/

sinm φ.

Proof: The scale invariance of E(w) implies
that E(w) = E(w∗) for any k > 0 and w ∈ B(kw∗, kR).
Consider d

(t) such that the line w
(t) + αd

(t)

intersects B(kw∗, kR), which is equivalent to d
(t) ∈ Ak

with Ak = A(kw∗ −w
(t), kR). Thus, for any k > 0,

Pr
[

E(w(t+1)) ≤ E(w∗)
]

≥ Pr
[

d
(t) ∈ Ak

]

.

The theorem is proved by setting k = 1/ cosφ, which results
in a piece Ak with the maximum measure.
Similar analysis can be carried out for the case of the uniform
or other Gaussian random vectors. When w

(t) and w
∗ are

close, the angle φ between them is small, and RCD-plain
greatly improves the lower bound of the probability for
decreasing E(w). In other words, RCD-plain performs fast
local search for a better w nearby. Note that because of the
structure of the w-space, a region with global minima is
close to regions with small training errors. With the implicit
use of the structure, and the ability to escape from local
minima, RCD-plain (and similarly RCD-bias) can hence
perform global minimization efficiently.

IV. EXPERIMENTS

We first compare the performance of different RCD vari-
ants in minimizing the training error. Some better variants
are further compared with the existing perceptron algorithms.
We use nine real-world data sets3 from the UCI machine
learning repository [15], with 80% of randomly chosen
examples for training and the rest for testing. Three artificial
data sets4 are also randomly generated, with 600 examples
for training and 4400 for testing. The 0/1 loss (error) is
measured over 500 runs on the training and testing sets, and
is presented using the mean and the standard error.

a) Data Preprocessing.: The features in the training set
are first linearly normalized to [−1, 1] solely based on the
training examples. Then the test examples are normalized
accordingly.

b) Initial Seeding.: We initialize w
(1) with either the

zero vector or the Fisher’s linear discriminant (FLD, see
for example [17]). For the latter case, any singular estimate
of the within-class covariance matrix is regularized with an
eigenvalue shrinkage parameter of 10−10 [18].

A. Comparisons within RCD Variants

In Fig. 3, we compare different RCD variants using their
training errors on the pima data set. The results shown are

3They are australian, breast, cleveland, german, heart, ionosphere,
pima, sonar, and votes84. See [11] for details.

4They are ringnorm, threenorm [16], and yinyang. See [11] for details.
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Fig. 3. Training errors of RCD algorithms on pima
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Fig. 4. Training and test errors of stochastic algorithms on pima

based on uniform random vectors, while similar results have
been observed for Gaussian random vectors. Some important
observations are:

• With the same number of epochs, training errors of RCD
algorithms using the FLD seeding are significantly
lower than those using the zero seeding.

• Both CCD and RCD-grad do not work as well as RCD-
plain and RCD-bias. This result confirms that suffi-
ciently random directions are important for RCD.

• RCD-bias is better than RCD-plain, especially at the
beginning. However, the edge gets smaller with more
training epochs.

We obtain similar observations in some other data sets.
Thus, RCD-plain and RCD-bias, with the FLD seeding, are
more promising. Next, we compare them with some existing
perceptron algorithms. For a fair comparison, we also equip
the other algorithms with the FLD seeding.

B. Comparisons as Standalone Learners

We consider the pocket algorithm with ratchet (denoted
as pocket) [4], an improved variant of the averaged-
perceptron algorithm, in which examples are presented com-
pletely randomly during training (ave-perc) [8, 11], SGD
with a learning rate 0.002 on the modified least-
squares (SGD-mls) [9], and the linear soft-margin SVM
with parameter selection (soft-SVM) [19, 20]. The first
three stochastic algorithms can be directly compared to RCD
algorithms by allowing the same T = 2000 epochs, and the
last one is included for reference.

Fig. 4 presents the performance of the stochastic algo-
rithms on the pima data set.5 In the competition for low
training errors, RCD-bias is clearly the best, and pocket

5The curves of RCD-plain are very close to those of RCD-bias, and are
thus not shown.
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TABLE II
TRAINING ERRORS (%) OF PERCEPTRON ALGORITHMS USING THE FLD SEEDING

data set RCD-plain RCD-bias pocket ave-perc SGD-mls soft-SVM
australian 10.12 ± 0.03 9.98± 0.03 10.81 ± 0.03 12.19 ± 0.03 12.70 ± 0.04 14.33 ± 0.03

breast 1.68± 0.01 1.68± 0.01 1.86 ± 0.01 2.87 ± 0.02 2.77 ± 0.02 2.70 ± 0.02

cleveland 10.57± 0.05 10.62± 0.05 12.07 ± 0.05 14.40 ± 0.06 14.48 ± 0.06 14.74 ± 0.05

german 19.16 ± 0.04 18.80± 0.03 21.10 ± 0.03 21.31 ± 0.04 22.18 ± 0.05 21.48 ± 0.04

heart 9.48± 0.05 9.49± 0.05 11.22 ± 0.05 13.64 ± 0.06 13.82 ± 0.06 14.20 ± 0.06

ionosphere 3.88 ± 0.04 3.97 ± 0.04 3.41± 0.05 4.92 ± 0.06 5.14 ± 0.05 6.95 ± 0.10

pima 19.60± 0.04 19.60± 0.03 20.34 ± 0.03 21.99 ± 0.04 22.25 ± 0.04 22.09 ± 0.04

ringnorm 27.61 ± 0.07 27.36± 0.08 30.46 ± 0.07 35.49 ± 0.11 34.52 ± 0.13 31.82 ± 0.09

sonar 2.56 ± 0.04 2.62 ± 0.04 0.00± 0.00 0.37 ± 0.02 1.42 ± 0.06 11.58 ± 0.20

threenorm 11.41± 0.06 11.39± 0.06 13.53 ± 0.06 14.43 ± 0.06 14.51 ± 0.06 14.47 ± 0.06

votes84 1.32± 0.02 1.31± 0.02 1.46 ± 0.02 2.42 ± 0.03 2.48 ± 0.03 3.02 ± 0.04

yinyang 15.33± 0.05 15.36± 0.05 15.61 ± 0.05 19.10 ± 0.07 19.03 ± 0.07 18.89 ± 0.08

(results within one standard error of the best are marked in bold)

TABLE III
TEST ERRORS (%) OF PERCEPTRON ALGORITHMS USING THE FLD SEEDING

data set RCD-plain RCD-bias pocket ave-perc SGD-mls soft-SVM
australian 14.24 ± 0.12 13.92 ± 0.12 14.31 ± 0.12 13.64± 0.12 13.87 ± 0.12 14.78 ± 0.12

breast 3.65 ± 0.07 3.61 ± 0.07 3.43 ± 0.06 3.36 ± 0.06 3.28± 0.06 3.22± 0.06

cleveland 18.68 ± 0.22 18.57 ± 0.21 18.49 ± 0.21 16.74± 0.20 16.76± 0.20 16.72± 0.20

german 24.45 ± 0.12 23.70 ± 0.13 25.24 ± 0.13 23.24± 0.12 24.05 ± 0.13 23.64 ± 0.12

heart 18.13 ± 0.21 18.20 ± 0.22 17.63 ± 0.20 16.51± 0.20 16.49± 0.20 16.45± 0.20

ionosphere 13.91 ± 0.17 14.72 ± 0.18 12.87 ± 0.18 12.76 ± 0.18 12.63± 0.18 12.57± 0.17

pima 23.79 ± 0.14 23.50 ± 0.14 23.50 ± 0.14 22.79± 0.14 23.07 ± 0.14 23.19 ± 0.14

ringnorm 35.83 ± 0.04 35.65± 0.04 36.59 ± 0.04 39.27 ± 0.08 38.38 ± 0.10 35.70 ± 0.05

sonar 25.98 ± 0.29 26.20 ± 0.29 25.20 ± 0.25 25.09 ± 0.26 24.90 ± 0.28 23.89± 0.27

threenorm 16.82 ± 0.03 16.86 ± 0.03 17.65 ± 0.04 16.14 ± 0.02 16.18 ± 0.02 16.08± 0.02

votes84 5.21 ± 0.09 5.00 ± 0.10 5.24 ± 0.10 4.52 ± 0.10 4.70 ± 0.11 4.39± 0.09

yinyang 17.71± 0.02 17.75 ± 0.02 17.74 ± 0.02 19.25 ± 0.02 19.21 ± 0.02 19.21 ± 0.02

(results within one standard error of the best are marked in bold)

follows. However, when the test error is concerned, the other
three methods, especially ave-perc, are the winners. The
final performance of all perceptron algorithms are shown
in Tables II and III. Similarly, RCD-plain and RCD-bias
achieve the lowest training errors for most of the data sets.
On the other hand, soft-SVM and ave-perc, which are
known to be regularized, could usually obtain better test
errors. Thus, the 0/1 loss itself may not be the best cost
function, and overfitting without regularization shall explain
the inferior test performance of RCD algorithms.

We also observe that pocket is much slower than RCD-
bias, because with nonseparable data sets, checks on whether
a new weight vector should replace the in-pocket one may
happen very often. In addition, pocket usually also needs
more epochs in order to achieve the same level of training
error as RCD-bias.
C. Comparisons as AdaBoost Base Learners

AdaBoost expects its base learners to efficiently find a
hypothesis with low weighted training error. The details for
plugging the sample weights ϕi into existing perceptron
algorithms are listed in our technical report [11]. We use the
reweighting technique for pocket and ave-perc. Then, we
set T = 200 for all perceptron algorithms, which seems to be
sufficient for all the data sets, and apply them as AdaBoost
base learners. We run AdaBoost for up to 200 iterations, and
report the results with the zero seeding in Table IV, while
similar results have been obtained with the FLD seeding.

We observe that ave-perc, SGD-mls, and soft-SVM,
which are not designed for the weighted training error,
usually fail to return a decent perceptron, and cause Ada-
Boost to stop at some early iteration [11]. That is, their
performance is mainly associated with a few regularized
perceptrons rather than with AdaBoost. On the other hand,
AdaBoost with RCD-plain, RCD-bias, or pocket always
runs through all 200 iterations, and hence their performance
is fully connected to AdaBoost.

To further compare perceptron algorithms as a base learn-
ers to AdaBoost, we mark the entries with ∗ in Table IV
to denote a significant improvement from the best entry of
Table III. There are some data sets without ∗, which means
that they are simple enough, and can be modeled sufficiently
well with one single perceptron (e.g., australian). For those
data sets, ave-perc, SGD-mls, and soft-SVM have good
performance both as standalone learners and with AdaBoost.
However, since they already perform well as standalone
learners, there is no need in binding them with AdaBoost
on those data sets.

On the other hand, for complex data sets that can be better
modeled by AdaBoost with perceptrons (e.g., yinyang), base
learners that aim at minimizing the 0/1 loss (RCD-plain,
RCD-bias, or pocket) perform significantly better than
others. In addition, RCD-plain and RCD-bias are usually
better than pocket in terms of both the training speed and the
performance. Thus, RCD-plain and RCD-bias fit the needs
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TABLE IV
TEST ERRORS (%) OF ADABOOST WITH PERCEPTRON ALGORITHMS USING THE ZERO SEEDING

data set RCD-plain RCD-bias pocket ave-perc SGD-mls soft-SVM
australian 15.45 ± 0.12 15.49 ± 0.12 15.75 ± 0.12 13.61± 0.12 14.00 ± 0.12 15.65 ± 0.13

breast 3.21± 0.06 3.34 ± 0.06 3.41 ± 0.07 3.35 ± 0.06 3.24± 0.06 3.20± 0.06

cleveland 18.00 ± 0.21 18.22 ± 0.21 18.95 ± 0.20 16.81± 0.20 16.74± 0.20 16.69± 0.21

german 25.17 ± 0.13 25.37 ± 0.12 25.57 ± 0.13 23.25± 0.12 23.96 ± 0.13 23.48 ± 0.12

heart 17.60 ± 0.21 17.58 ± 0.22 18.94 ± 0.21 16.55± 0.20 16.54± 0.20 16.57± 0.21

ionosphere 10.36± 0.16
∗
10.30± 0.16

∗
11.65 ± 0.17

∗
13.21 ± 0.17 12.67 ± 0.17 10.83 ± 0.16

∗

pima 24.87 ± 0.14 24.79 ± 0.14 25.15 ± 0.14 22.77± 0.14 23.01 ± 0.14 23.06 ± 0.13

ringnorm 8.60 ± 0.05∗ 12.22 ± 0.07∗ 7.12± 0.04
∗ 39.29 ± 0.08 38.32 ± 0.09 15.49 ± 0.17∗

sonar 16.44 ± 0.25∗ 16.06± 0.25
∗ 25.02 ± 0.27 25.77 ± 0.27 25.37 ± 0.27 21.52 ± 0.25∗

threenorm 14.51± 0.02
∗ 15.34 ± 0.03∗ 14.95 ± 0.02∗ 16.14 ± 0.02∗ 16.17 ± 0.02∗ 15.97 ± 0.02∗

votes84 4.25± 0.09
∗

4.24± 0.09
∗

4.54 ± 0.10 4.74 ± 0.10 4.68 ± 0.10 4.82 ± 0.10

yinyang 3.95± 0.03
∗

3.98± 0.03
∗

4.87 ± 0.02
∗

19.25 ± 0.02 19.23 ± 0.02 19.14 ± 0.02

(results within one standard error of the best entry in the row are marked in bold)
(results better than the best of Table III by one standard error are marked with ∗)

of AdaBoost, and can almost always achieve the best test
error in this situation. The results demonstrate the usefulness
of RCD algorithms as base learners of AdaBoost.

V. CONCLUSION

We have proposed a family of new learning algorithms
to directly optimize the 0/1 loss for perceptrons. The main
ingredients are random coordinate descent (RCD) and an
update procedure to exactly minimize the 0/1 loss along
the update direction. We have proved the convergence of
our RCD algorithms, and have also analyzed their speedup
heuristic. Experimental results have confirmed that RCD
algorithms are efficient, and usually achieve the lowest in-
sample 0/1 loss compared with several existing perceptron
learning algorithms.

RCD algorithms can be used not only as standalone
learners, but also as favorable base learners for ensemble
learning. In terms of the improvement for the out-of-sample
performance, our experimental results have demonstrated
that AdaBoost works better with RCD algorithms than with
other existing perceptron algorithms.

On some data sets on which a single perceptron works
well, our results indicate that RCD-based 0/1 loss minimizer
may not be the best choice. On the other hand, regularized
algorithms such as the averaged-perceptron and the soft-
margin SVM could achieve better out-of-sample perfor-
mance. Future work will be focused on RCD algorithms for
some regularized 0/1 loss.
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