
A Note on the Decomposition Methods for Support Vector
Regression

Shuo-Peng Liao, Hsuan-Tien Lin, and Chih-Jen Lin

Department of Computer Science and
Information Engineering

National Taiwan University
Taipei 106, Taiwan.

E-mail: cjlin@csie.ntu.edu.tw

Abstract

The dual formulation of support vector regression in-
volves with two closely related sets of variables. W h e n
the decomposition method is used, many existing ap-
proaches use pairs of indices f r o m these two sets as the
working set. Basically they select a base set first and
then expand it so that all indices are pairs. This makes
the implementation different f rom that for support vec-
tor classification. In addition, a larger optimization
sub-problem has t o be solved in each iteration. In this
paper from different aspects we demonstrate that there
are n o needs to do so. In particular we show that di-
rectly using this base set as the working set leads t o

where C is the upper bound, Q i j G 4 (~ i) ~ 4 (x j) , ai and
a; are Lagrange multipliers associated to i th data xi,
and E is the parameter of the loss function. Note that
training vectors xi are mapped into a higher dimen-
sional space by the function 4. An important property
is that a t the optimal solution, ais; = 0, i = 1 , . . . , l .

Due to the density of Q, currently the decomposition
method is the major method to solve (1.1) (16, 7, 91.
It is an iterative process where in each iteration the in-
dex set of variables are separated to two sets B and N ,
where B is the working set. Then in that iteration vari-
ables corresponding to N are fixed while a sub-problem
on variables corresponding to B is minimized.

convergence (number O f iterations)' Therefore> Following approaches for support vector classification,
there are methods for selecting the working set. For
many existing approaches for regression, after these
methods are applied to find a base set, they expand it

not only the program can be simpler, with a smaller
working set and similar number of iterations, it can
also be more efficient.

1 Introduction

so that all elements are pairs. For example, if {ai, a;}
are chosen first, they include {ay, a j} into the working
set. Then the following sub-problem of four variables
(ai, a i , ai , a;) is solved:

Given a set of data points, {(XI, zl), . . . , (xl, zr)} , such
that xi E R" is an input and zi E R' is a target out-
put. A major form for solving support vector regression
(SVR) is the following optimization problem [17]: + (Q i , N (a l v - ah) + zi)(ai - a;)

1
1

min -(a - c ~ *) ~ Q (a - a*) + E c(ai + a;) 2
i=l

1

1 Note that Q N and a& are variables corresponding to
N . They are fixed here.

A reason of doing so is to maintain aiaf = 0, i =

C(.i - a,') = 0,

0 5 ai,a; 5 c,i = l , . . . , 1 ,
i= 1

(1.1)

0-7803-7044-9/01/$10.00 02001 IEEE 1474

1, . . . , 2 throughout all iterations. Hence the number of
nonzero variables in the iterative process can be kept
small.

However, it has been shown in [12, Theorem 4.11 that
for some existing work (e.g. [7, 9]), if they do not ex-
pand the base set to pairs, the property ais: = 0,i =
1 , . . . , Z still holds. In Section 2 we will elaborate on
this in more detail.

Recently there have been implementation without us-
ing pairs of indices. For example, LIBSVM [2], SVM-
Torch [3], and mySVM [15]. A question immediately
raised is on the performance of these two approaches.
From one hand, we can think that an expanded working
set leads to a larger sub-problem so the total number
of iterations may be less. We also note that additional
elements of those pairs are obtained for free. On the
other hand, a larger sub-problem takes more time so
the cost of each iteration is higher.

We discuss this issue in Section 3. First we consider
approaches with the smallest working set size (i.e. two
and four for both approaches) where the analytic so-
lution of the sub-problem is handily available. This is
from the Sequential Minimal Optimization (SMO) [14].
From mathematical explanation we show that while
solving the four-variable sub-problems, in most cases,
only those two variables obtained in the first stage of
the working set selection are updated. Therefore, the
number of iterations of both two-variable and four-
variable approaches are nearly the same. Details of
the proof are in an earlier technical report [ll]. Hence
there is no need to expand the working set using pairs of
indices. About larger working sets, we also discussed
that after some finite number of iterations, the sub-
problem using only the base set are already optimal
for the subproblem using pairs of variables. This gives
us a theoretical justification that it is not necessary to
use pairs of variables.

It is important to clarify the above properties. With
them, the implementation can be simpler and easier.

In Section 4 we conduct experiments to demonstrate
the validity of our analysis. We also discuss that with-
out expanding the working set, the implementation of
regression code can be nearly the same as that for clas-
sification.

There are other decomposition approaches for support
vector regression (for example, [4]). They dealt with
different situations which will not be discussed here.

2 Working Set Selection

Here we consider the working set selection from [6, S]
which were originally designed for classification cases.
Remember that the dual formulations of support vector
classification is:

1
2

min -aTQa - e'a

O<aa<C, i = l , . . . , 1,

y'a = 0, (2.1)

where y E R' with yi E (1, -1) and e is the vector of
all ones,

To make SVR similar to the classification formula, we
define the following 21 by 1 vectors:

Then the regression problem (1.1) can be reformulated
as

+ [€e' + zT, ,e* - z'] a(*)

O I a ; *) l C , i = l , . . . , 21,

$-a(*) = 0. (2-3)

Now f is the objective function of (2.3). We define

m(a(*)) max(max - ~ ~ ~ f (a (*)) ~ ,
aj')<C,yt=l

m m -ytVf(a(*))t), (2.4)

~ (a (*)) G min(min - y t ~ f (a (*)) t ,
aj')>O,yt=l

a:*)>O,yt=-l

min -y tVf(d*)>t) . (2.5)

For the convenience, we define the candidate of m(a(*))
as the set of all indices t which satisfy < C, yt = 1
or > 0,yt = -1 where 1 5 t 5 21. It is similar to
candidate of M (a (*)) .

The KKT condition states that a feasible a(*) is an
optimal solution if and only if

al')<C,yt=-1

M(cr(*)) - m(a(*)) 2 0. (2.6)

In each iteration, if stands for the current
iteration, we define mk G m(a(*)lk) and Mk

1475

M(a(*)tk). Also, let argmk be the set of indices whose
-yiV f (a(*)lk)i are the same as m(a(’)?’)). Similarly we
define argMk.

Thus during iterations of the decomposition method,
is not an optimal solution yet so

mk > Mk, for all k .

If two elements are selected as the working set, intu-
itively we tend to choose indices i and j which satisfy

i E argmk and j E argMk, (2.7)

as they cause the maximal violation of the KKT con-
dition.

A systematic way to select a larger working set in each
iteration can be as follows. If q, an even number, is the
size of the working set, q/2 indices are sequentially se-
lected from the largest -yiV f (a(*))i values to smaller
in candidates of mk. That is,

3 ’ - ya, vf(a‘*’~k)a, 2 . * . 2 -yi3 Vf(Q(*)’k)i

where i l E argmk. The other q/2 indices are sequen-
tially selected from the smallest -yiV f (a(*))$ values
to larger in candidates of Mk. That is,

where j , E argMk. Also, we have

to ensure that the intersection of both selection groups
is empty. Thus if q is not small, sometimes the actual
number of selected indices may be less than q.

Note that this is the same as the working set selection
in [14]. However, the original derivation in [14] was
from the concept of feasible directions in constrained
optimization but not from the violation of the KKT
condition.

After the base set of q indices is selected, earlier ap-
proaches [7, 101 expand the set so that all elements in
it are pairs.

However, if directly using elements in the base set, the
following theorem has been proved in
4.11:

Theorem 2.1 If the initial solution
af(ct*)f=O,i=l ,... , l f o r a l l k .

[12, Theorem

is zero, then

Another important issue for the decomposition method
is the stopping criteria. &om (2.6), a natural choice of
the stopping criteria is

where 6, the stopping tolerance, is a small positive
number. The stopping criteria (2.9) for the q = 2 case
using indices i and j selected from (2.7) is

-yjv f (a (*) l k) j - (-yzVf ((Y‘*)’”i) 2 -6. (2.10)

The convergence of the decomposition method under
some conditions of the kernel Q is shown in [12] for
the base method. Some theoretical justification on the
use the stopping criteria (2.9) for the decomposition
method is in [13]. For the method of using pairs, how-
ever, no particular convergence proof has been made,
but we will assume it for our analyses.

3 Number of Iterations

In this section we will show that in final iterations using
only the base set is the same as using pairs of indices
as the working set.

First we state an important property on the difference
between the i th and (i + Z)th gradient elements.
sider a, and a:. We have

Vf(a(*))i+l = -(&(a - ~ *)) i + E - zi
= -v f (a(*))a + 2€.

We will use this frequently in later analyses.

Con-

(3.1)

In [ll] we discussed the case of q = 2. Using (3.1)
[ll] shows that i and i* are never selected at the same
iteration so the approach using pairs always has four el-
ements in the working set. It then proves the following
result:

Theorem 3.2 For all iterations with the violation on
the stopping criterion (2.10) n o more than 2 ~ , an opti-
mal solution of the two-variable sub-problem is already
a n optimal solution of the corresponding four-variable
sub-problem.

Therefore, for the four-variable sub-problem, in final
iterations only two indices from the base set are still
modified. If e is not small, in most iterations the stop-
ping tolerance is smaller than 2 ~ . In addition, as most
decomposition iterations are spent in the final stage
(due to slow convergence), this theorem has shown a

1476

conclusive result that no matter using two-variable or
four-variable approaches, the difference on the number
of iterations should not be much.

For general cases (q > 2), we may not be able to get
results as elegant as Theorem 3.2. When q = 2, we ex-
actly know the relation on the changes of ai*) and a$*)

when q > 2, the change on each variable can be dif-
ferent. Anyway in the following we will show a similar
but weaker result.

a y i (a { *) ’ k - a!*),k) = - y j (a (*) ’ k - ay)’k) . However,

If not stopped in finite iterations, the decomposition
method generates an infinite sequence which converges
to an optimal solution. In the following we will show
that in final iterations, i.e. after k is large enough,
solving the sub-problem with q variables is the same as
solving the larger sub-problem which contains pairs of
variables. Next we describe some properties which will
be used for the proof.

Assume that the sequence {a(*)’k} of the method us-
ing only q elements from the base set converges to an
optimal solution d*) . Then we can define

We also note that (2.8) implies that for any index i in
the working set of the kth iteration,

We then describe two theorems from [13] which are
needed for the main proof. [13] deals with a general
framework of decomposition methods for different SVM
formulations. We can easily check that the current
working selection satisfies required conditions in [13]
so these two theorems can be applied:

7 Theorem 3.3
~

-!

lim m k - Mk = 0. (3.4)
k+w

Theorem 3.4 For any &!*I whose corresponding
-y iVf (d*)) i is neither m nor A?, after k is large
enough, a!*)’k is at a bound and is equal t o &!*I.

Immediately we have a corollary of Theorem 3.3 which
is specific to the regression problems:

Corollary 3.5 Af ter k is large enough, at and (CY*):
would not be both selected in the working set.

Proof: By the convergence of mk - Mk to 0, after
k is large enough, m k - Mk < E. If at and (a*): are
both selected in the working set, from (3.3), Mk 5
-Vf(a(*)yk)i 5 mk and Mk 5 vf((~(*)’~)i+l L m k .

However, (3.1) shows Vf(a(*)>’)i+l = -Vf(a(*)ik))i +
26 so m k - Mk 2 26 and there is a contradiction. w

The main result of this section is:

Theorem 3.6 W e assume that h? # m + 2c. After k
is large enough, any optimization sub-problem by using
only q elements is already optimal for the larger sub-
problem which contains pairs of variables.

Proof: If the result is wrong, there is an index i
and an infinite set K such that for all IC E K, a: (or
(a*)!) is selected in the working set but then (a*)!
(or a t) is also modified. Without loss of generality, we
assume that a: is selected in the working set but (a*):
is modified infinite times.

By Theorem 3.4, since (a*): is modified infinite times,
Vf(d*))i+l = m or Vf(d*))i+l = A?. For the first
case, (3.1) implies that -Vf (d*)) i < m while the sec-
ond case implies that -V f (d*)) i = &f - 26 < &f.
For the second case, by the assumption that m #
M - 26, m < -V f (d*)) i or > -Vf(~r(*)) i . If
riz < -V f (d*)) i , we have m < -Vf (d*)) i < I$ which
is impossible for an optimal solution. Hence

- y zv f (d (*)) z < m (3.5)

holds for both cases.

Therefore, we can define

By the convergence of the sequence { - y j V f (a (*) , k) j }
to - y j ~ f (d *)) j , for all j = 1 , . . . ,21, after is large
enough,

Suppose that at the kth iteration j E argMk is selected
in the working set and

1477

By (3.3), (3.6), (3.7), and (3.5),

- y j V f (d *)) j

5 - yjVf(a(*)")j + A
= M k + A

5 - y iVf (c~(*) '~) i + A

5 - yiVf(Ci(*))i + 2A

5 - yzVf(Ci'*')z + 2(A - (-yiVf(Ci(*))i))/3

< A < M , (3.8)

Table 4.1: Problem abalone (first 200 data, q = 10)
Parameters Iter.(base) Iter.(pairs) Jumps

c = 10,c = 10
c = 100, E = 0.1 1641 1983 184

From Theorem 3.4 and (3.8), after k is large enough,
ay)'k is bounded and is equal to Ciy). That is, ai*)'k =
a(,*)?k+l = @ Since a y) > k + l - - a (*) ? k and ay)'k is a
cdndidate of h f k , by (3.3), (3.6), and (3.7)

Mk+l 5 -yjVf(C~(*)'~'')j

5 - ~ j V f (c ~ (*) , ~) j + A
= M k + A
5 -yiVf(~u(*)>~)i + A
5 -yiVf(a(*)'"')i + 2A.

Hence we get

On the other hand, (a*)! is modified to (a*):+'. At
least one of them is strictly positive. By the definition
of mk ,

From (3.1), (3.3), (3.9), and (3.10), for all large enough
k E IC,

Therefore,

lim m k - Mk # 0

which contradicts Theorem 3.3.

k-+m

4 Experiments

In this section we experiment with some practical prob-
lems to confirm our analysis.

552 29 I 807 1 1 0
c = 100, € = 1
c = 100,E = 10

Note: "Jumps" means the number of changes in totally about
Iter.xq components.

Table 4.2: Problem abalone (first 200 data, q = 20)
Parameters Iter.(base) Iter.(pairs) Jumps

c= l o , € = 1
c = l o , € = 10
c' = 100, E = 0.1
c = 100,e = 1
c = 100, E = 10

1086 250 1168
258 310

We consider two regression problems abalone (4177
data) and add10 (9792 data) from [l] and [5] , respec-
tively. The RBF kernel is used:

Q . = e-ll.*-5~112/n
23 -

where n is the number of attributes in each data. For
these two problems, n is eight and ten, respectively.

We use a simple implementation written in MATLAB
so only small problems are tested. We consider the
first 200 data points of abalone and a d d l 0 . Results are
in Tables 4.1 to 4.4. For each problem we test two
different sizes of the working set: q = 1 0 and q =
20. Then in each table we try different E and C . We
did not do any model selections as our purpose is not
on the solution quality. We consider E below to 0 . 1
because the number of support vectors has approached
the number of training data. On the other hand, the
largest E used is 10 as the number of support vectors has
been close to zero. For each parameter set, we present
the number of iterations by both approaches using base
set and pairs of variables, number of support vectors
(bounded support vectors), and the number of jumps.
If pairs of indices are used, the working set is the union

Table 4.3: Problem add10 (first 200 data, q = 10)
Parameters

c = 1 0 , € = 1 0
c = 100, E = 0.1 2519 2094 112
c = 100,E = 1 944 956
c = 100,e = 10

1478

Table 4.4: Problem add10 (first 200 data, q = 20)
Parameters Iter.(base) Iter.(pairs) Jumps

c = 10, € = 10

c = loo ,€ = 1 236 278 28
c = loo ,€ = 10 2 2

c = 100, e = 0.1 1317 1216 135

of two sets: B from (2.7) and its complement B*. We
check that before and after solving the sub-problem,
how many components of (YB* are changed. Then the
total number of such changes are shown in the "Jumps"
column.

It can be clearly seen that both approaches have similar
number of iterations. In addition, the number of jumps
is very small, especially when E is larger. In addition,
it can be clearly seen that comparing to the totally
about 1ter.xq components of B* (the size of B* in each
iteration may be less than q if B contains pairs; this
seldom happens, from Corollary 3.5), the number of
components changed is very small.

Acknowledgments

This work was supported in part by the National Sci-
ence Council of Taiwan via the grant NSC 89-2213-E-
002- 106.

References
[l] C. L. Blake and C. J . Merz. UCI repository
of machine learning databases. Technical report,
University of California, Department of Information
and Computer Science, Irvine, CA, 1998. Available at
http://www.ics.uci.edu/-mlearn/MLRepository.html

[2] C.-C. Chang and C.-J. Lin. LIBSVM: a library
for support vector machines, 2001. Software available
at http://www.csie.ntu.edu.tw/"cjlin/libsvm.

[3] R. Collobert and S. Bengio. SVMTorch: A
support vector machine for large-scale regression and
classification problems. Journal of Machine Learn-
ing Research, pages 143-160, 2001. Available at
http://www.idiap.ch/learning/SVMTorch.html.

[4] G. W. Flake and S. Lawrence. Efficient SVM
regression training with SMO. Machine Learning, 2001.
To appear.
[5] J. Friedman. Multivariate adaptive regression
splines. Technical Report No. 102, Laboratory for Com-

putational Statistics, Department of Statistics, Stan-
ford University, 1988.

[6] T. Joachims. Making large-scale SVM learning
practical. In B. Scholkopf, C. J . C. Burges, and A. J.
Smola, editors, Advances in Kernel Methods - Support
Vector Learning, Cambridge, MA, 1998. MIT Press.

[7] S. Keerthi, S. Shevade, C. Bhattacharyya, and
K. Murthy. Improvements to SMO algorithm for SVM
regression. Technical Report CD-99-16, Department of
Mechanical and Production Engineering, National Uni-
versity of Singapore, 1999. To appear in IEEE Trans-
actions on Neural Networks.

[SI S. Keerthi, S. Shevade, C. Bhattacharyya, and
K. Murthy. Improvements to Platt's SMO algorithm
for SVM classifier design. Neural Computation, 13:637-
649, 2001.

[9] P. Laskov. An improved decomposition algorithm
for regression support vector machines. In Workshop
on Support Vector Machines, NIPS99, 1999.

[IO] P. Laskov. An improved decomposition algorithm
for regression support vector machines. Machine Learn-
ing, 2001. To appear.

[ll] S.-P. Liao, H.-T. Lin, and C.-J. Lin. A note on the
decomposition methods for support vector regression.
Technical report, Department of Computer Science and
Information Engineering, National Taiwan University,
2000.

[12] C.-J. Lin. On the convergence of the decomposi-
tion method for support vector machines. I E E E Trans-
actions on Neural Networks, 2001. To appear.
[13] C.-J. Lin. Stopping criteria of decomposition
methods for support vector machines: a theoretical jus-
tification. Technical report, Department of Computer
Science and Information Engineering, National Taiwan
University, Taipei, Taiwan, 2001.
[14] J. C. Platt. Fast training of support vector
machines using sequential minimal optimization. In
B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods - Support Vector Learn-
ing, Cambridge, MA, 1998. MIT Press.

[15] S. Ruping. mySVM - another one of those
support vector machines, 2000. Software available at
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.

[16] A. J. Smola and B. Scholkopf. A tutorial on sup-
port vector regression. Neuro COLT Technical Report
TR-1998-030, Royal Holloway College, 1998.
[17] V. Vapnik. Statistical Learning Theory. Wiley,
New York, NY, 1998.

1479

http://www.ics.uci.edu/-mlearn/MLRepository.html
http://www.csie.ntu.edu.tw/"cjlin/libsvm
http://www.idiap.ch/learning/SVMTorch.html
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM

