
A Note on the Decomposition Methods for Support Vector 
Regression 

Shuo-Peng Liao, Hsuan-Tien Lin, and Chih-Jen Lin 

Department of Computer Science and 
Information Engineering 

National Taiwan University 
Taipei 106, Taiwan. 

E-mail: cjlin@csie.ntu.edu.tw 

Abstract 

The  dual formulation of support vector regression in- 
volves with two closely related sets of variables. W h e n  
the decomposition method is  used, many  existing ap- 
proaches use pairs of indices f r o m  these two sets as the 
working set. Basically they select a base set first and 
then expand it so that all indices are pairs. This makes 
the implementation different f rom that for support vec- 
tor classification. In addition, a larger optimization 
sub-problem has t o  be solved in each iteration. In this 
paper from different aspects we demonstrate that there 
are n o  needs to  do so. In particular we show that di- 
rectly using this base set  as the working set leads t o  

where C is the upper bound, Q i j  G 4 ( ~ i ) ~ 4 ( x j ) ,  ai and 
a; are Lagrange multipliers associated to  i th  data xi,  
and E is the parameter of the loss function. Note that 
training vectors xi are mapped into a higher dimen- 
sional space by the function 4. An important property 
is that a t  the optimal solution, ais; = 0, i  = 1 , .  . . , l .  

Due to the density of Q, currently the decomposition 
method is the major method to  solve (1.1) (16, 7, 91. 
It is an iterative process where in each iteration the in- 
dex set of variables are separated to  two sets B and N ,  
where B is the working set. Then in that iteration vari- 
ables corresponding to N are fixed while a sub-problem 
on variables corresponding to  B is minimized. 

convergence (number O f  iterations)' Therefore> Following approaches for support vector classification, 
there are methods for selecting the working set. For 
many existing approaches for regression, after these 
methods are applied to  find a base set, they expand it 

not only the program can be simpler, with a smaller 
working set and similar number of iterations, it can 
also be more efficient. 

1 Introduction 

so that all elements are pairs. For example, if {ai, a;} 
are chosen first, they include {ay, a j}  into the working 
set. Then the following sub-problem of four variables 
(ai, a i ,  ai ,  a;) is solved: 

Given a set of data points, {(XI, zl), . . . , (xl, zr)} ,  such 
that xi E R" is an input and zi  E R' is a target out- 
put. A major form for solving support vector regression 
(SVR) is the following optimization problem [17]: + ( Q i , N ( a l v  - ah) + zi)(ai  - a;) 

1 
1 

min -(a - c ~ * ) ~ Q ( a  - a*)  + E c(ai + a;) 2 
i=l  

1 

1 Note that Q N  and a& are variables corresponding to  
N .  They are fixed here. 

A reason of doing so is to  maintain aiaf = 0, i  = 

C(.i - a,') = 0, 

0 5 ai,a; 5 c,i = l , . .  . , 1 ,  
i= 1 

(1.1) 
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1, . . . , 2  throughout all iterations. Hence the number of 
nonzero variables in the iterative process can be kept 
small. 

However, it has been shown in [12, Theorem 4.11 that 
for some existing work (e.g. [7, 9]), if they do not ex- 
pand the base set to pairs, the property ais: = 0,i = 
1 , .  . . , Z  still holds. In Section 2 we will elaborate on 
this in more detail. 

Recently there have been implementation without us- 
ing pairs of indices. For example, LIBSVM [2], SVM- 
Torch [3], and mySVM [15]. A question immediately 
raised is on the performance of these two approaches. 
From one hand, we can think that an expanded working 
set leads to a larger sub-problem so the total number 
of iterations may be less. We also note that additional 
elements of those pairs are obtained for free. On the 
other hand, a larger sub-problem takes more time so 
the cost of each iteration is higher. 

We discuss this issue in Section 3. First we consider 
approaches with the smallest working set size (i.e. two 
and four for both approaches) where the analytic so- 
lution of the sub-problem is handily available. This is 
from the Sequential Minimal Optimization (SMO) [14]. 
From mathematical explanation we show that while 
solving the four-variable sub-problems, in most cases, 
only those two variables obtained in the first stage of 
the working set selection are updated. Therefore, the 
number of iterations of both two-variable and four- 
variable approaches are nearly the same. Details of 
the proof are in an earlier technical report [ll]. Hence 
there is no need to expand the working set using pairs of 
indices. About larger working sets, we also discussed 
that after some finite number of iterations, the sub- 
problem using only the base set are already optimal 
for the subproblem using pairs of variables. This gives 
us a theoretical justification that it is not necessary to 
use pairs of variables. 

It is important to clarify the above properties. With 
them, the implementation can be simpler and easier. 

In Section 4 we conduct experiments to demonstrate 
the validity of our analysis. We also discuss that with- 
out expanding the working set, the implementation of 
regression code can be nearly the same as that for clas- 
sification. 

There are other decomposition approaches for support 
vector regression (for example, [4]). They dealt with 
different situations which will not be discussed here. 

2 Working Set Selection 

Here we consider the working set selection from [6, S ]  
which were originally designed for classification cases. 
Remember that the dual formulations of support vector 
classification is: 

1 
2 

min -aTQa - e'a 

O<aa<C,  i = l ,  . . . ,  1,  

y'a = 0, (2.1) 

where y E R' with yi E (1, -1) and e is the vector of 
all ones, 

To make SVR similar to the classification formula, we 
define the following 21 by 1 vectors: 

Then the regression problem (1.1) can be reformulated 
as 

+ [€e' + zT, ,e* - z'] a(*) 

O I a ; * ) l C ,  i = l ,  . . . ,  21, 

$-a(*) = 0. (2-3) 

Now f is the objective function of (2.3). We define 

m(a(*)) max( max - ~ ~ ~ f ( a ( * ) ) ~ ,  
aj')<C,yt=l 

m m  -ytVf(a(*))t), (2.4) 

~ ( a ( * ) )  G min( min - y t ~ f ( a ( * ) ) t ,  
aj')>O,yt=l 

a:*)>O,yt=-l  

min -y tVf(d*)>t ) .  (2.5) 

For the convenience, we define the candidate of m(a(*)) 
as the set of all indices t which satisfy < C, yt = 1 
or > 0,yt = -1 where 1 5 t 5 21. It is similar to 
candidate of M ( a ( * ) ) .  

The KKT condition states that a feasible a(*) is an 
optimal solution if and only if 

al')<C,yt=-1 

M(cr(*)) - m(a(*))  2 0. (2.6) 

In each iteration, if stands for the current 
iteration, we define mk G m(a(*)lk) and Mk 
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M(a(*)tk). Also, let argmk be the set of indices whose 
-yiV f (a(*)lk)i are the same as m(a(’)?’)). Similarly we 
define argMk. 

Thus during iterations of the decomposition method, 
is not an optimal solution yet so 

mk > Mk, for all k .  

If two elements are selected as the working set, intu- 
itively we tend to choose indices i and j which satisfy 

i E argmk and j E argMk, (2.7) 

as they cause the maximal violation of the KKT con- 
dition. 

A systematic way to  select a larger working set in each 
iteration can be as follows. If q, an even number, is the 
size of the working set, q/2 indices are sequentially se- 
lected from the largest -yiV f (a(*))i values to  smaller 
in candidates of mk. That is, 

3 ’  - ya, vf(a‘*’~k)a, 2 . * . 2 -yi3 Vf(Q(*)’k)i 

where i l  E argmk. The other q/2 indices are sequen- 
tially selected from the smallest -yiV f (a(*))$ values 
to  larger in candidates of Mk. That is, 

where j ,  E argMk. Also, we have 

to ensure that the intersection of both selection groups 
is empty. Thus if q is not small, sometimes the actual 
number of selected indices may be less than q. 

Note that this is the same as the working set selection 
in [14]. However, the original derivation in [14] was 
from the concept of feasible directions in constrained 
optimization but not from the violation of the KKT 
condition. 

After the base set of q indices is selected, earlier ap- 
proaches [7, 101 expand the set so that all elements in 
it are pairs. 

However, if directly using elements in the base set, the 
following theorem has been proved in 
4.11: 

Theorem 2.1 If the initial solution 
af(ct*)f=O,i=l ,... , l  f o r a l l k .  

[12, Theorem 

is zero, then 

Another important issue for the decomposition method 
is the stopping criteria. &om (2.6), a natural choice of 
the stopping criteria is 

where 6, the stopping tolerance, is a small positive 
number. The stopping criteria (2.9) for the q = 2 case 
using indices i and j selected from (2.7) is 

-yjv f ( a ( * ) l k ) j  - (-yzVf ((Y‘*)’”i) 2 -6. (2.10) 

The convergence of the decomposition method under 
some conditions of the kernel Q is shown in [12] for 
the base method. Some theoretical justification on the 
use the stopping criteria (2.9) for the decomposition 
method is in [13]. For the method of using pairs, how- 
ever, no particular convergence proof has been made, 
but we will assume it for our analyses. 

3 Number of Iterations 

In this section we will show that in final iterations using 
only the base set is the same as using pairs of indices 
as the working set. 

First we state an important property on the difference 
between the i th  and (i + Z)th gradient elements. 
sider a, and a:. We have 

Vf(a(*))i+l = -(&(a - ~ * ) ) i  + E - zi 
= -v f (a(*))a + 2€. 

We will use this frequently in later analyses. 

Con- 

(3.1) 

In [ll] we discussed the case of q = 2. Using (3.1) 
[ll] shows that i and i* are never selected at  the same 
iteration so the approach using pairs always has four el- 
ements in the working set. It then proves the following 
result: 

Theorem 3.2 For all iterations with the violation on  
the stopping criterion (2.10) n o  more than 2 ~ ,  an  opti- 
mal solution of the two-variable sub-problem is  already 
a n  optimal solution of the corresponding four-variable 
sub-problem. 

Therefore, for the four-variable sub-problem, in final 
iterations only two indices from the base set are still 
modified. If e is not small, in most iterations the stop- 
ping tolerance is smaller than 2 ~ .  In addition, as most 
decomposition iterations are spent in the final stage 
(due to  slow convergence), this theorem has shown a 
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conclusive result that no matter using two-variable or 
four-variable approaches, the difference on the number 
of iterations should not be much. 

For general cases (q > 2), we may not be able to get 
results as elegant as Theorem 3.2. When q = 2, we ex- 
actly know the relation on the changes of ai*) and a$*) 

when q > 2, the change on each variable can be dif- 
ferent. Anyway in the following we will show a similar 
but weaker result. 

a y i ( a { * ) ’ k  - a!*),k ) = - y j ( a ( * ) ’ k  - ay)’k) .  However, 

If not stopped in finite iterations, the decomposition 
method generates an infinite sequence which converges 
to an optimal solution. In the following we will show 
that in final iterations, i.e. after k is large enough, 
solving the sub-problem with q variables is the same as 
solving the larger sub-problem which contains pairs of 
variables. Next we describe some properties which will 
be used for the proof. 

Assume that the sequence {a(*)’k} of the method us- 
ing only q elements from the base set converges to an 
optimal solution d* ) .  Then we can define 

We also note that (2.8) implies that for any index i in 
the working set of the kth iteration, 

We then describe two theorems from [13] which are 
needed for the main proof. [13] deals with a general 
framework of decomposition methods for different SVM 
formulations. We can easily check that the current 
working selection satisfies required conditions in [13] 
so these two theorems can be applied: 

7 Theorem 3.3 
~ 

-! 

lim m k  - Mk = 0. (3.4) 
k+w 

Theorem 3.4 For any &!*I whose corresponding 
-y iVf (d*) ) i  is neither m nor A?, after k is large 
enough, a!*)’k is at a bound and is equal t o  &!*I. 

Immediately we have a corollary of Theorem 3.3 which 
is specific to the regression problems: 

Corollary 3.5 Af ter  k is  large enough, at and (CY*): 
would not  be both selected in the working set. 

Proof: By the convergence of mk - Mk to  0, after 
k is large enough, m k  - Mk < E. If at and (a*): are 
both selected in the working set, from (3.3), Mk 5 
-Vf(a(*)yk)i  5 mk and Mk 5 vf((~(*)’~)i+l L m k .  

However, (3.1) shows Vf(a(*)>’)i+l = -Vf(a(*)ik))i + 
26 so m k  - Mk 2 26 and there is a contradiction. w 

The main result of this section is: 

Theorem 3.6 W e  assume that h? # m + 2c. After  k 
is large enough, any optimization sub-problem by using 
only q elements is  already optimal for the larger sub- 
problem which contains pairs of variables. 

Proof: If the result is wrong, there is an index i 
and an infinite set K such that for all IC E K, a: (or 
(a*)!)  is selected in the working set but then (a*)! 
(or a t )  is also modified. Without loss of generality, we 
assume that a: is selected in the working set but (a*): 
is modified infinite times. 

By Theorem 3.4, since (a*): is modified infinite times, 
Vf(d*))i+l = m or Vf(d*))i+l = A?. For the first 
case, (3.1) implies that -Vf (d*) ) i  < m while the sec- 
ond case implies that -V f (d* ) ) i  = &f - 26 < &f. 
For the second case, by the assumption that m # 
M - 26, m < -V f (d* ) ) i  or > -Vf(~r(*)) i .  If 
riz < -V f (d* ) ) i ,  we have m < -Vf (d*) ) i  < I$ which 
is impossible for an optimal solution. Hence 

- y zv f (d (* ) ) z  < m (3.5) 

holds for both cases. 

Therefore, we can define 

By the convergence of the sequence { - y j V f ( a ( * ) , k ) j }  
to  - y j ~ f ( d * ) ) j ,  for all j = 1 , .  . . ,21, after is large 
enough, 

Suppose that at the kth iteration j E argMk is selected 
in the working set and 
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By (3.3), (3.6), (3.7), and (3.5), 

- y j V f ( d * ) ) j  

5 - yjVf(a(*)")j + A 
= M k + A  

5 - y iVf (c~(* ) '~ ) i  + A 

5 - yiVf(Ci(*))i + 2A 

5 - yzVf(Ci'*')z + 2(A - (-yiVf(Ci(*))i))/3 

< A < M ,  (3.8) 

Table 4.1: Problem abalone (first 200 data, q = 10)  
Parameters Iter.(base) Iter.(pairs) Jumps 

c = 10,c  = 10 
c = 100, E = 0.1 1641 1983 184 

From Theorem 3.4 and (3.8), after k is large enough, 
ay)'k is bounded and is equal to Ciy). That is, ai*)'k = 
a( ,*)?k+l  = @ Since a y ) > k + l  - - a ( * ) ? k  and ay)'k is a 
cdndidate of h f k ,  by (3.3), (3.6), and (3.7) 

Mk+l 5 -yjVf(C~(*)'~'')j 

5 - ~ j V f ( c ~ ( * ) , ~ ) j  + A 
= M k + A  
5 -yiVf(~u(*)>~)i  + A 
5 -yiVf(a(*)'"')i + 2A. 

Hence we get 

On the other hand, (a*)! is modified to  (a*):+'. At 
least one of them is strictly positive. By the definition 
of mk , 

From (3.1), (3.3), (3.9), and (3.10), for all large enough 
k E IC, 

Therefore, 

lim m k  - Mk # 0 

which contradicts Theorem 3.3. 

k-+m 

4 Experiments 

In this section we experiment with some practical prob- 
lems to  confirm our analysis. 

552 29 I 807 1 1 0 
c = 100, € = 1 
c = 100,E = 10 

Note: "Jumps" means the number of changes in totally about 
Iter.xq components. 

Table 4.2: Problem abalone (first 200 data, q = 20) 
Parameters Iter.(base) Iter.(pairs) Jumps 

c= l o , €  = 1 
c = l o , €  = 10 
c' = 100, E = 0.1 
c = 100,e = 1 
c = 100, E = 10 

1086 250 1168 
258 310 

We consider two regression problems abalone (4177 
data) and add10 (9792 data) from [l] and [5 ] ,  respec- 
tively. The RBF kernel is used: 

Q . = e-ll.*-5~112/n 
23 - 

where n is the number of attributes in each data. For 
these two problems, n is eight and ten, respectively. 

We use a simple implementation written in MATLAB 
so only small problems are tested. We consider the 
first 200 data points of abalone and a d d l 0 .  Results are 
in Tables 4.1 to  4.4. For each problem we test two 
different sizes of the working set: q = 1 0  and q = 
20. Then in each table we try different E and C .  We 
did not do any model selections as our purpose is not 
on the solution quality. We consider E below to 0 . 1  
because the number of support vectors has approached 
the number of training data. On the other hand, the 
largest E used is 10 as the number of support vectors has 
been close to  zero. For each parameter set, we present 
the number of iterations by both approaches using base 
set and pairs of variables, number of support vectors 
(bounded support vectors), and the number of jumps. 
If pairs of indices are used, the working set is the union 

Table 4.3: Problem add10 (first 200 data, q = 10)  
Parameters 

c = 1 0 , € = 1 0  
c = 100, E = 0.1 2519 2094 112 
c = 100,E = 1 944 956 
c = 100,e = 10 
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Table 4.4: Problem add10 (first 200 data, q = 20) 
Parameters Iter.(base) Iter.(pairs) Jumps 

c = 10, € = 10 

c = loo ,€  = 1 236 278 28 
c = loo ,€  = 10 2 2 

c = 100, e = 0.1 1317 1216 135 

of two sets: B from (2.7) and its complement B*. We 
check that before and after solving the sub-problem, 
how many components of (YB* are changed. Then the 
total number of such changes are shown in the "Jumps" 
column. 

It can be clearly seen that both approaches have similar 
number of iterations. In addition, the number of jumps 
is very small, especially when E is larger. In addition, 
it can be clearly seen that comparing to  the totally 
about 1ter.xq components of B* (the size of B* in each 
iteration may be less than q if B contains pairs; this 
seldom happens, from Corollary 3.5), the number of 
components changed is very small. 
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