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Abstract
Universal Domain Adaptation (UniDA) addresses
unsupervised domain adaptation where target
classes may differ arbitrarily from source ones,
except for a shared subset. A widely used ap-
proach, partial domain matching (PDM), aligns
only shared classes but struggles in extreme cases
where many source classes are absent in the target
domain, underperforming the most naive base-
line that trains on only source data. In this work,
we identify that the failure of PDM for extreme
UniDA stems from dimensional collapse (DC)
in target representations. To address target DC,
we propose to jointly leverage the alignment and
uniformity techniques in self-supervised learn-
ing on the unlabeled target data to preserve the
intrinsic structure of the learned representations.
Our experimental results confirm that SSL con-
sistently advances PDM and delivers new state-
of-the-art results across a broader benchmark
of UniDA scenarios with different portions of
shared classes, representing a crucial step to-
ward truly comprehensive UniDA. Project page:
https://dc-unida.github.io/

1. Introduction
While deep learning and machine learning have achieved
remarkable success across a wide range of tasks, they still
struggle when there is a distribution shift between the train-
ing and testing data. Unsupervised Domain Adaptation
(UDA) (Pan & Yang, 2009) addresses this challenge by
transferring knowledge from a labeled source domain with
a known distribution to an unlabeled target domain that may
follow a different distribution. Arguably the simplest UDA
setting is closed-set UDA (Ganin et al., 2016; Long et al.,
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Figure 1. Spectrum of UniDA: The dark region indicates invalid
cases with negative shared classes, while the light gray region
represents unrealistic scenarios with few or no shared classes. The
X-axis indicates Partial DA, and the Y-axis indicates Open-set DA.

2018; Jiang et al., 2020), which assumes that the label sets
of the source domain (Cs) and the target domain (Ct) are
identical (Cs = Ct).

More flexible setups such as Open-set Domain Adapta-
tion (Cs ⊂ Ct) and Partial Domain Adaptation (Cs ⊃ Ct)
have been studied (Panareda Busto & Gall, 2017; Cao
et al., 2018), addressing scenarios where Ct has more
or fewer classes than Cs. Universal Domain Adaptation
(UniDA) (You et al., 2019) further loosens the limit and uni-
fies those setups by not assuming any containment relation
between Cs and Ct. Specifically, UniDA assumes unknown
shared classes to overlap between Cs and Ct, while allowing
each set to contain its private classes. The setup is tasked
with classifying target-domain examples as either one of the
shared classes or as an unseen class over arbitrary divisions
of source-private, shared, and target-private label sets.

Addressing the gap between two domains in UDA is com-
monly approached by combining a loss on the labeled source
data with another loss on domain matching, which aims to
align feature distributions between domains to enable effec-
tive knowledge transfer (Ganin et al., 2016; Courty et al.,
2016; Tzeng et al., 2017; Zellinger et al., 2017; Jiang et al.,
2020). However, in the UniDA setting, the presence of
private classes in both domains, which are unknown dur-
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ing training, poses a significant challenge for this approach.
Matching feature distributions without separating shared
and private classes can cause negative transfer, where knowl-
edge transferred from private classes harms performance
instead of improving it (Rosenstein et al., 2005).

To address this issue, Cao et al. (2018) introduced partial
domain matching (PDM), which attempts to match only the
data corresponding to the shared classes between domains.
While an ideal PDM can effectively avoid negative transfer,
it can be difficult to accurately determine and separate the
examples that belong to the shared classes. Previous work
has designed importance weight functions based on uncer-
tainty measurement (You et al., 2019; Fu et al., 2020; Lif-
shitz & Wolf, 2021; Chen et al., 2022a; Chang et al., 2022)
or relative distances in the embedding space (Saito et al.,
2020; Li et al., 2021; Chen et al., 2022b; Lu et al., 2024)
to distinguish examples belonging to shared classes. These
approaches are further incorporated into domain-matching
frameworks like adversarial training (You et al., 2019; Fu
et al., 2020; Lifshitz & Wolf, 2021) and self-training (Chen
et al., 2022a; Chang et al., 2022; Lu et al., 2024).

While PDM methods for UniDA appear promising, they
have not been comprehensively tested on a broad spectrum
of UniDA scenarios. In particular, most UniDA works fol-
low the experimental protocols established by You et al.
(2019) and Fu et al. (2020), as shown in Figure 1. The pro-
tocols examined the region of relatively higher portions of
target-private classes and lower portions of source-private
classes. Nevertheless, they did not test UniDA methods on
high portion of source-private classes or some of the bound-
ary cases of partial DA (X-axis) and open-set DA (Y-axis).
The cases of higher source-private portions, named extreme
UniDA, are especially challenging yet under-explored by the
community. Such scenarios naturally arise in practice when
models are pre-trained on large datasets and then adapted
to more specialized tasks with fewer categories. In fact,
our careful investigation in Figure 2 surprisingly reveals
that all SOTA PDM methods for UniDA failed in extreme
UniDA, falling behind the simplest baseline of training on
source data only (SO). That is, existing UniDA solutions
have yet to fully address the challenges of achieving robust
performance across arbitrary divisions of label sets.

In this work, we attempt to fully achieve comprehensive
UniDA by delving into the question: What caused the perfor-
mance degrade of PDM in extreme UniDA? We observe that
the abundance of source-private classes in extreme UniDA,
combined with the structural disparity between source and
target data when the model is trained exclusively on source-
labeled data, causes target representations to experience
dimensional collapse (DC) (Jing et al., 2022). This col-
lapse degrades the quality of target representations, which
in turn weakens the importance weight functions essential

for PDM’s effectiveness. Consequently, negative transfer
intensifies, resulting in performance that falls below SO.

To address the issue of target DC, we propose incorporating
unlabeled target data into training alongside source-labeled
data. Instead of employing pseudo-labeling techniques on
unlabeled target data, which are inherently susceptible to
the DC issue like PDM, we opt to explore the potential of
self-supervised learning (SSL) as an alternative. Several
traditional SSL techniques based on pretext tasks, such as
jigsaw puzzles and rotation, have been explored for related
UDA problems (Sun et al., 2019; Xu et al., 2019; Bucci
et al., 2019; 2021). However, these methods are not de-
signed to tackle the DC issue, resulting in poorly expressive
representations (Wallace & Hariharan, 2020).

In contrast, we explore different modern SSL techniques
that capitalize on two intuitions. First, semantically similar
examples should lie closer in the representation space. Sec-
ond, examples in the representation space should be spread
out, which avoids degenerate solutions of mapping every
example to the same representation and tackles DC directly.
We adopt the framework of Wang & Isola (2020), demon-
strating that the former can be realized by an alignment loss,
and the latter can be achieved with a uniformity loss.

Our rigorous ablation study on the two SSL losses reveals
a novel insight. When no SSL loss is applied to the tar-
get data (SO) or when only the alignment loss is used, the
DC issue persists, resulting in the worst performance. In
contrast, introducing the uniformity loss yields significant
improvements in both dimensional richness and UniDA per-
formance. Notably, uniformity and alignment losses offer
distinct benefits to the UniDA process, and their combina-
tion introduces a powerful enhancement that systematically
strengthens state-of-the-art PDM methods. Through an ex-
tensive range of experiments, we validate the robustness of
this enhancement across diverse prior distributions of label
sets. Our findings establish a new milestone and benchmark
for advancing UniDA across all scenarios comprehensively.

Our contributions can be summarized as follows:

1. We are the first to highlight the unnoticed problem
of extreme UniDA that prevents the community from
solving UniDA comprehensively, promoting a new re-
search direction for the community.

2. We identify the DC issue behind state-of-the-art PDM
methods with careful ablation study and analysis, of-
fering novel and fundamental understanding on the
(extreme) UniDA problem.

3. We effectively resolve the DC issue by integrating un-
derexplored SSL techniques into UniDA, establish-
ing new SOTA performance on more comprehensive
benchmarks that cover all UniDA scenarios.
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2. Preliminaries
Universal Domain Adaptation (UniDA) (You et al., 2019)
comes with a labeled source dataset Ds = {(xs

i , y
s
i )}

ns
i=1

and an unlabeled target dataset Dt = {xt
i}

nt
i=1. Each x

represents an input vector, and y denotes a discrete label.
The datasets Ds and Dt are sampled from some unknown
source and target distributions ps and pt, respectively. We
denote the label sets in the source and target domains by
Cs and Ct. Their intersection C = Cs ∩ Ct representing the
shared label set. The source-private and target-private label
sets are defined as Cs = Cs \ C and Ct = Ct \ C, respec-
tively. The task of UniDA is to learn a feature extractor θf
and a label classifier θc that classify target data to |C| + 1
classes, where target-private classes are regarded as one un-
seen class. UniDA is particularly challenging as it aims to
simultaneously achieve high accuracy on shared and unseen
target private classes irrespective of the prior distribution of
label sets, which can be characterized by the relative propor-
tions of the source-private, shared and target-private classes:
{ |Cs|
|Cs∪Ct| ,

|C|
|Cs∪Ct| ,

|Ct|
|Cs∪Ct|}. Within the three ratios that nat-

urally sum to 1, the source-private ratio πs = |Cs|
|Cs∪Ct| and

target-private ratio πt =
|Ct|

|Cs∪Ct| are often taken as the key
characteristics of the UniDA scenario, as Figure 1 showed.

2.1. Partial Domain Matching (PDM)

In UniDA, the simplest baseline is to train the feature ex-
tractor θf and label classifier θc on source labeled data only
(SO) with cross-entropy loss:

Ls(θf , θc) = E(x,y)∼ps
CE(y, θc(θf (x))) (1)

To mitigate the distribution shift between source and target
domains, domain matching techniques align feature distri-
butions across domains. Adversarial training (Ganin et al.,
2016) is a prominent approach in the UDA literature and is
extensively employed in UniDA (You et al., 2019; Fu et al.,
2020; Lifshitz & Wolf, 2021). Another widely used method
in UniDA is self-training (Zou et al., 2018), which typi-
cally involves assigning pseudo-labels (Chen et al., 2022a;
Lu et al., 2024; Chang et al., 2022) or leveraging entropy
minimization (Saito et al., 2020).

To align feature distributions in the adversarial domain
matching framework, a domain discriminator θd is intro-
duced, and the adversarial loss is formulated as:

Ladv(θf , θd) =− Ex∼psws(x) log θd(θf (x)) (2)
− Ex∼ptwt(x) log(1− θd(θf (x))),

where 0 ≤ ws(x), wt(x) ≤ 1 are used to downweight
private-class samples. The overall objective involves min-
imizing cross-entropy loss on source data and solving a

min-max optimization problem for domain matching:

min
θf ,θc

max
θd

[
Ls(θf , θc)− λadvLadv(θf , θd)

]
, (3)

where λadv is the weighted hyperparameter.

Alternatively, self-training applies cross-entropy loss to
high-confidence target samples with pseudo labels:

LST = Ex∼pt
I{wt(x) ≥ δ} · CE(y, θc(θf (x))), (4)

where δ is a confidence threshold. The overall objective can
be formulated as:

min
θf ,θc

Ls(θf , θc) + λSTLST(θf , θc). (5)

where λST is the weighted hyperparameter.

Design of importance weight functions. To achieve ro-
bust performance in UniDA, it is crucial to design effective
importance weight functions, ws(x) and wt(x) to distin-
guish shared-class and private-class samples. These func-
tions downweight private samples during domain matching
by assigning a weight of 0 to private-class samples and 1 to
shared-class samples.

Prior work has explored various approaches to estimate im-
portance weights. One common approach uses uncertainty
scores derived from the classifier’s output (logits) (You
et al., 2019; Fu et al., 2020; Lifshitz & Wolf, 2021; Chang
et al., 2022), leveraging the notion that models trained on
source data will exhibit higher uncertainty when presented
with target-private data. However, since classifiers may
overfit to classification tasks, an alternative line of research
leverages distance metrics derived from the feature extrac-
tor’s output (representations) (Saito et al., 2020; Li et al.,
2021; Chen et al., 2022a; Lu et al., 2024), based on the
assumption that shared-class examples lie near each other
in the embedding space. While these importance weight
functions do offer performance gains, we show that they
have an inherent limitation, which we discuss in detail in
the following section.

3. Limitations of PDM
3.1. Pitfalls of PDM in UniDA

The goal of UniDA is to achieve robust performance across
arbitrary division of label sets. However, we observe that
existing works mainly evaluate a limited range of distribu-
tions, neglecting regions with high πs, as shown in Figure 1.
Surprisingly, our comprehensive experiments (Figure 2)
demonstrate that PDM methods fail to outperform SO in
high πs region.

The inferior performance of PDM approaches suggests that
they fail to benefit from the additional domain matching loss
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Figure 2. Evaluation of Various PDM Paradigms. We report re-
sults on the OfficeHome (Venkateswara et al., 2017) across a range
of πs values. The star indicates previously unexplored settings.

when πs is high. As discussed in Section 2.1, the success
of PDM relies on accurately estimating importance weights,
which are derived from either logits or representations.

We hypothesize that, under a high πs regime, training exclu-
sively with Ls may fail to capture target representations ef-
fectively due to substantial discrepancies between the source
and target domains. The resulting degraded representations
compromise the accuracy of importance weight functions,
ultimately impairing overall performance.

To validate our hypothesis, we examine the target represen-
tations from the model trained with Ls under varying πs

in Section 3.2. Next, in Section 3.3, we analyze how the
degraded representation affects the performance of PDM.

3.2. Dimensional Collapse in Extreme UniDA

Dimensional Collapse (DC) (Jing et al., 2022) refers to the
reduction in the effective dimensionality of learned represen-
tations, where features collapse onto a lower-dimensional
subspace, leading to a loss of diversity in the representation
space. It is usually analyzed with the singular value spec-
trum (Jing et al., 2022; Shi et al., 2022; Zhang et al., 2023).
Further details are provided in Appendix A.

To verify that the model trained with Ls can significantly
affect representation quality in scenarios with high πs, we
conduct singular value spectrum analysis under different val-
ues of πs. As illustrated in Figure 3(a), when πs increases to
0.6, several singular values approach zero, showing a clas-
sic case of dimensional collapse (DC). This effect becomes
more pronounced at πs = 0.75, indicating that applying
source-supervised loss in high πs scenarios exacerbates DC.

To further validate that the root cause lies in the dominance
of source data, leading the model trained with Ls to fail
in capturing the intrinsic structure of the target represen-
tation, we design an experiment using cross-entropy loss
on the target data (Lt, assuming target labels are available).
Specifically, we gradually reduce the number of labeled in-
stances in the target dataset and analyze the impact of this
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Figure 3. Singular Value Spectrum Analysis: (a) Spectrum plots
for the target representations of SO (Ls) under different choices of
πs. (b) Spectrum plots for the target representations derived from
Ls combined with Lt, across varying amounts of labeled target
data under πs = 0.75. DC is evidenced by certain singular values
converging toward zero.

process on the quality of the target representations. From
Figure 3(b), we observe that training with Lt on 10% of the
target data significantly mitigates DC, while using 50% of
the data achieves performance nearly equivalent to utilizing
the entire target dataset. These results suggest that relying
solely on Ls at high πs fails to capture the intrinsic structure
of the target data, leading to DC.

3.3. Degraded Representation Quality Impairs PDM

In Section 3.2, we demonstrated that the quality of target
representations deteriorates as πs increases. Next, we in-
vestigate how this degradation affects PDM. As discussed
in Section 2.1, the importance weight function is designed
to reduce the influence of private samples during domain
matching. Since the weight function is computed based on
representations or logits, we hypothesize that the degraded
representation quality adversely impacts the effectiveness
of the importance weight function.

To investigate this, we design a metric to evaluate the error
rate of the importance weight function in classifying sam-
ples as shared or private. For a batch B during training, the
error rate is computed as:

EIW(B) =
1

|B|
∑

(x,y)∈B

I{ŷ(x) ̸= I{y ∈ C}}, (6)

where ŷ(x) = I{w(x) ≥ 0.5}, w(x) ∈ {ws(x), wt(x)}
and 0 ≤ ws(x), wt(x) ≤ 1.

We first examine the error-rate threshold beyond which
PDM provides no improvement over SO. To do so, we run a
controlled experiment where we assume perfect knowledge
of shared and private classes and systematically vary the
error rate in importance weights. When πs = 0.75 (Fig-
ure 4(a)), PDM only outperforms SO if the error rate is
below 0.2. Conversely, when πs = 0.25 (Figure 4(c)), PDM
can tolerate a higher error rate, remaining beneficial up to
around 0.35.

Next, we investigate how importance weights, estimated ei-
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Figure 4. Importance Weight Functions Analysis on OfficeHome: (a)(c) show the shared-class accuracy under different EIW(B)
compared to SO. (b)(d) present the average EIW(B) under common scoring functions such as uncertainty and distance.

ther from uncertainty scores or relative distances, can intro-
duce errors in real-world scenarios where the true label set
remains unknown. Specifically, we adopt two uncertainty-
based methods, UAN (You et al., 2019) and CMU (Fu et al.,
2020), which represent, respectively, the first application of
uncertainty scores and a subsequent approach that aggre-
gates multiple such measures. We also include the energy
score (Liu et al., 2020), a highly effective out-of-distribution
detection method that we found to yield the best uncertainty
estimates. For distance-based approaches, we employ the
L2-distance with a memory bank to compute the importance
weights (Saito et al., 2020; Chen et al., 2022a).

At πs = 0.75 (Figure 4(b)), the error rate of estimated
weights surpasses 0.5—well above the 0.2 threshold needed
for PDM to excel. In contrast, for πs = 0.25 (Figure 4(d)),
the error rate is closer to 0.3, which remains below the
0.35 threshold that PDM can handle effectively. The results
indicate that when the representation quality substantially
degrades, the specific design of importance weight functions
plays only a minor role.

4. Tackling Dimensional Collapse with
Self-Supervised Learning

In this section, we present our approach to mitigating dimen-
sional collapse in target representations. As discussed in
Section 3.2, incorporating target data can preserve structural
information and alleviates DC. To achieve similar results in
the absence of labels, we propose leveraging self-supervised
learning (SSL). Although SSL has been widely adopted in
domain adaptation tasks, including closed-set (Sun et al.,
2019; Xu et al., 2019) and partial domain adaptation (Bucci
et al., 2019; 2021), existing approaches predominantly rely
on pretext tasks, such as jigsaw puzzles and rotation pre-
diction (Table 1). These methods, however, are neither
designed to address DC nor effective at tackling it (Wallace
& Hariharan, 2020). Moreover, they have shown limited
ability to generalize to downstream tasks (Teng et al., 2022;
Albelwi, 2022).

In Section 4.1, we explore the usage of more advanced SSL
methods and analyze the role of SSL components in UniDA.

Next, in Section 4.2, we demonstrate how the improved
representations benefit PDM. Finally, we present a miniature
experiment in Section 4.3 as a visualization to illustrate the
effects of the proposed loss functions, providing a clearer
understanding of their impact.

4.1. The Role of SSL Components in UniDA

In SSL, early work on pretext tasks was driven by the in-
tuition that auxiliary tasks can enrich representations by
providing diverse learning signals. However, pretext tasks
are often limited by task-specific biases, which can hinder
the generalization of learned representations (Wallace &
Hariharan, 2020). We study the more recent methods build
on the principle that similar samples should share similar
representations. A straightforward approach to achieve this
is to align the representations of a pair of samples generated
from the same input x through independent augmentations.
The alignment loss can be expressed as:

LAlign(θf ) = Ex∼p||θf (T (x))− θf (T ′(x))||22, (7)

where T and T ′ are independent random augmentation
functions. However, optimizing only the alignment loss
could also lead to DC (Jing et al., 2022), where the model
converges to a trivial solution by collapsing all representa-
tions into a single point. To avoid this problem, prior work
employs various auxiliary objectives, such as contrastive
learning (Wang & Isola, 2020; Chen et al., 2020), asym-
metric models (Grill et al., 2020; Chen & He, 2021) and
redundancy reduction (Bardes et al., 2021; Zbontar et al.,
2021).

To delve into how SSL can be applied to resolve DC, we
analyze the approach proposed by Wang & Isola (2020).
Their method is particularly suitable for analysis because
its design can be decoupled from alignment loss, unlike
asymmetric models or redundancy reduction techniques,
which cannot be easily isolated. Wang & Isola (2020) intro-
duce the concept of uniformity loss (Wang & Isola, 2020;
Wang & Liu, 2021; Fang et al., 2024), which encourages the
learned representations to be uniformly distributed on the
unit hypersphere. It is defined using the average pairwise
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Table 1. Comparison of existing SSL approaches in UDA. S and T refer to the source and target domains, respectively, while Cont.
stands for contrastive learning.

Setting Method Applied Data Goal

Sun et al. (2019); Xu et al. (2019) Closed DA Pretext S+T Minimize domain gap
Bucci et al. (2019; 2021) Partial DA Pretext T Learn target info

Ours UniDA Cont. & Non-Cont. T Tackle DC

Table 2. Performance comparison on Office31 (A2W) with differ-
ent combinations of loss functions.

Method H-score (%, ↑)

Ls 64.5
Ls + LAlign 64.6
Ls + LUniform 65.1
Ls + LAlign + LUniform 67.2

Gaussian potential (Cohn & Kumar, 2007) as follows:

LUniform(θf ) = logE
x,x′ i.i.d∼p

[e−t||θf (x)−θf (x
′)||22 ], (8)

where t is a fixed hyperparameter.

We study the effect of applying alignment loss and unifor-
mity loss in the context of extreme UniDA. As illustrated
in Figure 5 and Table 2, uniformity loss alone significantly
alleviates DC and yields improvements, whereas alignment
loss alone fails to address DC and provides little to no bene-
fit. Combining both losses achieves the best performance.
These findings suggest that preserving the intrinsic structure
of the target data through uniformity loss plays a critical
role in extreme UniDA. Additionally, maintaining feature in-
variance via alignment loss further enhances the intra-class
relationships, leading to improved overall performance.
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Figure 5. Singular Value Spectrum Analysis: Spectrum plot of
the target representation under πs = 0.75 with different loss
function combinations. Results show that uniformity loss alone
can tackle DC.

Beyond the presented framework, we also demonstrate that
asymmetric models and redundancy reduction can achieve
performance comparable to Wang & Isola (2020). The
corresponding results are provided in Appendix B.3.

4.2. Improved Representation Quality Enhances PDM

In this section, we demonstrate that enhancing representa-
tion quality by SSL can further improve PDM. Figure 6
illustrates the error rate (EIW(B)) of importance weighting
in adversarial loss during training. Without incorporating
the self-supervised loss, the error rate increases, resulting
in performance inferior to SO. In contrast, incorporating the
self-supervised loss not only improves representation qual-
ity but also reduces the error rate. These findings suggest
that enhancing representation quality is more critical for
improving PDM than refining the design of the importance
weight functions.

Figure 6. Analysis of Error Rate in Importance Weight Func-
tion: The error rate decreases when SSL is applied.

4.3. Miniature Experiment Analysis

To further study the effect of different loss functions under
varying πs, we conduct a miniature experiment to visualize
the impact. Inspired by Liu et al. (2022), we generate a 2D
dataset simulating scenarios with different values of πs, as
illustrated in Figure 7(a) and 7(c). This experiment aims to
illustrate two key points: (1) the DC problem encountered
when training with Ls in extreme UniDA, as discussed in
Section 3.2, and (2) the effect of SSL in tackling DC in
extreme UniDA as discussed in Section 4.1.

The dataset consists of three classes: the blue and green
classes represent shared classes, distinguished by shape to
indicate their respective domains. The red class represents
source-private data, and its distribution shape simulates a
mixture of source-private classes, with the numbers indicat-
ing their respective class counts. Further details about the
settings are provided in Appendix D.5.
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class 0 (source)
class 1 (source)
class 2 (source)
class 0 (target)
class 1 (target)

(a) Data (low πs)

class 0
class 1

(b) Target Feature (low πs)

class 0 (source)
class 1 (source)
class 2 (source)
class 0 (target)
class 1 (target)

(c) Data (high πs)

class 0
class 1

(d) Target Feature (high πs)

Figure 7. Toy experiment visualization with SO under different values of πs: Circles and crosses represent source and target data,
respectively. The number of red points simulates the “extremity” in universal domain adaptation. (a)(c) show the original data. (b)(d)
show the target features.

class 0
class 1

(a) Ls

class 0
class 1

(b) Ls + LAlign

class 0
class 1

(c) Ls + LUniform

class 0
class 1

(d) Ls + LAlign + LUniform

Figure 8. Toy experiment visualization with different SSL components under different values of πs: All images show target features.

Figures 7(b) and 7(d) present the results of training with Ls.
The representations exhibit a collapse into a line under high
πs, whereas they retain their structure under low πs. To fur-
ther study the effect of different components of SSL in high
πs scenarios, we visualize the results in Figure 8. The LAlign
term encourages tighter clustering of representations but
exacerbates collapse. On the other hand, LUniform mitigates
collapse at the expense of weaker within-class aggregation.
Combining both terms offers a balanced solution, preserv-
ing structural distinctions while still promoting meaningful
within-class clustering.

5. Experiments
Our experiments seek to answer the following questions: (1)
Can SSL benefit all PDM methods? (2) Can SSL generalize
across all scenarios, regardless of the prior distribution of
label sets?

5.1. Experimental Setup

Dataset. We present results on four widely used bench-
marks: Office31, OfficeHome, VisDA, and DomainNet. De-
tails of these datasets can be found in Appendix D.3.

Evaluation metric. We adopt H-score (Fu et al., 2020)
as the metric, which calculate the harmonic mean of accu-
racy on common classes aC and accuracy on target-private
(unseen) classes aCt

. See Appendix D.2 for details.

Baselines. We considered methods from various domain-
matching frameworks and different importance weight func-
tions. Specifically, UAN and CMU follow adversarial learning
paradigms, while UniOT, DANCE, and MLNet adopt self-
training strategies. Further details on these methods are
provided in Appendix C.1.

Extreme UniDA setting. Considering the challenges of
evaluating all methods across every possible label set divi-
sion on all datasets, we revealed a setting with a high πs

to specifically evaluate the effectiveness of PDM methods.
In this setup, πs is set to values greater than 0.65 across
all datasets, in contrast to the original settings where πs is
below 0.35. Further details about this setting can be found
in Appendix D.1.

5.2. Discussion

Compatibility with different PDM methods. In Tables 3
and 4 (Appendix B.1), we present results for two training
paradigms under the extreme UniDA setting (πs > 0.65).
Our findings indicate that the proposed approach improves
performance in both paradigms, with a more pronounced ef-
fect under adversarial training. We attribute this discrepancy
to adversarial training’s explicit effort to match the distribu-
tion of selected features, making it more sensitive to errors
in the importance weight function. In contrast, self-training
mainly assigns pseudo-labels to high-confidence samples,
resulting in a less pronounced improvement.
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Table 3. H-score (%, ↑) on Office and DomainNet. For each column, the best values are highlighted in bold, while the top value in each
category is highlighted with underline. IW refers to the calculation of importance weight functions. UM: uncertainty measurement; OT:
assignment matrix computed via optimal transport; NN: nearest neighbor determined by relative distance in the embedding space.

Office DomainNet

Method IW A2D A2W D2A D2W W2A W2D Avg P2R R2P P2S S2P R2S S2R Avg

Adversarial Training

UAN (You et al., 2019) UM 24.5 61.8 48.9 64.2 27.9 61.3 48.1 11.9 15.1 14.4 17.2 18.1 11.3 14.6
CMU (Fu et al., 2020) UM 76.8 63.8 56.1 77.2 66.3 78.2 69.7 30.1 42.4 34.1 24.3 32.2 34.1 32.8
UAN+ SSL UM 87.4 74.9 72.4 81.3 74.9 87.7 79.8 50.1 39.2 35.9 32.7 34.0 49.8 40.3

Self-Training

UniOT (Chang et al., 2022) OT 78.8 67.7 86.1 66.9 83.8 81.0 77.4 38.1 29.8 30.8 29.3 29.1 38.3 32.6
UniOT+ SSL OT 79.8 75.9 86.0 77.3 84.1 82.4 80.9 39.6 29.9 33.6 31.4 31.1 40.2 34.3
DANCE (Saito et al., 2020) NN 49.7 47.9 48.4 54.9 48.9 55.6 50.9 39.4 3.30 11.8 0.90 7.60 35.3 16.4
MLNet (Lu et al., 2024) NN 51.2 61.9 58.1 79.2 59.5 75.5 64.2 48.0 45.9 47.8 48.5 43.7 53.0 47.8
MLNet+ SSL NN 48.6 60.5 60.2 80.6 60.7 80.3 65.2 48.8 46.5 50.2 50.6 44.7 52.5 48.9
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Figure 9. Improvement of SSL on the UniDA Spectrum: It shows the effectiveness of SSL across different (πs, πt) values within the
UniDA spectrum on two different training paradigms.

For completeness, we also evaluated our approach in general
UniDA setting (πs < 0.35) in Tables 5 and 6 (both in
Appendix B.1). The results suggest that it continues to
provide a modest improvement. These findings highlight
the compatibility of SSL with various PDM methods across
both ends of the UniDA spectrum (πs > 0.65 and πs <
0.35). Moreover, the performance gap between extreme and
general settings indicates that SSL primarily addresses the
DC issue, as discussed in the next paragraph.

Robustness regardless of prior label set distributions
In this section, we evaluate the effect of SSL across varying
values in the UniDA spectrum. Figure 9 illustrates the re-
sults for eight different combinations of (πs, πt), with the
corresponding contour plot showing the improvement in-
troduced by SSL (∆SSL). The results demonstrate that SSL

consistently improves performance across all divisions of
label sets, indicating its robustness. Moreover, the improve-
ment becomes more pronounced as πs increases (toward the
lower-right region), which corroborate our analysis that SSL
is particularly effective at addressing DC, a challenge that
is especially severe in high πs scenarios.

6. Conclusion
In this work, we underline extreme UniDA, a challeng-
ing and under-explored scenario that blocks state-of-the-art
PDM methods toward solving UniDA comprehensively. We
identify dimensional collapse in target representations as the
primary cause of PDM’s poor performance, arising when
the private source data overwhelms the training process.
This collapse subsequently undermines the effectiveness of
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partial domain matching. Motivated by these findings, we
propose addressing dimensional collapse from the perspec-
tive of target data. To achieve this, we revisit self-supervised
learning and uncover the critical role of uniformity in miti-
gating dimensional collapse. Our proposed solution is com-
patible with various partial domain matching methods and
accommodates a broad range of label set distributions.
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A. Additional Related Work
Most related work is discussed in each section, and a more detailed version is provided below.

A.1. Self-Supervised Learning for Domain Adaptation

Self-supervised learning (SSL) has been widely adopted in various unsupervised domain adaptation (UDA) tasks due to its
ability to capture invariant features that help bridge domain gaps. Xu et al. (2019) first demonstrated its effectiveness in
unsupervised domain adaptation through simple pretext tasks for object detection and semantic segmentation. Building on
this foundation, Bucci et al. (2019; 2021) extended pretext tasks to partial domain adaptation. However, these methods are
not designed to address DC and have been shown to exhibit limited expressiveness due to task-specific biases (Wallace &
Hariharan, 2020). Our work extends the application of SSL to resolving DC in extreme UniDA by exploring more recent
methods, including contrastive (Wang & Isola, 2020; Chen et al., 2020) and non-contrastive approaches (Grill et al., 2020;
Chen & He, 2021; Bardes et al., 2021; Zbontar et al., 2021). DANCE (Saito et al., 2020) addresses UniDA through clustering
based on source data. Unlike DANCE, our approach leverages SSL on target data independently of source data, resulting
in significantly improved performance, as shown in Section 5. SSL has also been explored for UDA in point cloud tasks,
where Achituve et al. (2021) applied deformation reconstruction to align representations across domains.

Beyond UDA, recent studies highlight the benefits of SSL pretraining in settings involving distribution shifts or imbalanced
learning. Garg et al. (2024) showed that combining self-training with contrastive SSL pretraining outperforms either
approach alone. Similarly, Liu et al. (2022) found that SSL enhances representation learning for minority classes, improving
robustness in imbalanced learning scenarios.

A.2. Universal Domain Adaptation

Universal domain adaptation (UniDA) is a more general form of UDA that makes no assumptions about the label sets
relationship between the source and target domains. To achieve domain matching without the interference of private-class
data. Prior works have leveraged uncertainty measurement (You et al., 2019; Fu et al., 2020; Lifshitz & Wolf, 2021; Chen
et al., 2022b), assignment matrices obtained from optimal transport (Chang et al., 2022), and nearest-neighbor methods
based on relative distance (Saito et al., 2020; Lu et al., 2024) as importance weight functions to distinguish shared and
private classes for domain matching. While these methods focus on designing various importance weight functions, our
work takes a different approach. We demonstrate that the unsatisfactory performance of partial domain matching stems from
degraded representation quality caused by dimensional collapse, rather than the choice of importance weighting alone.

Another line of research (Saito & Saenko, 2021; Hur et al., 2023; Lu et al., 2024) focuses on developing robust open-set
classifiers to distinguish between common and private classes in target data. While these methods do not explicitly address
domain matching, most of them can be seamlessly integrated into any domain matching framework. With the emergence of
more advanced models, Zhu et al. (2023b); Deng & Jia (2023) explore the application of models such as vision transformers
and pretrained vision models like DINO (Caron et al., 2021) and CLIP (Radford et al., 2021) to UniDA. There are also works
that align with our goal of exploring more realistic or under-explored scenarios in UniDA. Qu et al. (2024) investigates
source-free UniDA, where source data is unavailable during adaptation. Zhu et al. (2023a) addresses generalized UniDA,
which aims to identify novel categories and label distributions in the target domain, utilizing active learning to achieve this
objective.

A.3. Dimensional Collapse

Dimensional Collapse (DC) refers to the reduction in the effective dimensionality of learned representations, where features
collapse onto a lower-dimensional subspace, leading to a loss of diversity in the representation space. DC has been
extensively studied across various domains, including metric learning (Roth et al., 2020), self-supervised learning (Jing
et al., 2022), class-incremental learning (Shi et al., 2022), federated learning with heterogeneity (Shi et al., 2023), and
graph collaborative filtering (Zhang et al., 2023). Previous work primarily employs the singular value spectrum to analyze
DC effects. This involves computing the covariance matrix of embeddings, applying singular value decomposition, and
examining the distribution of singular values (usually in logarithmic scale) to reveal insights into the DC effects.
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B. Supplementary Experimental Results
B.1. Compatibility with different PDM methods

Tables 3 and 4 present the results for extreme UniDA settings, while Tables 5 and 6 summarize the results for general UniDA
settings. The resutls indicate SSL can be applied to various PDM methods in both general and extreme UniDA settings.

Table 4. H-score (%, ↑) on Office-Home and VisDA. For each column, the best values are highlighted in bold, while the top value in each
category is highlighted with underline. IW refers to the calculation of importance weight functions. UM: uncertainty measurement; OT:
assignment matrix computed via optimal transport; NN: nearest neighbor determined by relative distance in the embedding space.

Office-Home VisDA

Method IW Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr Avg S2R

Adversarial Training

UAN (You et al., 2019) UM 29.9 36.4 14.1 22.4 20.6 16.4 26.4 25.1 27.3 31.3 24.4 35.4 25.8 41.5
CMU (Fu et al., 2020) UM 38.5 43.5 45.7 41.4 41.2 47.5 46.0 46.6 40.3 41.5 38.5 27.2 41.5 34.1
UAN+SSL UM 47.1 74.4 76.8 46.4 54.3 63.5 55.8 48.5 72.3 57.7 46.3 68.5 59.3 89.5

Self-Training

UniOT (Chang et al., 2022) OT 27.2 32.3 26.6 28.4 29.9 23.2 31.4 29.3 23.0 35.9 34.3 35.3 29.7 49.9
UniOT+ SSL OT 32.1 30.3 31.0 29.7 28.9 25.6 32.1 33.9 29.1 36.7 35.3 45.6 32.5 61.1
DANCE (Saito et al., 2020) NN 34.0 55.5 82.6 43.4 44.2 60.1 34.4 20.8 61.2 65.7 33.6 61.7 44.6 69.1
MLNet (Lu et al., 2024) NN 58.2 66.5 63.3 69.4 71.2 64.1 51.3 59.6 67.7 49.9 65.3 56.3 61.9 75.1
MLNet+ SSL NN 59.4 71.5 72.9 71.0 71.5 66.7 57.5 60.4 68.8 59.9 64.4 53.3 64.8 80.2

Table 5. H-score(%, ↑) on Office-Home (5/10/50). For each column, the best values are highlighted in bold, while the top value in each
category is highlighted with underline. IW refers to the calculation of importance weight functions. UM: uncertainty measurement; OT:
assignment matrix computed via optimal transport; NN: nearest neighbor determined by relative distance in the embedding space.

Office-Home (5/10/50)

Method IW Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr Avg

Adversarial Training

UAN (You et al., 2019) UM 51.6 51.7 54.3 61.7 57.6 61.9 50.4 47.6 61.5 62.9 52.6 65.2 56.6
CMU (Fu et al., 2020) UM 56 56.9 59.2 67.0 64.3 67.8 54.7 51.1 66.4 68.2 57.9 69.7 61.6
UAN+ SSL UM 53.8 75.1 83.9 63.2 67 77.6 72.2 55.9 81.6 74.2 55.9 81.6 70.2

Self-Training

DANCE (Saito et al., 2020) NN 26.7 11.3 18.0 33.2 12.5 14.3 41.6 39.9 33.3 16.3 27.1 25.9 25.0
UniOT (Chang et al., 2022) OT 67.3 80.5 86.0 73.5 77.3 84.3 75.5 63.3 86.0 77.8 65.4 81.9 76.6
UniOT+ SSL OT 70.1 80.7 87.3 73.8 76.7 84.0 76.1 63.9 86.2 77.4 66.3 83.1 77.1

Table 6. H-score(%, ↑) on Office (10/10/11). For each column, the best values are highlighted in bold, while the top value in each
category is highlighted with underline. IW refers to the calculation of importance weight functions. UM: uncertainty measurement; OT:
assignment matrix computed via optimal transport; NN: nearest neighbor determined by relative distance in the embedding space.

Office (10/10/10)

Method IW A2D A2W D2A D2W W2A W2D Avg

Adversarial Learning

UAN (You et al., 2019) UM 59.7 58.6 60.1 70.6 60.3 71.4 63.5
CMU (Fu et al., 2020) UM 68.1 67.3 71.4 79.3 72.2 80.4 73.1
UAN+ SSL UM 85.8 83.5 84.7 96.4 84.2 97.2 88.6

Self-Training

DANCE (Saito et al., 2020) NN 72.6 62.4 63.3 76.3 57.4 82.8 66.6
UniOT (Chang et al., 2022) OT 87.0 88.5 88.4 98.8 87.6 96.6 91.2
UniOT+ SSL OT 86.6 88.8 90.7 98.2 88.6 96.7 91.6
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B.2. Results of applying SSL on different partition of target data

Since applying supervised loss to source-private data can have significant negative effects, we investigate whether applying
SSL to target-private data has a similar impact. In Figure 10, the results indicate that while it does introduce some negative
effects, these are relatively minor compared to the benefits it provides. This could be attributed to its role in preserving
structural information rather than focusing solely on classification like supervised loss (Liu et al., 2022).

Figure 10. The figure illustrates the performance of applying SSL to either the shared subset of the target data or the entire target data
under different πt values. The results suggest that applying SSL to target-private classes can indeed have a negative effect, but this impact
is relatively minor compared to the overall benefits it provides

B.3. Results of different SSL methods

We discuss three paradigms in SSL: for contrastive learning, we adopt AlignUniform (Wang & Isola, 2020); for asymmetric
models, we utilize SimSiam (Chen & He, 2021); and for redundancy reduction methods, we employ Barlow Twins (Zbontar
et al., 2021). As shown in Table 7, our results indicate that each of these frameworks significantly enhances performance.

Table 7. Performance comparison on OfficeHome (P2R) using different SSL methods.

Method H-score

SO 63.2
UAN 27.3
UAN + SimSiam (Chen & He, 2021) 72.3
UAN + AlignUniform (Wang & Isola, 2020) 71.8
UAN + Barlow Twins (Zbontar et al., 2021) 70.6

B.4. Results with error bar

We report the results on Office31 (Saenko et al., 2010) based on three runs in Table 8, each using a different random seed.
The standard deviation values are relatively minor compared to the advantages we observe over prior works. The results
indicate that our method is stable in repetitive trials.

Table 8. H-score of UAN + SSL with error bars on Office31.

A2D A2W D2A D2W W2A W2D

UAN + SSL 75.6 ± 0.7 85.4 ± 2.6 87.1 ± 2.6 76.3 ± 1.4 72.9 ± 1.3 80.0 ± 2.5
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B.5. Sensitivity of hyperparameters

We evaluated the sensitivity of the weighted hyperparameter λSSL by experimenting values between 0.3 and 0.7. Figure 11
demonstrates minimal sensitivity to this hyperparameter across three settings in the Office-Home. The evaluations are
conducted using UAN+SSL.

Figure 11. Sensitivity of λSSL.

C. Supplementary Background
C.1. Partial Domain Matching Framework

Weight Calculation
Matching Method Adversarial Training Self-Training

Uncertainty Measurement UAN, CMU, SS -
Optimal Transport - UniOT
Nearest Neighbor - DANCE, MLNet

Table 9. PDM Framework of Different Methods.

We introduce two main frameworks widely used in UniDA literature: adversarial training and self-training.

Adversarial Training. Adversarial training aligns feature distributions across domains by optimizing an adversarial
loss, which encourages the feature extractor to generate domain-invariant features that fool a domain discriminator. The
adversarial loss is defined as follows:

Ladv(θf , θd) =− Ex∼psws(x) log θd(θf (x))− Ex∼ptwt(x) log(1− θd(θf (x))) (9)

Here, ws(x) and wt(x) are importance weight functions that downweight private-class samples in the source and target
domains, ensuring that only shared-class samples are aligned. In an ideal case, the weight ws(x) and wt(x) should assign 0
to private-class samples and 1 to shared-class samples. The overall objective can be formulated as:

min
θf ,θc

max
θd

[
Ls(θf , θc)− λLadv(θf , θd)

]
, (10)

where λ is the weighted hyperparameter.

Self-Training. Self-training approaches, unlike adversarial training, do not explicitly align the feature distributions across
domains. Instead, they assign pseudo-labels to high-confidence target samples and use these pseudo-labels for training. The
self-training loss is defined as:

LST(θf , θc) = Ex∼pt
I{wt(x) ≥ δ} · CE(ŷ, θc(θf (x))), (11)
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where δ is a confidence threshold.

The importance weight function wt(x) is used to filter out private-class samples and to prioritize target samples with high
confidence for training. The overall objective can be formulated as:

min
θf ,θc

Ls(θf , θc) + λSTLST(θf , θc) (12)

C.2. Calculation of Importance Weight Function

Let p(y|x) represent the predicted probability distribution over the possible classes y given an input x. Specifically, p(yi|x)
is the probability assigned to class yi for the input x, where i = 1, 2, · · · ,K and K is the number of classes. In our cases,
K = |Cs|.

Entropy. The entropy H(p) is defined as:

H(p) = −
K∑
i=1

p(yi|x) log p(yi|x) (13)

Confidence. The confidence C(x) is defined as the predicted probability for the most likely class:

C(x) = max
i

p(yi|x) (14)

Energy Score. The energy score E(x) is calculated as:

E(x) = − log

K∑
i=1

exp(p(yi|x)) (15)

Relative Distance. In UniDA, shared classes in the source domain are expected to be closer to shared classes in the
target domain compared to target-private classes. Therefore, we can leverage this relationship to distinguish between the
different label sets. In this method, clustering is first performed on the source data, and the distance from a given input x to
the nearest cluster centroid is used to calculate the uncertainty. Let Cj represent the centroid of the j-th cluster, and the
uncertainty score U(x) is computed as:

U(x) = min
j

d(x,Cj), (16)

where d is a distance metric, such as Euclidean distance. The same process can be applied when the input is from the source
domain. Note that the score is updated every k steps, as calculate the distances in every step is costly.

D. Details of Experimental Setup
D.1. Extreme UniDA setting

Table 10. Comparison of general and extreme settings across datasets. The general UniDA setting refers to the conventional setup
used in prior works.

Dataset
General Extreme

|Cs| C |Ct| πs |Cs| C |Ct| πs

Office-31 (Saenko et al., 2010) 10 10 11 0.33 24 5 3 0.75
Office-Home (Venkateswara et al., 2017) 5 10 50 0.08 50 10 5 0.77

Visda (Peng et al., 2017) 3 6 3 0.25 8 2 2 0.67
DomainNet (Peng et al., 2019) 50 150 145 0.14 250 50 45 0.72

In Table 10, we provide the details of label set distributions for our extreme settings. Following prior work, the classes in
each label set are first sorted alphabetically and then divided into three groups: source-private, common, and target-private.
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D.2. Metrics

H-score (Fu et al., 2020) is defined as the the harmonic mean of accuracy on common classes aC and accuracy on
target-private (unknown) classes aCt

.

H-score = 2 ·
aC · aCt

aC + aCt

.

D.3. Dataset

Office31 (Saenko et al., 2010) contains 31 classes and three domains: Amazon (A), DSLR (D), and Webcam (W), with a
total of about 4k images. Office-Home (Venkateswara et al., 2017) has 65 classes and four domains: Art (A), Product (Pr),
Clipart (Cl), and Realworld (Rw), with approximately 15k images. VisDA (Peng et al., 2017) is a larger dataset with 12
classes from two domains: Synthetic and Real images, totaling around 280k images. DomainNet (Peng et al., 2019), the
largest DA dataset, has 345 classes and six domains, with about 0.6 million images. Following prior works (Fu et al., 2020;
Chang et al., 2022; Kundu et al., 2022), we use only three domains: Real (R), Sketch (S), and Painting (P).

D.4. Implementation Details

We use ResNet-50 (He et al., 2016) as the backbone model for all experiments, which is pre-trained on ImageNet (Deng
et al., 2009). The optimizer, scheduler and learning rate are consistent with You et al. (2019). The training steps are 10K for
all experiments and the batch size is set to 36 for both domains. The hyperparameters are set as follows: λAdv = 0.5 and
λSSL = 0.5 for Office-Home, DomainNet and VisDA, and λSSL = 0.2 for Office31. We use SimSiam (Chen & He, 2021) as
our self-supervised loss as it does not require negative samples or large batch size. The data augmentation strategy follows
the same setup as SimSiam.

D.5. Toy Experiment Setup

The dataset comprises three classes: the blue and green classes represent shared classes, differentiated by shape to indicate
their respective domains. Specifically, source classes 0, target class 0, source class 1, and target class 1 are sampled with
means of (0, 0), (3, 3), (3,−5) and (6,−2), respectively. All shared classes have an identity covariance matrix, with 50
samples per class. The red classes represents source-private data, sampled with a mean of (−10,−10) and a covariance

matrix of
[
5 −5
−5 1

]
. To simulate different πs values, the number of samples in the source-private class varies: we use

50 samples for low πs and 2500 samples for high πs. For the feature extractor θf , we use a two-layer linear network with
ReLU activation (Agarap, 2018), where the output size is 2. The classifier θc is a single linear layer with an output size of 3,
used to predict the three source classes.
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