
Condensed Filter Tree for Cost-Sensitive Multi-Label Classification

A. Proof of Theorem 1
Theorem 1. Under the proper ordering and K-classifier
tricks, for each x and the multi-label classifier h formed by
chaining K binary classifiers (h1, ..., hK) as in the predic-
tion procedure of Filter Tree, the regret rg(h,P) is

rg(h,P)≤
∑

t∈〈r,y∗〉

Jhk(x,t)6=y[k]Krg

(
hk(x,t),FTt(P,hk+1,...,hK)

)
,

where k denotes the layer that t is on, and
FTt (P, hk+1, ..., hK) represents the procedure that
generates weighted examples (x, b, w) to train the node at
index t based on sampling y from P|x and considering the
predictions of classifiers in the lower layers.

Proof. The proof is similar to the one in (Beygelzimer
et al., 2008), which is based on defining the overall-regret
of any subtree. The key change in our proof is to define the
path-regret of any subtree to be the total regret of the nodes
on the ideal path of the subtree. The induction step follows
similarly from the proof in (Beygelzimer et al., 2008) by
considering two cases: one for the ideal prediction to be in
the left subtree and one for the ideal prediction to be in the
right. Then an induction from layer K to the root proves
the theorem.

For each node t on layer k, hk makes a weighted binary
classification decision of 0 or 1, which directs the predic-
tion procedure to move to either the node t0 or t1. Without
loss of generality, assume hk(x, t)=1. We denote t̂ as the
prediction (leaf) on x when starting at node t. For each leaf
node ỹ, let C̄(ỹ) ≡ Ey∼P|xC(y, ỹ). Then the node re-
gret rg(t) is simply C̄(t̂1)−mini∈{0,1} C̄(t̂i). Obviously,
rg(t) ≥ C̄(t̂1)− C̄(t̂0) for all node t.

In addition to the regret of nodes, we also define the
regret of the subtree Tt rooted at node t. The re-
gret of the subtree Tt is as defined as the regret of the
predicted path (vector) t̂ within the subtree Tt, that is,
rg(Tt) = C̄(t̂)− C̄(t∗) , where t∗ denotes the optimal

prediction (leaf node) in the subtree Tt. By this definition,
rg(h,P) can be treated as rg(Tr).

We now prove by induction from layer K to the root. The
induction hypothesis is that

rg(Tt) ≤
∑

t′∈〈t,t∗〉

Jhk(x, t′) 6= y[k]Krg(t′),

where k is the corresponding layer of each node t′. The
hypothesis states that the regret of the subtree is bounded
by the sum of the regrets for the wrongly predicted nodes
from t to the ideal prediction t∗. The base case is the
reduction tree with one single internal node t and two
leaf nodes, which is a cost-sensitive binary classification
with rg(Tt) = rg(t) trivially. If h1 predicts correctly,
then rg(Tt) = 0. Otherwise rg(Tt) = rg(t). Then the
induction hypothesis is satisfied.

For the inductive step, for node t on layer k, assume

R0 ≡ rg(Tt0)≤
∑

t′∈〈t0,t∗0〉

Jhk(x, t′) 6= y[k]Krg(t′),

and

R1 ≡ rg(Tt1)≤
∑

t′∈〈t1,t∗1〉

Jhk(x, t′) 6= y[k]Krg(t′).

The optimal prediction t∗ is either on the right subtree T1

or the left subtree T0. For the first case, it implies t∗ = t∗1
and y[k] = hk(x, t) = 1, then

rg(Tt) = C̄(t̂1)− C̄(t∗)

= C̄(t̂1)− C̄(t∗1)

= R1 ≤
∑

t′∈〈t1,t∗1〉

Jhk(x, t′) 6= y[k]Krg(t′)

=
∑

t′∈〈t,t∗〉

Jhk(x, t′) 6= y[k]Krg(t′).

For the second case, it implies t∗ = t∗0 and y[k] 6=
hk(x, t) = 1, then

rg(Tt) = C̄(t̂1)− C̄(t∗)

= C̄(t̂1)− C̄(t∗0)

= C̄(t̂1)− C̄(t̂0) + C̄(t̂0)− C̄(t∗0)
≤ rg(t) + R0

≤ rg(t) +
∑

t′∈〈t0,t∗0〉

Jhk(x, t′) 6= y[k]Krg(t′)

=
∑

t′∈〈t,t∗〉

Jhk(x, t′) 6= y[k]Krg(t′).

Then we complete the induction.

B. Datasets
Here we summarize the basic statistics of the used datasets
in Table 1.
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Table 1. The properties of each dataset
Dataset # Instances # Labels (K)
CAL500 502 174
emotions 593 6
enron 1702 53
imdb 86290 28
medical 662 45
scene 2407 6
slash 3279 22
tmc 28596 22
yeast 2389 144
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