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ABSTRACT

We address the problem of generalized zero-shot learning (GZSL) where the task
is to predict the class label of a target image whether its label belongs to the
seen or unseen category. Similar to ZSL, the learning setting assumes that all
class-level semantic features are given, while only the images of seen classes are
available for training. By exploring the correlation between image features and
the corresponding semantic features, the main idea of the proposed approach is to
enrich the semantic-to-visual (S2V) embeddings via a seamless fusion of adaptive
and generative learning. To this end, we extend the semantic features of each class
by supplementing image-adaptive attention so that the learned S2V embedding can
account for not only inter-class but also intra-class variations. In addition, to break
the limit of training with images only from seen classes, we design a generative
scheme to simultaneously generate virtual class labels and their visual features by
sampling and interpolating over seen counterparts. In inference, a testing image
will give rise to two different S2V embeddings, seen and virtual. The former is
used to decide whether the underlying label is of the unseen category or otherwise
a specific seen class; the latter is to predict an unseen class label. To demonstrate
the effectiveness of our method, we report state-of-the-art results on four standard
GZSL datasets, including an ablation study of the proposed modules.

1 INTRODUCTION

Different from conventional learning tasks, zero-shot learning (ZSL) by Lampert et al. (2009);
Palatucci et al. (2009); Akata et al. (2013) explores the extreme case of performing inference only
over samples of unseen classes. To make the scenario more realistic, generalized zero-shot learning
(GZSL) (Chao et al., 2016; Xian et al., 2017) is subsequently proposed so that inference can concern
samples of both seen and unseen classes. Nevertheless. the learning setting in ZSL/GZSL is
essentially the same where sample classes are divided into two categories, seen and unseen, but only
those samples of seen classes are accessible to training. In addition, each of all the classes under
consideration is characterized by semantic features such as attributes (Xian et al., 2018b) or text
descriptions (Zhu et al., 2018) to specify and relate seen and unseen classes.

The lack of training samples from unseen classes has prompted generative approaches (Chen et al.,
2018; Felix et al., 2018; Kumar Verma et al., 2018; Mishra et al., 2018) to creating synthetic data from
semantic features of unseen classes. The strategy could enable learning semantic-visual alignment on
unseen classes implicitly, and thus improves the ability to classify unseen classes. However, such
generative models are indeed trained on seen samples, and the quality of synthesized unseen samples
is predominantly influenced by seen classes. If the number of training samples of each seen class is
small, it is hard for generative models to adequately synthesize samples of unseen classes, leading to
unsatisfactory zero-shot learning. To better address the issue, we propose to synthesize visual and
semantic features of virtual classes rather than those of the unseen classes. An interesting analogy is
that childhood experience and relevant study (Greene, 1995) suggest the behavior of using human
imagination to produce new object concepts could assist our cognitive capability. To mimic people
utilizing imagination for exploring new knowledge, we create virtual classes by the integration of
past ”experience” (seen classes). In detail, we extend the mixup technique by Zhang et al. (2018) to
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generate virtual classes, with a subtle difference that mixing is conducted on the semantic features (in
addition to the visual ones), instead of the class label vectors.

In ZSL/GZSL, each seen or unseen class is typically described by a single semantic feature vector.
The practice is useful in differentiating different classes in a principled way, but may not be sufficient
to reflect the inter-class and intra-class visual discrepancies, not to mention the ambiguities caused
by different backgrounds, view orientations, or occlusion in images. The concern of inefficient
class-level representation can also be observed from how the semantic feature vectors are constructed.
Take, for example, the Attribute Pascal and Yahoo (aPY) dataset (Farhadi et al., 2009), where each
instance is annotated by 64 attributes. The semantic features of each class in aPY are obtained by
averaging the attribute vectors of all its instances. We are thus motivated to introduce an image-
adaptive class representation, integrating the original semantic features for inter-class discrimination
with an image-specific attention vector for intra-class variations.

With the addition of virtual training data and the image-adaptive class representation, our method is
designed to learn two classification experts: one for seen classes and the other for unseen classes.
Both experts project the image-adaptive semantic feature vectors to the visual space and use cosine
similarity to find the class label most similar to the given visual feature vector. The seen expert is
trained with the provided training (seen) data, while the class prediction is over all possible classes,
including seen and unseen. In inference, if its predicted class is not within the seen category. The
testing sample is deemed to be from the unseen category, whose label is then decided by the unseen
expert. The unseen expert is trained with the virtual data only, and the process indeed resembles
meta-learning. However, the effectiveness of meta-learning is boosted by the design of the image-
adaptive mechanism in that fine-tuning is not needed in performing zero-shot classification over
unseen classes. We characterize the main contributions of this work as follows.

• Instead of generating synthetic data of unseen classes, we propose to yield virtual classes and
data by mixup interpolations. The virtual classes of synthetic data can then be seamlessly
coupled with meta-learning to improve the inference on unseen testing samples.
• We introduce the concept of representing each class with image-adaptive semantic features

that could vary among intra-class samples. While the adaptive mechanism improves clas-
sifying the seen classes, it manifests the advantage in boosting the effect of meta-learning
over virtual data to zero-shot inference over unseen classes.
• We demonstrate state-of-the-art results of zero-shot learning over four popular benchmark

datasets and justify the design of our method with a thorough ablation study.

2 RELATED WORK

We review relevant literature in this section. First, we describe generative approaches for ZSL/GZSL
that synthesize unseen images for training. To improve GZSL performance, we propose to couple
virtual class generation with meta-learning for mimicking the inference scenario. Next, we discuss
attention approaches that extract discriminating features from images to help classification.

2.1 GENERATIVE APPROACHES FOR ZSL/GZSL

Arguably one of the most important problems in ZSL/GZSL is to prevent models from being biased to
seen classes. Generative approaches (Chen et al., 2018; Felix et al., 2018; Kumar Verma et al., 2018;
Mishra et al., 2018; Schonfeld et al., 2019; Paul et al., 2019; Xian et al., 2019) tackle the problem by
synthesizing visual features of unseen classes from their semantic features with generative models
like Generative Adversarial Networks (GAN; Goodfellow et al., 2014) or Variational Autoencoders
(VAE) (VAE; Kingma & Welling, 2014). The synthetic visual features act as pseudo-examples of
unseen classes, and effectively reduce the ZSL/GZSL problem to a supervised learning one.

One key issue behind generative approaches comes from the insufficient amount of data to learn
a good generative model. As a consequence, some semantic features that seem important during
training may cause overfitting, and others that seem less important may be completely dropped.
Therefore, several prior techniques propose new constraints or losses to preserve semantic features
and regularize the generative model. For instance, (Chen et al., 2018) avoids the dropping of semantic
information by disentangling the semantic space into two subspaces, one for classification and the
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other for reconstruction; Felix et al. (2018) enforces visual-semantic feature consistency by requiring
synthesized visual features to reconstruct semantic features accurately.

However, even with the new constraints or losses, the success of generative approaches still highly
depends on whether there is enough data/variation in the seen classes to synthesize diverse visual
features. Otherwise, the yielded features will be too close to those few seen classes and cannot help
ZSL/GZSL much. For example, in AWA2 dataset (Xian et al., 2018a), the unseen samples of “rat” are
easily misclassified as seen classes of “mouse” or “hamster” because synthetic visual features for
“rat” are doomed to be confused with seen visual features of those similar classes. The phenomenon
inspires us to generate synthetic visual features for not only the given unseen classes but also the
virtual unseen classes. These virtual classes provide a wider spectrum of support for unseen scenarios
to improve ZSL/GZSL performance.

Our other focal effort is to connect the concept of meta-learning (Vinyals et al., 2016; Finn et al., 2017)
with virtual classes in the training phase of the unseen expert. The most closely related approaches in
ZSL are Li et al. (2019b); Yu et al. (2020); Verma et al. (2020); Sung et al. (2018); Hu et al. (2018).
Verma et al. (2020) combines meta-learning and generative models to conquer limits in generative
models. Li et al. (2019b) mimics the inference scenario by randomly selecting seen classes as ”fake”
new classes in each episode. Yu et al. (2020) randomly splits seen classes into two sets to train and
refine the model. In contrast, we simulate the ZSL inference scenario in each episode by creating
virtual classes from seen classes using mixup. Owing to the training scenario more resembling the
inference setting in ZSL, our model achieves better S2V embedding on unseen classes and obtains
state-of-the-art ZSL performance on most datasets. Besides, Sung et al. (2018) learns a deep distance
metric to classify samples. Hu et al. (2018) utilizes the correction module to assist classification. On
the contrary, our model does not need to learn complex relationship between classes and additional
assistant module to achieve good performance.

2.2 ATTENTION

Attention mechanism is widely used in ZSL (Ji et al., 2018; Xie et al., 2019; Huynh & Elhamifar,
2020; Min et al., 2020; Liu et al., 2019). Highlighting important local features and reducing noisy
feature influence generate a more effective mapping between visual and semantic domains. Ji et al.
(2018) proposes S2GA which utilizes semantic features to emphasize most informative visual local
features. (Xie et al., 2019) employs AREN and ACSE to focus on the most important region in
images. Huynh & Elhamifar (2020) applies dense attribute-attention to find the most discriminating
image parts and embed them to semantic features individually. DVBE (Min et al., 2020) utilizes
spatial and channel attention to maximize inter-class margin. While the attention to visual features is
proved useful by the above-mentioned research efforts, relatively few attempts assess the importance
of attention on semantic features. In the ZSL setting, each class contains only one semantic feature
vector such that intra-class variations are neglected from the single semantic representation. For
example, the object of interest can be occluded partly in the image or in the front of different
backgrounds, and a unique class-wise semantic feature vector is hard to reflect such variances. Thus,
attention to semantic features is worth further exploring in ZSL. Along this line, the most relevant
work to ours is LFGAA (Liu et al., 2019), which considers semantic prediction of samples. Different
from LFGAA, our method puts attention on discriminating dimensions of semantic features and
maps them to the visual domain. The effect of the proposed attention mechanism is to attract the
visual representation of ground-truth class and repel others. Besides, our other main difference from
LFGAA is the shortcut design in the attention model. We add a shortcut to prevent the model from
overfitting on training data and retain discriminating dimensions for unseen class classification.

3 METHOD

We coin the proposed method as AGZSL in that its main idea is the fusion of Adaptive and Generative
mechanisms in solving ZSL/GZSL. (See Figure 1.) We describe below the details of AGZSL.

3.1 NOTATIONS AND FORMULATION

We denote training data as D = DS ∪ DU where DS = {(xs ∈ Xs,as ∈ As, ys ∈ Ys)} comprises
seen data and DU = {(au ∈ Au, yu ∈ Yu)} includes unseen class labels yu and the corresponding
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Figure 1: Overview of AGZSL. The same color reflects the same class association between visual
features and attributes. (a) Image-adaptive mechanism (marked as purple) based on x yields proper
attention to adapt the semantic features of a and a′ so that their S2V embedding (marked as orange)
displays the desired effects in x̂ (attracted to x) and in x̂′ (repelled from x). (b) We generate
virtual classes from a pair of classes of semantic features a and a′ with selected weights λ via beta
distribution B(α, β). Xv/X′v and av/a′v represent visual and semantic features of virtual classes.

semantic/attribute feature vectors au. The dimensions of visual features and semantic features are
respectively expressed as x ∈ Rd and a ∈ Rk, while the number of total classes is n. We also assume
that the seen category Ys and the unseen category Yu are disjoint, i.e., Ys∩Yu = ∅ and Ys∪Yu = Y .
Besides, we defineAs ∪Au = A ∈ Rk×n as semantic features of all classes. Finally, the virtual data
via mixup interpolations is denoted as DV = {(xv ∈ Xv,av ∈ Av, yv ∈ Yv)}. As we explain later,
yv is simply a new label of virtual class, rather than from label interpolation as in Zhang et al. (2018).

To perform the classification task, we explore the similarity correlations in the visual domain and
consider semantic-to-visual (S2V) embeddings. Analogous to COSMO (Atzmon & Chechik, 2019),
our method includes seen and unseen experts, fs and fu, to classify testing samples as shown in
Figure 2; however, the algorithmic designs are fundamentally different. The novel component of
our method is the introduction of Image-Adaptive Semantics (IAS) in both experts to expand the
spectrum of S2V embeddings. Specifically, in training, IAS diversifies the total mappings of S2V
embedding from the number of different semantic vectors/classes to the number of samples. Its effect
is twofold. First, it boosts the classification performance of the seen expert. Second, it generalizes the
meta-learning of the unseen expert with virtual data and yields good performance in the inference
of samples from unseen classes. Given a testing sample x in inference, we apply the two learned
experts by

ŷs = argmax
y∈Y

fs(x,A) and ŷu = argmax
y∈Yu

fu(x,Au) . (1)

To decide the class label ŷ of x, we use the seen expert to discriminate whether the sample is from
the seen category. If it is the case then ŷ is decided by fs, and otherwise by fu. That is, we have

ŷ =

{
ŷs if ŷs ∈ Ys ,
ŷu otherwise. (2)

3.2 IMAGE ADAPTIVE SEMANTICS (IAS)

As ZSL/GZSL assumes one semantic feature vector for each class, the conventional semantic-to-
visual architecture leads to one single class-level visual feature vector, which is common to all samples
of the same class. To learn such a single embedding vector with the constraint of being simultaneously
similar to all visual features of samples from the same class tends to yield unsatisfactory classification
outcomes in that it simply ignores the intra-class variations in visual features.

Diversifying semantic-to-visual embeddings with IAS establishes the core of our model as shown in
Figure 3. To realize the concept, the network module learns to map image-adaptive semantic features
to the corresponding visual features, according to the cosine similarity. To this effect, IAS leverages
the given visual features x to focus on discriminative dimensions of the respective semantic features.
Specifically, we apply IAS to obtain modified semantic features Â(x) ∈ Rk×n by

Â(x) = A+A� softmax(g(x)), (3)
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Figure 2: The proposed seen and unseen experts. In the learning phase, the seen expert fs is trained
with seen visual features xs, seen semantic features As, and corresponding class labels ys, while the
unseen expert fu is trained via meta-learning with virtual data. In the inference phase, given a testing
sample x, fs is additionally fed with all semantic features A, and fu only with unseen semantic
features Au. The decision rule leading to the class label ŷ is based on (2). Note that in both training
and inference stages, the image-adaptive mechanism to semantic features is carried out.

where softmax(g(x)) ∈ Rk represents using a linear layer g to predict semantic attention and
� denotes Hadamard product to combine attention and semantic features. Note that the shortcut
implementation in (3) is pivotal as the softmax function often puts high attention weights on sparse
dimensions and draws others near to zero. Without the shortcut, the modified Â would miss some
part of semantic features and degenerate the classification performance. Also, it is worthy to point
out that compared to LFGAA (Liu et al., 2019), our method pays attention to the semantic features of
classes, not the semantic prediction of the model. With (3), the process to drive the image-adaptive
class-level visual features V(x) can be expressed by

A ∈ Rk×n x∈Rd

7−−−−→
IAS

Â(x) ∈ Rk×n 7−−−→
S2V

V(x) ∈ Rd×n. (4)

Once we have obtained the class-level visual features, we then use the cosine similarity and softmax
to calculate the probability of each class. We have the class probability of prediction on x:

p(x) = f(x,A) = softmax(σ × cos(V(x),x)), (5)

where σ is the learnable scale and f is indeed the general form of a classification expert. We conclude
by stating that the Cross-Entropy(CE) loss is adopted to update the model:

LCE = −
∑

x
log py(x), (6)

where py(x) is the predicted probability of ground-truth label.

3.3 SEEN EXPERT

The objective of seen expert fs is to recognize seen classes and otherwise decide whether a testing
sample belongs to unseen classes in inference phase. In zero-shot learning, especially GZSL, the
capability to single out testing samples of unseen classes is crucial to the classification performance. If
one can establish reasonable split mechanisms such as in Min et al. (2020) and Chen et al. (2020), the
more challenging GZSL would be simplified into ZSL. For example, COSMO (Atzmon & Chechik,
2019) utilizes Confidence Base Gating to discriminate between seen and unseen classes, while DVBE
(Min et al., 2020) considers the entropy threshold. In our formulation, the seen expert learns to predict
all possible classes, including seen and unseen, although the training data assume only seen class
labels. That is, fs is trained to map (image adaptive) seen semantic features to their corresponding
visual features. Such optimization can be thought of as one-category anomaly detection over only
seen classes. Thus, in inference, if the highest cosine similarity value by the seen expert fs is not
yielded by one of the seen classes, the testing sample is considered abnormal from the unseen
category and its classification should be decided by the unseen expert discussed next.
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Figure 3: The architectures of IAS and S2V (FC: linear layer, L2: L2-normalization).

3.4 UNSEEN EXPERT

So far we have stated the objective of the unseen expert fu is to classify the labels of those that
cannot be decided by the seen expert, as in (2). To resolve the dilemma of zero-shot setting, we
apply meta-learning to train fu over virtual classes by mixup interpolations. The exact number of
virtual classes in each episode is decided by the pilot study (Li et al., 2019b), and an ablation study in
appendix is provided to analyze its effect on the performance of zero-shot classification. To begin
with, in each episode we randomly select m pairs of seen classes. Then, we create m virtual classes
out of these pairs by mixup. The semantic and visual features for these virtual classes are defined as

av = λai + (1− λ)aj , (7)
xv = λxi + (1− λ)xj , (8)

where ai and aj are semantic features of paired classes, and xi and xj are randomly chosen from
visual samples of the paired classes. Following Zhang et al. (2018), λ ∈ [0, 1] is sampled from the
beta distribution. We then define a new virtual class yv , with av as semantic features, to be associated
with virtual visual features xv . Previous generative models (Schonfeld et al., 2019; Xian et al., 2019)
synthesize unseen samples by GAN/VAE or their variants. In comparison, the proposed meta-learning
has at least three advantages for ZSL. First, the small number of classes in some datasets, such as 50
in AWA2, may fall short to provide sufficient support set such that the generative model is hard to be
optimized, while episodic meta-learning over virtual classes can overcome this problem. Second,
some part of semantic features which are important to classify unseen classes do not have enough
training classes in the datasets. With mixup semantic features as virtual classes, our model can learn
underlying discriminating semantic features well. Third, the fusion of image-adaptive mechanism
and meta-learning is flexible. As a result, we do not need online fine-tuning in applying the unseen
expert fu yielded by meta-learning to predict the label of unseen class for testing samples.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

Datasets. In GZSL, there are four widely used benchmark datasets for evaluation, which are AWA2
(Xian et al., 2018a), USCD Birds-200-2011 (CUB) (Welinder et al., 2010), SUN (Patterson & Hays,
2012), and aPY (Farhadi et al., 2009). AWA2 contains 37K images and 50 kinds of animals with 85-
dimension attributes. CUB consists of 11K images and 200 bird species described with 312-dimension
attributes. SUN is composed of 14K images 717 classes labeled with 102-dimension attributes. aPY
includes 15K images and 32 different classes with 64-dimension attributes. The attributes of class in
datasets will be taken as the semantic features in our work. We follow existing GZSL approaches
(Min et al., 2020; Li et al., 2019b) and extract 2048-dimensional visual features for each image by
the ResNet101 backbone (He et al., 2016) pretrained on ImageNet-1K. We then split the data into
seen and unseen classes according to the benchmark procedure from Xian et al. (2017).
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Table 1: GZSL results on four datasets. All methods in comparison utilize ResNet101 as the backbone
for fairness. Notation ”*” means the method fine-tunes the backbone to match the characteristic of
datasets.

AWA2 CUB SUN aPY
ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL
T1 U S H T1 U S H T1 U S H T1 U S H

SP-AEN 58.5 23.3 90.9 37.1 55.4 34.7 70.6 46.6 59.2 24.9 38.6 30.3 24.1 13.7 63.4 22.6
DLFZRL 60.9 - - 45.1 51.9 - - 37.1 42.5 - - 24.6 38.5 - - 31.0

PSR 63.8 20.7 73.8 32.3 56.0 24.6 54.3 33.9 61.4 20.8 37.2 26.7 38.4 13.5 51.4 21.4
CDL - - - - 54.5 23.5 55.2 32.9 63.6 21.5 34.7 26.5 43.0 19.8 48.6 27.1

PQZSL - - - - - 53.2 51.4 46.9 - 35.1 35.3 35.2 27.9 64.1 64.1 38.8
f-VAEGAN-D2* 70.3 57.1 76.1 65.2 72.9 63.2 75.6 68.9 65.6 50.1 37.8 43.1 - - - -

LsrGAN - 54.6 74.6 63.0 - 48.1 59.1 53.0 - 44.8 37.7 40.9 - - - -
TF-VAEGAN* 73.4 55.5 83.6 66.7 74.3 63.8 79.3 70.7 66.7 41.8 51.9 46.3 - - - -

OCD-CVAE 71.3 59.5 73.4 65.7 60.9 44.8 59.9 51.3 62.1 44.8 42.9 43.8 - - - -
ZSML Softmax 76.1 58.9 74.6 65.8 69.6 60.0 52.1 55.7 60.2 - - - 64.1 36.3 46.6 40.9

GXE 71.1 56.4 81.4 66.7 54.4 47.4 47.6 47.5 62.6 36.3 42.8 39.3 38.0 26.5 74.0 39.0
E-PGN 73.4 52.6 83.5 64.6 72.4 52.0 61.1 56.2 - - - - - - - -

Relation Net 64.2 30.0 93.4 45.3 55.6 38.1 61.1 47.0 - - - - - - - -
Correlation Net - - - - 45.8 41.9 - - - - - - - - - -
LFGAA+Hibrid 68.1 27.0 93.4 41.9 67.6 36.2 80.9 50.0 62.0 18.5 40.0 25.3 - - - -

AREN* 66.9 54.7 79.1 64.7 72.5 63.2 69.0 66.0 60.6 40.3 32.3 35.9 39.2 30.0 47.9 36.9
COSMO - - - - - 44.4 57.8 50.2 - 44.9 37.7 41.0 - - - -
DVBE* - 62.7 77.5 69.4 - 64.4 73.2 68.5 - 44.1 41.6 42.8 - 37.9 55.9 45.2

ours 73.8 65.1 78.9 71.3 57.2 41.4 49.7 45.2 63.3 29.9 40.2 34.3 41.0 35.1 65.5 45.7
ours* 76.4 69.0 86.5 76.8 77.2 69.2 76.4 72.6 66.2 50.5 43.1 46.5 43.7 36.2 58.6 44.8

Evaluation. We evaluate our approach for both ZSL and GZSL settings. For the ZSL setting,
the average per-class top-1 accuracy (T) on unseen classes is taken as the evaluation metric. For
GZSL (Xian et al., 2017), the evaluation metrics include seen classes accuracy S, unseen class
accuracy U, and their harmonic mean H = (2U · S)/(U + S).

Implementation. As suggested in Li et al. (2019b), we normalize the visual and semantic features
into [0, 1]. The architecture of semantic-to-visual embedding contains a two-layer linear model with
1,600 hidden units and utilizes ReLU on the hidden and output layer. The seen and unseen experts are
trained by Adam optimizer with a learning rate 5× 10−5 and 5× 10−4 respectively for all datasets.
We apply 200,000 episodes to train the unseen expert. In each episode, we randomly generate 16 or
20 (based on the dataset) virtual classes and 4 samples for each class. We follow the setting in (Min
et al., 2020) to fine-tune the backbone.

4.2 COMPARISON WITH STATE-OF-THE-ART APPROACHES

We compare our method with 13 recent GZSL approaches. These include SP-AEN (Chen et al., 2018),
DLFZRL (Tong et al., 2019), PSR (Annadani & Biswas, 2018), CDL (Jiang et al., 2018), PQZSL
(Li et al., 2019a), f-VAEGAM-D2 (Xian et al., 2019), LsrGAN (Vyas et al., 2020), TF-VAEGAN
(Narayan et al., 2020), OCD-CVAE (Keshari et al., 2020), ZSML Softmax (Verma et al., 2020),
E-PGN (Yu et al., 2020), Relation Net (Sung et al., 2018), Correlation Net (Hu et al., 2018), GXE
Li et al. (2019b), LFGAA+Hybrid (Liu et al., 2019), AREN (Xie et al., 2019), COSMO (Atzmon
& Chechik, 2019), DVBE (Min et al., 2020). Table 1 shows that the proposed AGZSL achieves
the best GZSL performance on all four datasets. It improves harmonic mean by 7.4% on AWA2,
1.9% on CUB, 0.2% on SUN, and 0.5% on aPY, respectively. Particularly, among those methods in
comparison, DVBE needs to search the entropy threshold τ and the embedding model for the best
harmonic means according to each dataset. In contrast to DVBE, without entropy threshold and
specific model searching, our model achieves over 4% improvement on most datasets. The main
reason for better performance is that AGZSL provides more discriminating visual representation for
both seen and unseen classes. Therefore, our model can effectively separate seen and unseen samples
and achieve better performance in the harmonic mean. Notably, AGZSL drops performance on aPY
after backbone fine-tuning. It could be due to that its number of seen classes and training images
are fewest among the four datasets. Fine-tuning the backbone causes the visual features to overfit
training samples and become less discriminating for correct classification.
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Table 2: The effect of virtual classes and IAS for GZSL. We remove these two components as our
baseline (b). In the ablation study, we add virtual classes (v) and IAS (I) step by step to show their
effect on GZSL.

AWA2 CUB SUN aPY
ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL
T1 U S H T1 U S H T1 U S H T1 U S H

b 72.2 63.2 86.1 72.9 73.7 68.6 71.3 69.9 63.9 47.6 42.1 44.7 40.0 33.4 57.2 42.2
b+v 75.8 66.9 86.1 75.3 76.1 70.3 71.3 70.8 65.6 48.6 42.1 45.1 42.8 35.2 57.2 43.6

b+v+I 76.4 69.0 86.5 76.8 77.2 69.2 76.4 72.6 66.2 50.5 43.1 46.5 43.7 36.2 58.6 44.8

Furthermore, generative models achieve higher performance on CUB and SUN, because in these two
datasets there are many seen classes for synthesizing unseen samples of better quality. In comparison,
our model overcomes the influence of few seen classes and also achieves the best performance on
AWA2 and aPY. Our results empirically support that the introduction of virtual classes and samples
are indeed helpful to classify unseen classes. Finally, we remark that since the backbone is pretrained
on ImageNet-1K, which is rather different from the ZSL fine-grained databases, e.g., CUB and SUN.
Thus, the harmonic mean improves a lot after fine-tuning the backbone on these two datasets.

4.3 ABLATION STUDY

To evaluate the benefits of tackling ZSL/GZSL with virtual classes and IAS, we carry out an ablation
study on the four datasets. We incrementally include each key component to assess their effect. As
shown in Table 2, the virtual classes improve ZSL accuracy significantly. The ZSL performance
improves 4.6% on AWA2, 2.4% on CUB, 1.7% on SUN, and 2.8% on aPY, respectively. The result
implies that the virtual classes are advantageous to ZSL. After adding IAS to our model, both seen
and unseen accuracy increases, and the harmonic mean H improves about 1.5% on average. The
consistent gain exemplifies that IAS can provide better semantic-to-visual embedding and achieve
higher performance on GZSL.

4.4 COSINE SIMILARITY MARGIN

Figure 4 illustrates the effect of the proposed AGZSL model. The cosine similarity margin means the
inner product value between the correct class and the other nearest class. A negative margin indicates
that the model predicts a wrong class. On the other hand, a large positive margin implies that the
model results in a proper embedding distinguishing the correct class from others effectively. Thus,
seeking a positive and larger margin is a crucial and important objective in GZSL. As shown in the
first row of Figure 4, the margins of unseen samples shift right on all four datasets by our method.
It shows that AGZSL indeed generates better embedding on the visual space and makes the model
easier to predict the correct class. Moreover, from the second row in Figure 4, the plots show that our
method improves the margins of seen samples dramatically on most datasets. The above experiment
explains that AGZSL can achieve a higher margin for most samples and achieves better classification
performance on the four testing datasets.

4.5 THE DISTRIBUTION OF VIRTUAL CLASSES

To explicitly exhibit the distributions of seen, unseen and virtual classes, we apply PCA to map
the class-wise semantic features to a two-dimensional space, as shown in Figure 5. The features of
virtual classes scatter around seen classes, because we have used B(5,1) to generate virtual classes.
Advantageously, some virtual classes are very close to unseen classes in the semantic domain and
turn out to be helpful for enabling the unseen expert to classify samples of unseen classes. With
meta-learning over these numerous virtual classes and samples, the proposed S2V can better learn
the embedding between semantic and visual domains, and results in an effective unseen expert.
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Figure 4: The cosine similarity margin between the correct class and other nearest class. The blue
area depicts the cosine similarity margin of baseline without IAS and generative learning. On the
other hand, the orange area represents the cosine similarity margin of ours. Most of the samples
improve their margin by our method, suggesting the proposed techniques are beneficial for GZSL.
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Figure 5: The semantic features of virtual/seen/unseen classes over the four datasets.

5 CONCLUSION

In this paper, we propose Image Adaptive Semantics (IAS) and meta-learning with virtual classes
and samples to solve the ZSL/GZSL problem. To deal with the intra-class visual discrepancies, IAS
adaptively emphasizes the most discriminating dimensions in semantic features with respect to the
underlying visual features. To better classify samples of the unseen classes in inference, we propose
a novel formulation of generative meta-learning. Different from previous generative models that
focus on synthesizing unseen samples for training the model, we create virtual classes and their
respective virtual samples in the training phase. Further, to imitate the ZSL inference scenario,
we carry out meta-learning with these virtual data to extend our model. In our experiment, we
demonstrate that AGZSL is beneficial to tackle the challenging ZSL/GZSL problem and achieves
significant advantages over those in comparison on the four ZSL/GZSL benchmark datasets.
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A APPENDIX

Table 3: The impact of shortcut in IAS on four datasets.

shortcut
AWA2 CUB SUN aPY

ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL
T U S H T U S H T U S H T U S H

23.9 13.0 30.0 18.2 23.3 17.0 45.8 24.8 42.1 22.5 20.3 21.4 30.5 14.9 4.7 7.1√
76.4 69.0 86.5 76.8 77.2 69.2 76.4 72.6 66.2 50.5 43.1 46.5 43.7 36.2 58.6 44.8
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(e) AWA2 seen samples
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Figure 6: The difference of cosine similarity between our model and baseline. In our experiment,
most of the samples improve their embedding with IAS and virtual classes.

Shortcut in IAS Table 3 shows that shortcut in IAS improves performance a lot. The unseen class
accuracy increase around 50% on AWA2 and SUN. Besides, the harmonic mean also enhances 20%
to 60% on four datasets with the shortcut. The main reason is that the softmax usually puts high
attention weight on few dimensions and decreases others near to zero. Thus, without shortcut, the
model is prone to overfitting on training data.

Cosine similarity enhancement Figure 6 illustrates better embedding for seen and unseen classes
in our model. Since we apply cosine similarity to classify samples, the higher score means visual
representation of each class is closer to their visual samples. The first row in 6 shows effect of our
model on unseen classes. With virtual classes and IAS, cosine similarity increase averaged 0.05 to
0.1 on different datasets. The increasing amount shows our model provides better visual-to-semantic
embedding for unseen classes and samples are easier to classify correctly. Therefore, our model can
achieve good ZSL performance. Besides, the second row in 6 illustrates the effect of IAS on seen
classes. Most of the testing seen samples increase their cosine similarity around 0.02 on four datasets.
With the IAS and virtual classes, the model can achieve better visual-to-semantic embedding on all
classes and obtain better the generalized seen accuracy on four datasets.

virtual classes number per episode To search the class number in each episode for best ZSL, we
search 4 different numbers, i.e, 4,8,12, and 20 per episode. Table 4 shows that the best class number
setting is related to the class number of classes. For example, the AWA2 and aPY which include fewer
unseen classes obtain the best ZSL accuracy with 16 virtual classes. On the other hand, the CUB
and SUN which include more unseen classes achieve the best performance with 20 virtual classes.
The reason is that the advantage of meta-learning is to simulate inference scenarios while training
(Li et al., 2019b). The virtual class number set closer to the unseen class number is favorable in the
meta-learning setting. Therefore, the best virtual class number is different according to the unseen
number of the dataset.
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Figure 7: Beta distribution.

Table 4: ZSL accuracy w.r.t. virtual classes per
episode.

k AWA2 CUB SUN aPY

8 75.7 76.2 64.6 40.8
12 76.0 76.3 65.1 42.8
16 76.4 76.3 65.1 43.7
20 75.5 77.2 66.2 41.1

Table 5: ZSL accuracy w.r.t. beta distribution.
B(α,β) AWA2 CUB SUN aPY

(5,5) 74.8 75.6 65.4 38.2
(1,1) 75.3 76.4 65.8 40.2
(5,1) 76.4 77.2 66.2 43.7

Effect of beta distribution on ZSL accuracy To explore the best beta distribution setting for ZSL,
our experiments apply three different α and β sets. As shown in Figure 7, B(1,1) means virtual
classes distribute uniformly between selected class pairs. Then, B(5,5) means most of the virtual
classes distribute among the middle of selected class pairs. On the other hand, B(5,1) means most
virtual classes distribute closer to one of the classes in selected class pairs. Table 5 demonstrates
that B(5,1) achieves best performance on each dataset. In our speculation, the virtual classes created
based on one class are closer to real-world classes. For example, the zebra is very similar to the horse
in shape. Thus, the virtual classes distributing among seen classes enhance ZSL accuracy are very
beneficial for training ZSL.
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