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Abstract—
Active learning is an important machine learning prob-
lem in reducing the human labeling effort. Current
active learning strategies are designed from human
knowledge, and are applied on each dataset in an im-
mutable manner. In other words, experience about the
usefulness of strategies cannot be updated and trans-
ferred to improve active learning on other datasets.
This paper initiates a pioneering study on whether
active learning experience can be transferred. We first
propose a novel active learning model that linearly ag-
gregates existing strategies. The linear weights can then
be used to represent the active learning experience.
We equip the model with the popular linear upper-
confidence-bound (LinUCB) algorithm for contextual
bandit to update the weights. Finally, we extend our
model to transfer the experience across datasets with
the technique of biased regularization. Empirical stud-
ies demonstrate that the learned experience not only
is competitive with existing strategies on most single
datasets, but also can be transferred across datasets to
improve the performance on future learning tasks.

I. INTRODUCTION

In many machine learning applications, high-quality labels
are costly to obtain [1], [2]. Active learning is a machine learn-
ing scenario that tries to reduce the labeling cost while still
maintaining the performance of learned models by asking key
labeling questions [3]. Most current active learning algorithms
are based on human knowledge about how to ask questions,
and the knowledge is applied immutably on every dataset when
conducting active learning. A recent work [4] argued that any
single active learning algorithm based on immutable human
knowledge is unlikely to perform well on all datasets, and
hence proposed to adaptively learn a probabilistic blending
of a set of human-designed active learning algorithms. The
blending is learned within a single dataset via connecting with
multi-armed bandit learning. Given the possibility to learn a
decent blending of different pieces of human knowledge within
a single dataset, our key thought is: can the learned experience
be transferred to other datasets to improve the performance of
active learning?

Our thought is related to how human beings learn to ask
questions in real life. We do not just learn to ask questions
within a single learning task; we instead accumulate expe-
rience in question-asking in past and current learning tasks
and transfer the experience to future learning tasks. There

are setups in machine learning that study how experience can
be transferred to future tasks. The simplest setup is transfer
learning [5], or inductive transfer. Transfer learning is about
accumulating experience from one or several source tasks
and applying the experience to a related target task. Several
attempts have been made in previous studies to improve the
performance of active learning with transfer learning [6]–[8].
However, all the algorithms proposed in these studies aim
to transfer the experience of supervised or semi-supervised
learning from the source tasks to the target task, and do not
transfer the experience of active learning (question-asking).
Furthermore, the algorithms assume a shared feature space
between different tasks, while experience transfer between
heterogeneous active learning tasks is yet to be studied.

Other related setups include never-ending learning and life-
long learning. Never-ending learning is a rather general setup
that defines how machines can learn like humans to transfer
experience to different tasks in a self-supervised manner, and
has been realized in a system for accumulating beliefs by read-
ing continuously from the web [9]. Life-long learning [10],
[11], on the other hand, considers feeding the machines with a
sequence of tasks with the hope of improving the performance
on the next task in the sequence. The setup is similar to our
thought but has been realized on only sentiment classification
tasks [10].

To the best of our knowledge, neither never-ending nor life-
long learning has been carried out on active learning tasks.
In fact, allowing the machine to mimic humans in life-long
active learning is highly non-trivial, as experience that can
be accumulated and transferred between heterogeneous active
learning tasks is not well-defined, not to mention applying past
experience to future learning tasks.

In this paper, after introducing the cross-dataset (cross-task)
active learning problem in Section II, we first propose a notion
of machine experience that can be transferred across active
learning tasks in Section III. The notion is based on encoding
human knowledge of active learning via scoring functions of
existing active learning algorithms, and representing machine
experience as linear weights that combine the human knowl-
edge. Under the notion, existing active learning algorithms
can be simply viewed as taking some special and immutable
weights to combine the knowledge.

Then, we improve existing active learning algorithms by
designing a novel approach that adaptively update the linear
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weights during the active learning process. Inspired by the
aforementioned work [4], we connect our problem of updating
the linear weights with contextual bandit learning. Based on
the connection, we apply a state-of-the-art contextual bandit
algorithm, Linear Upper-Confidence-Bound (LinUCB) [12], to
update the weights. The resulting approach effectively blends
existing active learning algorithms towards better performance.

We extend the proposed approach to allow the learned
experience (weights) to be transferred across datasets in Sec-
tion IV. The transferring extension is based on the idea of
biased regularization that restricts the adaptive weights to be
close to the past experience. The simple formulation of biased
regularization can be seamlessly coupled with the LinUCB
algorithm to form the transferring extension.

Empirical studies in Section V demonstrate that our ap-
proach is competitive to existing active learning algorithms.
The results also indicate that the transferring extension ef-
fectively improves the learning performance of our approach
with the experience learned from both heterogeneous and
homogeneous tasks, thus demonstrating the usefulness of the
learned experience. Finally, we conclude the possibility of
transferring active learning experience in Section VI.

II. BACKGROUND

In this work, we focus on a popular active learning setup
called pool-based active learning [3] for binary classification.
Under the setup, an active learning algorithm is presented with
a labeled pool and an unlabeled pool initially. We denote the
labeled pool as Dl = {(x1, y1), (x2, y2)...(xNl , yNl)} and the
unlabeled pool as Du = {x̃1, x̃2, ..., x̃Nu}, where xi, x̃j ∈ Rd,
and yi ∈ {+1,−1}. In general, the algorithm can only access
a small Dl in the beginning, while the size of Du is relatively
large.

With the initial Dl, the algorithm calls some base model
to learn a classifier h0. Then, given a budget T , for each
iteration t = 1, 2, ...., T , the algorithm is allowed to query
the label of an x̃j ∈ Du from some given labeling oracle.
The instance-label pair (x̃j , yj) will then be moved to Dl, and
the base model can be called with the enlarged Dl to learn
a new classifier ht. The goal of the algorithm is to make the
performance of h1, h2, ..., hT as good as possible, where the
performance will be measured with the test accuracy on a
separate test set in this work.

We also study how active learning experience can be
accumulated across datasets. In the setup of cross-dataset
active learning, we present the active learning algorithm
with a sequence of datasets (D(1)

l ,D(1)
u ), (D(2)

l ,D(2)
u ), · · · ,

(D(Q)
l ,D(Q)

u ), with the hope of improving the active learning
performance along with the sequence like life-long learning
[10], [11]. More specifically, we hope that the experience
accumulated from (D(1)

l ,D(1)
u ), · · · , (D(q−1)

l ,D(q−1)
u ) can be

exploited when conducting active learning on (D(q)
l ,D(q)

u ) for
q = 2, 3, · · · , Q.

Many active learning algorithms select x̃j from Du in
iteration t with a scoring function of instance x̃ subject to the
current classifier ht−1. For an algorithm a, we shall denote

the scoring function as sa(x̃, ht−1), and assume that a would
query the label of x̃j = argmax

x̃∈Du
sa(x̃, ht−1). The scoring

function measures the goodness of each instance, and reflects
the strategy taken within the algorithm.

A classic and intuitive strategy is called uncertainty sam-
pling [13], which queries the instance x̃j that the classi-
fier ht−1 is most uncertain with. [14] realizes the uncertainty
sampling strategy with a scoring function that computes the
inverse distance from x̃ to the hyperplane of ht−1 learned from
Support Vector Machine (SVM).

Other works argue that uncertainty sampling only works
well when ht−1 is close enough to the ideal boundary, and
may result in unsatisfactory performance when ht−1 is not
good enough [15]. Representative sampling is a family of
strategies, each based on a different scoring function, that tries
to improve uncertainty sampling. For example, [16] applies k-
means clustering and takes the inverse distance from x̃ to the
cluster center as the scoring function for representativeness,
modulated by whether x̃ resides inside the margin of a
SVM classifier ht−1. [17] equips Gaussian distributions on
top of k-means clustering to calculate representativeness, and
proposes a scoring function that multiplies the uncertainty of
x̃ by its representativeness. [18] optimizes a scoring function
based on estimating the label assignments in a min-max view,
and argues that the optimized scoring function covers both
uncertainty and representativeness.

The strategies above embed our human knowledge of key
labeling questions in the scoring functions. Several works [4],
[19] also consider selecting the strategies adaptively for better
performance, motivated by the fact that human-designed scor-
ing functions cannot always match dataset characteristics and
thus adaptive selection may be necessary. The state-of-the-art
approach Active Learning By Learning [4] performs adaptive
strategy selection by connecting the selection problem to ban-
dit learning, and designs a learning-performance-based reward
function to guide the bandit learner in selecting reasonable
strategies probabilistically. The internal probability that each
strategy gets selected reflects the goodness of the strategy, and
is updated on the fly within the single dataset.

Recall that we aim to accumulate active learning experience
across datasets. Human-designed scoring functions cannot help
with so because they are generally immutable and cannot
adaptively change with experience. A naı̈ve way of extending
current adaptive-selection approaches [4], [19] for accumu-
lating active learning experience is to define the experience
as the internal probability distribution for selections, and
then transfer the distribution to the next active learning task.
Nevertheless, as we shall see in Section V, the unstable nature
of probabilistic choices makes the distribution too volatile to
serve as robust active learning experience in practice.

III. PROPOSED APPROACH

In this section, we shall first introduce our notion of active
learning experience. Then we propose a novel active learning
approach, Linear Strategy Aggregation, that queries an unla-



beled instance and updates the experience simultaneously in
each iteration.

A. Notion of active learning experience

As introduced in Section II, the scoring functions of human-
designed active learning algorithms represent pieces of human
knowledge about key labeling questions. A proper way to
combine different pieces of human knowledge, or namely
different scoring functions, can then be naturally viewed as
experience of active learning.

More specifically, we consider combining, or blending, the
human-designed scoring functions to a new scoring function
for better performance, and define the blending parameters as
experience. Note that current adaptive-selection approaches [4]
cannot fully match this novel definition, as they blend (via
probabilistic selection) the recommended queries of the scor-
ing functions instead of blending the scoring functions directly.

To take an initiative on the definition, we consider the
simplest model where the scoring functions are blended lin-
early, and leave the possibility of using more sophisticated
models as future directions. In particular, given a set of
scoring functions {s1, s2, . . . , sM} from different human-
designed strategies, we set the aggregated scoring function to
be ŝ(x̃, ht−1) =

∑M
m=1 wmsm(x̃, ht−1). The weight vector

w = (w1, w2, · · · , wM ) then contains the blending parameters
and serves as the experience that will be transferred.

B. Linear Strategy Aggregation

With the notion of experience established, we now introduce
our proposed approach, Linear Strategy Aggregation (LSA).
LSA solves the task of adaptively updating the experience
and querying the unlabeled instance x̃j to maximize the active
learning performance. Motivated by previous adaptive selec-
tion approaches [4], [19], we design LSA via the connection
between the task and a well-known adaptive learning problem
of contextual bandit [20]. We will first discuss more details
about the contextual bandit problem.

The setup of the contextual bandit problem is as fol-
lows [20]: a player is presented with K actions and a budget T .
In each iteration t = 1, · · · , T , the context vector zk,t for each
action k ∈ {1, 2, · · · ,K} is provided, and a player is required
to perform an action kt ∈ {1, 2, · · · ,K}. Once the action is
performed, the corresponding reward rkt,t is then revealed.
The objective of the player is to maximize the cumulative
reward. To maximize the cumulative reward, the player is
typically required to balance between exploration (choosing
actions that improve the estimation of reward) and exploitation
(choosing actions with the highest estimated reward).

Many algorithms for the contextual bandit problem have
been studied in the literature [12], [21]–[23], and a family
of them estimates the reward of an action through a linear
model of the corresponding context [12], [22], [23]. A state-
of-the-art algorithm of the family is called Linear Upper-
Confidence-Bound (LinUCB) [12], which not only carries
strong theoretical guarantees but also performs well on real-
world tasks [24]. Next, we take a closer look at LinUCB, and

then apply it for LSA by connecting the contextual bandit
problem back to active learning.

LinUCB maintains the weight vector wt of the linear model
to be the ridge regression solution from the context vectors to
the observed rewards. Specifically, before each iteration t, wt

is obtained by

wt = argmin
w

(
λ‖w‖2 + ‖Ztw − rt‖2

)
, (1)

where Zt =
(
zk1,1, · · · , zkt−1,t−1

)T
contains the context

vectors that correspond to the chosen actions as rows and
rt =

(
rk1,1, · · · , rkt−1,t−1

)
contains the rewards revealed by

the chosen actions as elements.
LinUCB runs an online procedure to solve (1) and up-

date wt. In particular, LinUCB maintains a matrix At =
ZTt Zt + λI and a vector bt = ZTt rt by{

At = At−1 + zkt−1,t−1z
T
kt−1,t−1

bt = bt−1 + rkt−1,t−1zkt−1,t−1
, (2)

where A0 = λI and b0 = 0 are initialized before the first
iteration. Then, the solution to (1) is simply

wt = A−1t bt . (3)

To maximize the cumulative reward, LinUCB uses the
upper-confidence-bound technique to balance exploration and
exploitation. That is, in each iteration t, LinUCB performs the
action

kt = argmax
k

uk,t , (4)

where
uk,t = wT

t zk,t + α
√
zTk,tA

−1
t zk,t . (5)

The first term corresponds to the estimated reward of action k
in iteration t, and the second term represents the uncertainty
of action k under its context vector. The parameter α controls
the preference between exploration (the second term) and
exploitation (the first term).

We follow [19], a pioneer blending approach for active
learning, to connect active learning with LSA and contextual
bandit with LinUCB. In particular, we treat each x̃j ∈ Du
as an action k ∈ {1, 2, · · · , |Du|}. Then, performing an
action kt in iteration t by LinUCB is equivalent to querying
the corresponding x̃kt by LSA. The remaining issues are
to specify what the context vectors z̃k,t are and how the
rewards rkt,t are calculated. We first discuss our choice of
the context vectors to achieve experience updating, and then
illustrate our design of the rewards, which represents active
learning performance, in Section III-C.

As discussed in Section III-A, our active learning experi-
ence w is defined as the blending parameters of the set of
scores

(
s1(x̃k,t, ht−1), ..., sM (x̃k,t, ht−1)

)
given an unlabeled

instance x̃k,t. The definition allows a natural connection
between LinUCB and LSA by setting

zk,t =
(
s1(x̃k,t, ht−1), ..., sM (x̃k,t, ht−1)

)
. (6)



Algorithm 1 Linear Strategy Aggregation

Parameters: LinUCB balancing parameter α, ridge regres-
sion parameter λ, minimum goodness parameter ε, number
of iterations T

Input: labeled pool Dl, unlabeled pool Du, scoring functions
{s1, s2, · · · , sM}; a labeling oracle

Begin:
1: Initialize A0 = λI,b0 = 0
2: for t = 1, 2, ...., T do
3: Obtain contexts z1,t, z2,t, ..., z|Du|,t with (6) and (7)
4: Obtain ukt,t, zkt,t and x̃kt,t with (4) and (5)
5: Query x̃kt and get ỹkt from the oracle
6: Learn ht with Dl ∪ {(x̃kt , ỹkt)}
7: Obtain vt with (9)
8: Calculate rkt,t with (8)
9: Update At,bt,wt by (zkt,t, rkt,t) with (2) and (3)

10: Dl = Dl ∪ {(x̃kt , ỹkt)}, Du = Du\{x̃kt}
11: end for

Then, the vector wt in LinUCB corresponds to the evolv-
ing experience w calculated by ridge regression; the inner
product wT

t zk,t, which is the first term of (5), corresponds
to the aggregated scoring function ŝ(x̃k,t, ht−1) that is made
from both the current experience wt and the human knowledge
{sm}Mm=1. LSA queries an unlabeled instance with (4) and (5),
which contains ŝ(·, ·) as well as an exploration term introduced
by LinUCB, and updates the experience wt with (3) and .

Recall that the goal of ridge regression within LinUCB is
to provide a good estimate from the context vector to the
reward. We apply one trick in zk,t to improve the quality of
the estimate. In particular, we add another element of zk,t[0],
and set the element to a constant value of the previous reward

zk,t[0] = rkt−1,t−1 , (7)

where the rewards (including the edge case of zk,1[0]) will
be defined in Section III-C. According to (5), the added
constant does not affect the choice of kt, but it allows ridge
regression to utilize the previous reward for estimating the
current reward. In other words, the value provides a shared
context on the active learning performance to assist the linear
model. Empirically, we observe that the trick indeed improves
the quality of the estimate and the stability of LSA.

C. Reward scheme

The only issue left for LSA is a properly designed reward
that represents active learning performance, or namely test
accuracy in this work. A state-of-the-art reward function
proposed is called importance-weighted accuracy (IW-ACC),
which is used in the Active Learning By Learning (ALBL)
approach [4]. IW-ACC weighs each instance in Dl with the
inverse of the probability that the instance is queried, and cal-
culates the weighted accuracy as the reward. The importance
weighting allows IW-ACC to be an unbiased estimator of the
test accuracy.

More specifically, in each iteration t of ALBL, let x̃kt be
the instance queried, ykt be the obtained label, and pkt,t be the
probability of querying x̃kt . Then, with vt = p−1kt,t, IW-ACC
is calculated as

rkτ ,τ =

∑τ
t=1 vtJhτ (x̃kt) = yktK∑τ

t=1 vt
, (8)

where J·K is the indicator function. The probability pkt,t
reflects the goodness of x̃kt in iteration t, and the key idea
of IW-ACC is to assign vt as the inverse of the goodness to
correct the sampling bias during active learning.

Nevertheless, unlike ALBL, LSA is a deterministic algo-
rithm based on LinUCB. Thus, there is no pkt,t and IW-ACC
cannot be directly taken as the reward. We thus propose a new
reward scheme that mimics the key idea of IW-ACC. In our
proposed scheme, each instance x̃kt queried in iteration t is
weighted with

vt =
(
max(ukt,t, ε)

)−1
(9)

where ukt,t is from (5) and ε > 0 is a small constant.
Recall that LSA maximizes over uk,t to decide the instance

to be queried. That is, uk,t reflects the goodness of the
unlabeled instance x̃k,t. By using the inverse of ukt,t as
weights, our proposed scheme effectively meets the key idea
of importance weighting behind IW-ACC while avoiding the
need of probabilistic queries. The small constant ε > 0 guards
the rare edge cases of ukt,t ≤ ε.

In the proposed LSA, the rewards are of another use of
serving as zk,t[0] = rkt−1,t−1 in (7). When t = 1, there is
technically no “previous reward” to use in (7). The simplest
choice would be taking zk,1[0] = 0.5 for representing the
random-guessing accuracy. In this work, we heuristically take
zk,1[0] to be the training accuracy when learning from the
initial Dl in order to provide a better shared context on the
performance.

With the proposed scheme, the final piece of LSA is now
complete. In each iteration t, LSA simply runs LinUCB to
query an unlabeled instance x̃kt using (4) and updates the
experience wt with (3) by the context vector zkt,t as well as
the proposed reward rkt,t in (8). The details of LSA are listed
in Algorithm 1.

IV. ACTIVE LEARNING ACROSS DATASETS

LSA is now able to adaptively update the experience within
any single dataset. Our next goal is to achieve experience
transfer across datasets, with the hope of improving active
learning performance. We thus design an extension of LSA,
called Transfer LSA (T-LSA), that takes the learned experience
as a reference when conducting active learning on the current
dataset.

Our design is motivated from an earlier work that focuses
on personalized handwriting recognition [25]. The main idea
of the work is to first learn a generic handwriting recognizer
wgen by SVM from a large amount of handwriting data of
all people. The personalized handwriting recognizer w is
then learned from a small amount of individual data via a



Biased Regularization SVM (BRSVM). BRSVM replaces the
`2 regularization term 1

2‖w‖
2 in the objective function of SVM

with a biased regularization term 1
2‖w−wgen‖2 to enforce the

personalized w to be close to the generic wgen.
BRSVM for personalized handwriting recognizer allows

learning of w with the prior knowledge of wgen as a reference
point. In our cross-dataset active learning problem, we intend
to take wprev, the experience learned from other datasets, as
our reference point. For simplicity, let us first assume that
wprev comes from the experience of active learning from
one previous dataset. That is, wprev = wT learned from
(D(1)

l ,D(1)
u ). Recall that wt in LSA is the ridge-regression

solution of (1). Then, we borrow the idea of BRSVM to
replace 1

2‖w‖
2 with 1

2‖w − wprev‖2 as our regularization
term. That is, biased regularization can be simply achieved
by solving

ŵt = argmin
w

λ‖w −wprev‖2 + ‖Ztw − rt‖2 (10)

instead. The close-form solution is

ŵt = (ZTt Zt + λI)−1(ZTt rt + λwprev) (11)

The parameter λ now represents the trust of previous experi-
ence.

To integrate (11) into LSA, we need to update ŵt online
like (2) and (3). Recall that (2) maintains At = ZTt Zt + λI
and bt = ZTt rt. Then, (11) can be re-written as

ŵt = A−1t (bt + λwprev︸ ︷︷ ︸
b′t

). (12)

Notice that the only difference between (3) and (12) is the
term λwprev between bt and b′t. Thus, we can easily achieve
biased regularization in T-LSA by replacing b0 = 0 in LSA
with b′0 = λwprev and maintaining b′t instead of bt. The
weight vector ŵt can then be updated online with A−1t b′t
in (12). When wprev = 0, which means zero experience,
biased regularization falls back to usual `2 regularization and
T-LSA falls back to LSA.

We now consider the full setup of cross-dataset active
learning, as defined in Section II, where a sequence of datasets,
(D(1)

l ,D(1)
u ), · · · , (D(Q)

l ,D(Q)
u ), is presented. Let ŵ(1) be

the experience learned from (D(1)
l ,D(1)

u ). When learning wt

on (D(2)
l ,D(2)

u ) using wprev = ŵ(1) as the reference point in
(10), the first term λ‖w − wprev‖2 allows the information
of the earlier experience to be somewhat preserved, and
the second term ‖Ztw − rt‖2 allows new experience to be
accumulated. Thus, ŵ(2) learned from (D(2)

l ,D(2)
u ) contains

experience from both the first and the second datasets. It is
then natural to learn ŵ(3) on (D(3)

l ,D(3)
u ) with wprev = ŵ(2),

or more generally learn ŵ(q) on (D(q)
l ,D(q)

u ) with wprev =
ŵ(q−1) for q = 2, · · · , Q. The simple use of wprev = ŵ(q−1)

completes the design of the full T-LSA algorithm, as listed in
Algorithm 2. For simplicity, we overload bt to denote b′t in
Algorithm 2.

Algorithm 2 Transfer LSA

Parameters: Same as parameters for Algorithm 1
Input: Datasets sequence (D(1)

l ,D(1)
u ),...,(D(Q)

l ,D(Q)
u ), scor-

ing functions for Algorithm 1
Begin:

1: wprev ← 0
2: for q = 1, 2, · · · , Q do
3: Initialize Algorithm 1 (LSA) with (A0,b0) =

(λI, λwprev) instead
4: Run the initialized LSA on (D(q)

l ,D(q)
u ) and obtain

experience ŵ(q)

5: wprev ← ŵ(q)

6: end for

With the help of biased regularization, T-LSA achieves
cross-dataset active learning. When the experience is help-
ful, which possibly happens when transferring experience
from more related datasets, T-LSA utilizes the experience
to speedup exploration in the wild. When the experience is
not so helpful, which can mean a negative transfer in the
terminology of transfer learning, the second term ‖Ztw−rt‖2
in (10) allows new experience to be adaptively accumulated.
In Section V-B, we will empirically study how different kinds
of experience affect the performance of T-LSA.

V. EXPERIMENT

We couple the following key active learning algorithms
with our proposed approaches, LSA and T-LSA, to validate
their empirical performance. The algorithms, as illustrated in
Section II, are

1) UNCERTAIN: uncertainty sampling with SVM [14].
2) REPRESENT: representative sampling based on k-mean

clustering [16]. Because the uncertainty part is essen-
tially the same as UNCERTAIN, we only take the
scoring function for representativeness for blending.

3) DUAL: another representative sampling approach using
mixture-of-Gaussian weighted uncertainty as scoring
function [17].

4) QUIRE: another representative sampling approach using
the min-max view of label-assignment to optimize the
scoring function [18].

We take logistic regression as our base classification model,
and use the `2-regularized logistic regression solver of LIB-
LINEAR [26] with default parameters to learn a classifier from
the model.

We conduct experiments on two sets of benchmark datasets.
The first set is commonly used to validate pool-based active
learning approaches for binary classification, and is taken to
validate not only the competitiveness of LSA versus other ap-
proaches, but also to examine the potential of T-LSA for cross-
dataset active learning with heterogeneous datasets. The first
benchmark set include the following eight datasets from the
UCI repository [27]: austra, breast, diabetes, german, heart,
letterMvsN, liver, and wdbc, where the dataset letterMvsN is
constructed from a multi-class dataset letter.



TABLE I: LSA versus underlying algorithms based on t-test
at 90% confidence level (#win/#tie/#loss)

rank percentage of queried instances total5% 10% 15% 20% 30% 40% 50%
1st 0/6/2 0/7/1 0/7/1 0/8/0 0/8/0 0/8/0 1/6/1 1/50/5
2nd 0/8/0 0/8/0 1/7/0 0/8/0 0/8/0 1/7/0 1/7/0 3/53/0
3rd 1/7/0 4/4/0 4/4/0 6/2/0 5/3/0 4/4/0 3/5/0 27/29/0
4th 4/4/0 7/1/0 8/0/0 8/0/0 8/0/0 7/1/0 6/2/0 48/8/0
total 5/25/2 11/20/1 13/18/1 14/18/0 13/19/0 12/20/0 11/20/1 79/140/5

TABLE II: LSA versus ALBL based on t-test at 90% confi-
dence level (#win/#tie/#loss)

percentage of queried instances total5% 10% 15% 20% 30% 40% 50%
ALBL 0/8/0 2/6/0 2/6/0 2/6/0 2/6/0 2/5/1 3/5/0 13/42/1

The second set, which contains two datasets of handwritten
digit recognition, USPS and MNIST, is used in several previous
studies of multi-task learning [28], [29]. We take the second
set to examine the potential of T-LSA for cross-dataset active
learning with homogeneous datasets. We follow [28] to reduce
the feature dimensions of USPS and MNIST to 87 and 62
respectively with principal component analysis.

For the larger datasets letterMvsN, USPS and MNIST, we
randomly keep only 2000 examples to make experiments
sufficiently efficient. Then, we split each dataset randomly
with 50% for training and 50% for testing, We take the training
set as our unlabeled pool Du, and the test set for reporting
active learning performance. We randomly select 4 instances
from the unlabeled pool Du as our initial labeled pool Dl.
Experiments on each dataset are averaged over 10 times.

We will first compare LSA with the four underlying ac-
tive learning algorithms and the state-of-the-art ALBL ap-
proach [4] for blending those algorithms on single datasets.
Then, we will compare T-LSA with LSA and ALBL under
the cross-dataset setting to understand the effectiveness of
experience transfer. For fairness, we will also naı̈vely extend
ALBL to T-ALBL as illustrated in Section II, and take T-
ALBL for comparison. In particular, T-ALBL initializes the
internal probability distribution with the previously learned
distribution to achieve experience transfer.

Parameter tuning of active learning is known to be hard [4].
In our experiments, we run the approaches on several parame-
ter combinations, and report the result of the best combination.
Practically, existing blending approaches like ALBL [4] or
COMB [19] can then be run on top of the combinations to
adaptively approximate the best result. Specifically, for the
experiments on single datasets, we run LSA with λ = 1 and
α ∈ {1.5, 2.0, 2.5}. For the experiments of cross-dataset active
learning, we fix α = 1.5 and run LSA and T-LSA with λ = 1
and λ ∈ {1, 5, 10} respectively. For the parameters of other
algorithms, we follow the recommended parameters provided
in the paper/codes from the authors.

We do not include another adaptive blending approach of
COMB [19] for two reasons:

1) ALBL is known to outperform COMB on single

datasets [4].
2) Unlike ALBL, which maintains an internal probabilistic

distribution on the active learning algorithms, COMB
maintains the distribution on the unlabeled instances. It
is non-trivial to transfer the distribution as experience to
other datasets with different number of instances.

A. Experiments on Single Datasets

We first compare LSA with the four underlying active learn-
ing algorithms on the first set of eight benchmark datasets, and
plot the test accuracy under different percentages of queries in
Fig. 1. From the results, we can observe that LSA is usually
close to the best curves of the four algorithms after querying
10% of unlabeled instances. The results demonstrate that LSA
is effective in terms of blending human knowledge towards
decent query decisions. The less-strong performance of LSA
in the first 10% of queries hints the need of using experience
to guide exploration instead of starting from zero experience.

The results in Fig. 1 is further supported by Table I with t-
tests at 90% significance level. The tests compare LSA with
the underlying algorithms at different ranks. Table I indicates
that LSA often yields competitive performance with the best
underlying algorithm, and is always no-worse than the second
best. The results in Fig. 1 and Table I confirm that LSA to
be a decent adaptive blending approach for active learning,
just like its ancestors of ALBL [4] and COMB [19]. Note that
LSA is a deterministic approach while ALBL and COMB are
both probabilistic.

To understand the effectiveness of LSA as a blending ap-
proach, we compare LSA with ALBL. Because of space limits,
we plot the test accuracy along with the standard deviation on
only four of the datasets, austra, breast, heart and wdbc in
Fig. 2. We also compare LSA with ALBL with t-tests at 90%
confidence level on all datasets, and summarize the results in
Table II. The results of both Fig. 2 and Table II indicate that
LSA is competitive to and sometimes even slightly better then
ALBL. Furthermore, according to Fig. 2, we can observe that
the variation (standard deviation) of the LSA curve not only
decreases more rapidly than that of the ALBL curve, but is also
generally smaller after the first 10% of the exploration queries.
The observation indicates that ALBL, being a probabilistic
blending approach, is generally less stable than LSA, and
matches our conjecture in Section II that the distribution in
ALBL may be too volatile to serve as robust active learning
experience in practice.

B. Experiments on Active Learning Across Datasets

Next, we move to the experiments of cross-dataset active
learning. We first introduce the experiment setting before
we proceed to discuss the details of the experiment results.
The experiment setting is as follows: A target dataset is first
picked, and a random sequence that consists of other datasets
is generated. Transferring algorithms, including T-LSA and
T-ALBL, are then run on first q datasets of the sequence
to accumulate experience. With the previous experience, the
active learning performance of the transferring algorithms is



(a) austra (b) breast (c) diabetes (d) german

(e) heart (f) letterMvsN (g) liver (h) wdbc

Fig. 1: Test Accuracy of LSA versus underlying strategies

(a) austra (b) breast (c) heart (d) wdbc

Fig. 2: Test Accuracy of LSA versus ALBL

evaluated on the target dataset. Each result is averaged over
10 different random sequences.

The experiments of active learning across datasets are
conducted in two different scenarios, where homogeneous and
heterogeneous tasks are considered respectively. Specifically, a
set of homogeneous tasks consists of datasets that share similar
learning targets and the same feature space, and is constructed
from the two benchmark datasets of multi-task learning. A set
of heterogeneous tasks, on the other hand, involves datasets
having different learning targets and feature space, and is
simulated by the eight benchmark datasets of active learning.
We will first discuss the experiments on homogeneous tasks,
where algorithms that exploit the transferred experience are
expected to perform better. The experiments on heterogeneous
tasks, which is a more general but more challenging scenario,
will then be discussed.

For the experiments in each scenario, we first compare T-
LSA and T-ALBL using experience from different number of
previous datasets (i.e. different q) with their non-transferring
predecessors, namely LSA and ALBL, to evaluate the effec-

tiveness of experience transfer of active learning. Then, we will
directly compare T-LSA with T-ALBL, LSA and ALBL using
a specific q to understand the absolute performance difference
between T-LSA and other competitors.

We choose to not include QUIRE in the cross-dataset exper-
iments because QUIRE is considerably more time-consuming
given its label-assignment estimation steps.

a) Experiments on Homogeneous Tasks: The experi-
ments of learning across homogeneous tasks are conducted
on two benchmark datasets of hand-written digit recognition,
USPS and MNIST, for multi-task learning. We split both USPS
and MNIST into 5 binary classification datasets, namely 0vs1,
2vs3, 4vs5, 6vs7 and 8vs9 to construct the set of homogeneous
learning tasks. Since the active learning performance on USPS
and MNIST converges quickly, we only compare the results
with respect to the queries in first 10% of unlabeled data to
better illustrate the difference.

We compare T-LSA with LSA and T-ALBL with ALBL,
and present the results of test accuracy in Fig. 3 and Fig. 4
respectively. Owing to the readability, only results of two tasks



(a) USPS 0vs1 (b) USPS 8vs9 (c) MNIST 0vs1 (d) MNIST 8vs9

Fig. 3: Test Accuracy of LSA versus Transfer LSA on MNIST and USPS

(a) USPS 0vs1 (b) USPS 8vs9 (c) MNIST 0vs1 (d) MNIST 8vs9

Fig. 4: Test Accuracy of ALBL versus Transfer ALBL on USPS and MNIST

(a) USPS 0vs1 (b) USPS 8vs9 (c) MNIST 0vs1 (d) MNIST 8vs9

Fig. 5: Test Accuracy of Transfer LSA versus other competitors on USPS and MNIST

on each dataset are presented here. From Fig. 3, we observe
that T-LSA generally outperforms LSA on tasks 0vs1 and 8vs9
of both USPS and MNIST. On the other hand, Fig. 4 indicates
that T-ALBL performs similarly or even worse than ALBL
on task 0vs1 of both USPS and MNIST. For task 8vs9, the
improvement of T-ALBL with regard to ALBL is rather minor
on MNIST, while obvious negative transfer can be observed
on USPS.

We then compare T-LSA with T-ALBL, LSA, and ALBL
directly using experience from one previous dataset, to exam-
ine the absolute performance difference between T-LSA and
other competitors. The results are illustrated in Fig. 5. These
competitors are further compared on all five tasks of both
datasets based on t-test at 90% confidence level, and the results
are summarized in Table III. From Fig. 5, we can observe that
performance of LSA is again inferior especially in the first 4%
of queries. T-LSA, on the other hand, often performs the best

among all four competitors. The results of Table III indicates
a slight improvement of T-LSA over LSA in the initial stage
of learning, and shows the competitive performance of T-LSA
over other competitors.

The observations on both USPS and MNIST demonstrate
that T-LSA successfully improves the active learning perfor-
mance of LSA by transferring the active learning experience
via the proposed linear weights, which is as expected in
the scenario of active learning across homogeneous tasks.
T-ALBL, however, often performs inferior than ALBL, con-
firming that experience transfer via the probability distribution
of ALBL can lead to negative impact.

b) Experiments on Heterogeneous Tasks: Next, we shall
discuss the experiments on learning across heterogeneous
tasks. The experiments are conducted on the eight benchmark
datasets of active learning. The feature spaces and the learning
targets vary from each others between different active learning



(a) austra (b) breast (c) diabetes (d) wdbc

Fig. 6: Test Accuracy of LSA versus Transfer LSA

(a) austra (b) breast (c) diabetes (d) wdbc

Fig. 7: Test Accuracy of ALBL versus Transfer ALBL

(a) austra (b) breast (c) diabetes (d) wdbc

Fig. 8: Test Accuracy of Transfer LSA versus Transfer ALBL

TABLE III: Transfer LSA versus other competitors on
USPS and MNIST based on t-test at 90% confidence level
(#win/#tie/#loss)

percentage of queried instances total2% 4% 6% 8% 10%
LSA 2/8/0 0/10/0 0/10/0 0/10/0 0/10/0 2/48/0
ALBL 0/9/1 0/10/0 2/8/0 0/10/0 1/9/0 3/46/1
T-ALBL aft. 1 0/10/0 0/9/1 1/8/1 1/8/1 1/9/0 3/44/3
total 2/27/1 0/29/1 3/26/1 1/28/1 2/28/0 8/138/4

datasets. We set q = 3 in the experiments.
We first compare T-LSA with LSA and T-ALBL with

ALBL, and present the results in Fig. 6 and Fig. 7 respectively.
Owing to the space limits and readability, only selected results
on austra, breast, diabetes and wdbc are presented. According
to Fig. 6, T-LSA improves the performance of LSA on datasets
austra, breast and wdbc. For dataset diabetes, T-LSA is

TABLE IV: Transfer LSA versus other competitors based on
t-test at 90% confidence level (#win/#tie/#loss)

percentage of queried instances total5% 10% 15% 20% 30% 40% 50%
LSA 1/7/0 1/7/0 1/7/0 1/7/0 1/7/0 2/6/0 1/6/1 8/47/1
ALBL 0/7/1 2/6/0 2/6/0 3/5/0 3/5/0 3/5/0 2/6/0 15/40/1
T-ALBL aft. 3 0/7/1 0/8/0 2/6/0 3/5/0 1/7/0 1/7/0 1/7/0 8/47/1
total 1/21/2 3/21/0 5/19/0 7/17/0 5/19/0 6/18/0 4/19/1 31/134/3

inferior in the initial stage, but can quickly catch up and even
outperform LSA. On the other hand, we can observe from
Fig. 7 that T-ALBL improves over ALBL on datasets breast
and wdbc, but is inferior on datasets austra and diabetes.

We then compare T-LSA directly with T-ALBL, LSA and
ALBL, where the transferring algorithms can exploit the
experience from previous 3 datasets (i.e. q = 3). We illustrate
the results in Fig. 8. We also compare these algorithms based
on t-test at 90% confidence level, and summarize the results



in Table IV. From Fig. 8, T-LSA reaches the best performance
among all four competitors on datasets austra, breast and
wdbc, and can catch up with the best competitor after querying
10% of unlabeled data on dataset diabetes. The results of
Table IV further confirm that T-LSA can often outperform
other competitors.

The aforementioned observations demonstrate that experi-
ence transfer via our proposed linear weights is superior to that
via the probabilistic distribution of ALBL with the following
two advantages: (1) better improvement from experience trans-
fer and (2) ability to recover more quickly when the transferred
experience is negative to performance. In addition, T-LSA is
shown to improve over LSA by providing a better starting
point for exploration in the initial stage of active learning.

The success of T-LSA in both scenarios positively answers
the question in our title, where active learning experience
can indeed be transferred to improve the active learning
performance.

VI. CONCLUSION

We propose a novel approach that accomplishes the mis-
sion of transferring active learning experience across datasets.
The approach is based on a unified representation of human
knowledge and environment status about active learning, and
a linear model on the representation. The model allows taking
the linear weights as experience, and can be updated by
the LinUCB algorithm for contextual bandit learning through
a novel reward function. The experience learned from the
model can be transferred to other active learning tasks through
biased regularization. Empirical studies not only confirm the
competitiveness of the proposed approach, but also confirm
that it can be beneficial to transfer the experience across active
learning tasks that are either homogeneous or heterogeneous
for better performance.
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