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Abstract—Active learning is a setup that allows the learning
algorithm to iteratively and strategically query the labels of some
instances for reducing human labeling efforts. One fundamental
strategy, called uncertainty sampling, measures the uncertainty of
each instance when making querying decisions. Traditional active
learning algorithms focus on binary or multiclass classification,
but few works have studied active learning for cost-sensitive
multiclass classification (CSMCC), which allows charging dif-
ferent costs for different types of misclassification errors. The
few works are generally based on calculating the uncertainty
of each instance by probability estimation, and can suffer from
the inaccuracy of the estimation. In this paper, we propose a
novel active learning algorithm that relies on a different way
of calculating the uncertainty. The algorithm is based on our
newly-proposed cost embedding approach (CE) for CSMCC.
CE embeds the cost information in the distance measure of a
special hidden space with non-metric multidimensional scaling,
and deals with both symmetric and asymmetric cost information
by our carefully designed mirroring trick. The embedding allows
the proposed algorithm, active learning with cost embedding
(ALCE), to define a cost-sensitive uncertainty measure from
the distance in the hidden space. Extensive experimental results
demonstrate that ALCE selects more useful instances by taking
the cost information into account through the embedding and is
superior to existing cost-sensitive active learning algorithms.

I. INTRODUCTION

Multiclass classification (MCC) algorithms intend to learn
a classifier from numerous instances and their corresponding
labels. In many real-world applications, the labels are expen-
sive to obtain. Active learning is thus introduced to reduce
the labeling effort [1]. Active learning algorithms iteratively
select some instances to be labeled based on some strategies,
and aim to achieve high accuracy with a few labeled instances.

Uncertainty sampling is an important and popular family
of active learning strategies [2]. The key idea of uncertainty
sampling is to select the instances that seem less certain
because the labels of such instances usually provide more
information to improve the accuracy. The uncertainty of an
instance can be defined in different ways, such as the proba-
bilistic measures [3]–[5] and the non-probabilistic ones [6]. In
addition to uncertainty sampling, many other active learning
strategies take some uncertainty measure as a core part for
deciding which instances to select [7]–[9]. It is thus important
to consider proper uncertainty measures when designing active
learning algorithms.

Most of the existing uncertainty sampling algorithms are
designed for “regular” MCC, which means that the costs

of different kinds of misclassification errors are equal. Nev-
ertheless, regular MCC may not satisfy some needs within
real-world applications. For example, consider a three-class
classification problem for predicting the state of a patient from
{healthy, cold-infected, Zika-infected}. The cost of predicting
a Zika-infected patient as healthy shall be remarkably larger
than the cost of predicting a healthy patient as cold-infected,
because the former may cause more serious public-health
troubles. The cost-sensitive MCC (CSMCC) problem matches
such needs and has been attracting much research attention in
recent years [10]–[13]. CSMCC takes the application-specific
misclassification costs into account to learn the classifier and
make cost-sensitive predictions.

Although there are many works for CSMCC [10]–[13],
only two works focus on active learning for CSMCC—that
is, the cost-sensitive multiclass active learning (CSMCAL)
problem [14], [15]. Furthermore, both works for CSMCAL are
based on uncertainty sampling with the probabilistic measures.
It is thus not clear whether better CSMCAL algorithms can
be designed with non-probabilistic uncertainty measures.

In this work, we derive a novel non-probabilistic uncertainty
sampling algorithm for CSMCAL. We first design a novel
CSMCC algorithm called cost embedding (CE), which embeds
the cost information in the distance measure in a special
hidden space by non-metric multidimensional scaling. We
further propose a mirroring trick to let CE embed the possibly
asymmetric cost information in the symmetric distance mea-
sure. Then, we define an appropriate cost-sensitive uncertainty
measure through CE. The measure forms the backbone of
our proposed algorithm, called active learning with cost em-
bedding (ALCE). Extensive experimental results on CSMCC
benchmarks demonstrate that ALCE is superior to not only
cost-insensitive active learning algorithms but also existing
CSMCAL algorithms.

This paper is organized as follows. Section II formalizes the
CSMCAL problem and reviews the related works. Section III
illustrates the proposed ALCE algorithm. We discuss the
experimental results in Section IV and conclude in Section V.

II. PRELIMINARY

There are two setups of active learning for multiclass classi-
fication: stream-based and pool-based [1]. In the stream-based
setup, the instance comes in sequence, and the algorithm has to
immediately decide whether to query the label of the instance



or ignore it. The pool-based setup is more flexible in terms
of how data can be accessed, and will be considered in this
paper. For pool-based multiclass active learning, a labeled pool
and an unlabeled pool are presented to the algorithm. In each
iteration, the algorithm selects one instance from the unlabeled
pool to query its label. More precisely, let x ∈ X ⊆ Rd

denote the instance and y ∈ Y = {c1, c2, ..., cK} denote the
label. Given the labeled pool Dl = {(x(n), y(n))}Nl

n=1 and the
unlabeled pool Du = {x(n)}Nu

n=1, the algorithm first learns a
classifier f (0) from Dl. For each iteration t = 1, 2, ..., T , the
algorithm selects an instance xs ∈ Du to query its label ys
based on Dl, Du, and f (t−1). Next, xs is removed from the
unlabeled pool Du and (xs, ys) is added to the labeled pool Dl.
The algorithm then learns f (t) based on the updated Dl and
goes to the next iteration. The objective of the algorithm is
to make the test accuracy of f (1), f (2), ..., f (T ) as good as
possible.

There are lots of strategies for selecting the instances
to query the labels. Uncertainty sampling is an important
and popular family of strategies [2]. Uncertainty sampling
algorithms assume that the classifier f (t−1) only needs fine-
tuning around the decision boundary and hence query the label
of the most uncertain instance near the decision boundary of
f (t−1). For example, Jing et al. [3] estimate the probabilities
of the classes for the unlabeled instances and use entropy
to evaluate the uncertainty. Some other works use different
definitions of the uncertainty based on the probabilities, such
as least confidence [4] and margin [5]. Those strategies rely
on an accurate estimate of the probabilities. However, when
considering complicated classifiers such as the kernel ones,
probability estimation becomes a challenging problem, and
hence these strategies may suffer from the inaccurate estimate
and weaker performance.

Some other works define the uncertainty without probability
estimation. For example, Tong and Koller [6] define the uncer-
tainty by the distance between the instance and the decision
boundary of SVM [16] for binary active learning (i.e. K = 2).
Using distance as the uncertainty can avoid the challenge
of probability estimation. Nevertheless, for multiclass active
learning, there can be multiple decision boundaries when the
classifier comes from the one-versus-one or one-versus-all
reductions. Then, the challenge resides in defining uncertainty
by the distance to the multiple boundaries.

Another popular family of strategies is representative sam-
pling, which considers both the uncertainty and the rep-
resentativeness to select the instances. For example, Set-
tles and Craven [7] use information density to estimate the
representativeness and give the instances different weights
to calculate the uncertainty. Huang et al. [8] measure the
representativeness by estimating the possible label for the
unlabeled instances. Clustering and hierarchical clustering
are also used for measuring the representativeness [9], [17].
Although the representative sampling algorithms are named
after the representativeness, most of them still extend or adopt
the concept of uncertainty sampling [7]–[9]. Thus, designing a
good uncertainty sampling algorithm is arguably an important

task for active learning.
Most of the existing uncertainty sampling algorithms are

designed for the regular MCC, which means that the costs of
different kinds of misclassification errors are equal. However,
in some real-world applications, the costs shall be different.
Therefore, it is important to study cost-sensitive multiclass
classification (CSMCC) [10], [11] and its active learning setup,
cost-sensitive multiclass active learning (CSMCAL). Given the
different misclassification costs, CSMCAL considers the costs
when selecting the instances and learning the classifiers.

In this paper, we follows the CSMCAL setup introduced by
Chen and Lin [14]. Let the cost matrix C be an K×K matrix
with Ci,j representing the cost when ci is the ground truth
and cj is the prediction. It is natural to assume that C is non-
negative and zero-diagonal. The objective of the CSMCAL
algorithm is to select the useful instance in each iteration
such that the test cost Cy,f(t)(x) is low with respect to the
distribution that generates (x, y) for f (1), f (2), ..., f (T ).

Chen and Lin [14] extend the probabilistic uncertainty, least
confidence and margin, to cost-sensitive versions by Bayesian
inference. Agarwal [15] proposes a cost-sensitive algorithm
based on margin with theoretical guarantees, but the algorithm
is for stream-based active learning rather than the pool-based
active learning. It is worth noting that the existing works
for CSMCAL are all the extensions of uncertainty sampling.
In addition, they all define the cost-sensitive uncertainty by
probabilities. Therefore, these algorithms encounter the same
challenging problem as the regular uncertainty sampling: prob-
ability estimation. Motivated by this, we study the design of
non-probabilistic uncertainty sampling algorithms for pool-
based CSMCAL. We define the cost-sensitive uncertainty by
the distance measure in a special hidden space, and conquer
the difficulty in combining the distances from the multiple
decision boundaries by applying a totally different embedding
view for CSMCC.

III. PROPOSED ALGORITHM

In this section, we first propose a novel CSMCC algorithm
which takes the cost matrix C into account when learning the
classifier f from the labeled pool Dl = {(x(n), y(n))}Nl

n=1.
The proposed algorithm relies on a totally different embed-
ding view of CSMCC. Then, we propose an algorithm for
CSMCAL by defining a cost-sensitive uncertainty based on
the newly-proposed CSMCC algorithm.

A. Embedding View for CSMCC

Unlike general CSMCC algorithms, our classifier f is
not directly learned from the labeled pool Dl and the cost
matrix C. Alternately, we construct a hidden structure which
embeds the cost information of C, and then learn the classi-
fier f through the hidden structure. In particular, in the training
stage, for classes c1, c2, ..., cK , we determine K correspond-
ing hidden points z1, z2, ..., zK in a M -dimensional hidden
space Z to preserve the cost information of C. Then, we learn
a multi-target regressor g from {x(n), z(n)}Nl

n=1, where z(n)

is the corresponding hidden point to y(n). In the predicting



Fig. 1. Embedding view for CSMCC

stage, for any testing instance x, we first obtain the predicted
hidden point z̃ = g(x). Next, we find the nearest hidden point
of z̃ from {z1, z2, ..., zK}, which is denoted as zq . The final
prediction ỹ is set as cq , which is the class corresponding
to zq . In other words, our classifier f = φ ◦ g, where φ is the
nearest neighbor function φ(·) = argmink d(zk, ·). Figure 1
illustrates the embedding view for CSMCC.

B. Properties of Hidden Points

Now, we discuss how the hidden points preserve the cost
information. For a testing instance x and its label y = cr, we
assume that ci is the better prediction than cj (Cr,i < Cr,j).
Recall that the prediction ỹ = cq is decided by zq , the nearest
hidden point of z̃ = g(x). If unfortunately, z̃ is inaccurate,
then the nearest hidden point zq 6= zr and we make the wrong
prediction (ỹ = cq 6= cr). In this case, to reduce the cost,
we prefer predict ci rather than cj (since Cr,i < Cr,j). This
motivates us to let d(zr, zi) < d(zr, zj), where d represents
the Euclidean distance in the hidden space. Because if zr is
closer to zi than zj , we are more likely to predict ci than cj
according to the nearest neighbor decision.

Based on this idea, we would like to determine the hidden
points z1, z2, ..., zK such that d(zi, zj) < d(zi′ , zj′) iff Ci,j <
Ci′,j′ . In other words, the magnitude-order of the costs is
embedded in the distance between the hidden points, and the
larger (smaller) distance implies the higher (lower) cost.

C. Non-metric Multidimensional Scaling

In this section, we introduce non-metric multidimensional
scaling (NMDS) [18], which is helpful to determine the de-
sired hidden points. NMDS is one variant of multidimensional
scaling (MDS) [19], which is a classic manifold learning ap-
proach to identify the hidden structure of L given objects with
non-metric dissimilarities. More specifically, let ∆ be an L×L
matrix, where ∆i,j represents the symmetric dissimilarity of
the i-th object and j-th object. NMDS attempts to finds L
target points u1,u2, ...,uL in the M -dimensional target space
such that d(ui,uj) < d(ui′ ,uj′) iff ∆i,j < ∆i′,j′ . In other
words, the magnitude-order of the dissimilarities is preserved
in the distance between the target points. We can adjust the
weight of each pair (i, j) by defining an L×L weight matrix
with Wi,j being the weight. Note that both ∆ and W are
limited to be symmetric, non-negative, and zero-diagonal.

There are many algorithms available in the literature to
solve NMDS. A representative one is Scaling by MAjorizing
a COmplicated Function (SMACOF) [20], which trains the
isotonic regressors and find the target points iteratively. In
general, the complexity of SMACOF is O(L3), but there is
often room for speeding up with special weight matrices W.

(a) ∆ (b) W

Fig. 2. Constructions of ∆ and W

D. Determining Hidden Points by Solving NMDS

The objective of NMDS is to find the target points to
preserve the dissimilarities of the objects, which is similar to
our objective to determine the hidden points to embed the costs
of the classes. It is natural to take the classes as the objects
and take the cost matrix C as the dissimilarities matrix ∆.
Then the target points obtained by NMDS can be the desired
hidden points. Nevertheless, the dissimilarity matrix ∆ needs
to be symmetric while the cost matrix C can be asymmetric,
that is, Ci,j 6= Cj,i. To resolve this difficulty, we propose a
mirroring trick to deal with the asymmetric cost matrix.

The asymmetric cost matrix C implies that each class has
two roles: as the ground truth and as the prediction. The cost
is different given that the class serves different roles. For the
class ci, we use the notation c

(t)
i and c

(p)
i when we view ci

as the ground truth and the prediction respectively, and use
the notation S(t) and S(p) to denote the sets {c(t)i }Ki=1 and
{c(p)i }Ki=1. Note that the two mirrored classes c(t)i and c(p)i are
in fact the same, but they have different meanings. We consider
2K objects with the first K objects being the elements in
S(t) and the last K objects being the elements in S(p). Now,
Ci,j can be viewed as the dissimilarity between c(t)i and c(p)j ,
which is symmetric for them. Similarly, Cj,i can be viewed
as the symmetric dissimilarity between c(p)i and c(t)j . In other
words, the costs can be viewed as the dissimilarities between
the elements in S(t) and the elements in S(p).

On the basis of this idea, we construct ∆ and W as follows
(Figure 2). Let ∆ and W be the 2K × 2K matrices. Given
that we are concerned only about the dissimilarities between
the elements in S(t) and S(p), we set the top-right part and
the bottom-left part of weight matrix W to ones, and set the
top-left and the bottom-right parts of W to zeros (and the
corresponding parts of ∆ conveniently to zeros as well). Then,
we set the top-right part and the bottom-left part of ∆ to be
the corresponding cost. That is,

Wi,j =


1 if (i, j) in the top-right part
1 if (i, j) in the bottom-left part
0 otherwise

∆i,j =


Ci,j−|S| if (i, j) in the top-right part
Ci−|S|,j if (i, j) in the bottom-left part
0 otherwise

Note that the top-right part and the bottom-left part of ∆ are
in fact C and C> respectively.



By solving NMDS with the above-mentioned ∆ and W,
we obtain the target points of c(t)i and c(p)i , which are denoted
as u

(t)
i and u

(p)
i respectively. We further use U (t) and U (p)

to denote the target point set {u(t)
i }Ki=1 and {u(p)

i }Ki=1. The
cost information is embedded in the distances between the
target points in U (t) and U (p). Since we view each class ci
as two roles (c(t)i and c

(p)
i ), now, we have to decide which

target point (u(t)
i or u

(p)
i ) is the hidden point zi of the

class ci. Recall that the goal of the hidden points is to train a
multi-target regressor g and obtain z̃, the “predicted” hidden
point. Therefore, we take u

(p)
i , which serves the role of the

prediction, as the hidden point of ci. Accordingly, the nearest
hidden point zq should be the role of the ground truth because
the cost information is embedded in the distance between the
target points of these two roles. Hence, we find the nearest
hidden point zq from U (t), which serves the role of the ground
truth.

Now, we can learn a cost-sensitive classifier from the
obtained hidden points which preserve the cost information,
and make the cost-sensitive prediction from the nearest hidden
point. We call this approach cost embedding (CE).

E. Cost-sensitive Uncertainty for CSMCAL

We are going to define the cost-sensitive uncertainty with
the help of CE. As mentioned above, for the test instance x
and its predicted hidden point z̃ = g(x), CE finds the nearest
hidden point zq of z̃ from U (t) such that d(zq, z̃) is the
smallest. Recall that in CE, the distance d(zq, z̃) contains the
cost information. Specifically, larger (smaller) d(zq, z̃) implies
the larger (smaller) cost for the prediction ỹ = cq . Therefore,
d(zq, z̃) can be viewed as an estimated cost. Ideally, d(zq, z̃)
should be small because we assume there is no cost for the
correct prediction (zero-diagonal for C). In case d(zq, z̃) is
large, we expect that there is a high cost when taking cq
as the prediction despite the fact that cq is the best choice.
In other words, we are “uncertain” about the prediction for
this instance. Based on this idea, we define the cost-sensitive
uncertainty of an instance x as d(zq, z̃).

With the defined cost-sensitive uncertainty, we propose a
novel uncertainty sampling algorithm for CSMCAL, called
active learning with cost embedding (ALCE). In each iteration,
ALCE selects the instance with the highest cost-sensitive
uncertainty and queries its label. The cost-sensitive uncertainty
makes ALCE be able to find useful instances with respect to
the cost.

IV. EXPERIMENTS

We conduct experiments on eight public datasets1 to validate
the proposed algorithm. Table I lists the basic information
of the datasets. Note that these datasets are in fact for reg-
ular MCC. Thus, we follow previous works [10]–[12], [14]
and adopt the randomize proportional (RP) cost-generation
procedure that was proposed by Beygelzimer et al. [21] to
simulate CSMCC. The diagonal elements Ci,i are set to

1Available from http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

TABLE I
BASIC INFORMATION OF DATASETS

dataset # of class # of instances # of features
vehicle 4 846 18
glass 6 264 9

svmguide4 6 612 10
satimage 6 6435 36
segment 7 2310 19

yeast 10 1484 8
usps 10 9298 256

vowel 11 990 10
letter 26 20000 16

TABLE II
t-TEST AT 95% CONFIDENCE LEVEL FOR ALCE-N (# WIN/# TIE/# LOSS)

number of labeled data (% of data)
algorithm 5% 10% 15% 20% 25% 30% 40% total

HC 2/6/0 6/2/0 4/4/0 4/4/0 4/4/0 5/3/0 5/3/0 30/26/0
ID 6/2/0 7/1/0 7/1/0 5/3/0 5/2/1 4/2/2 3/3/2 37/14/5

UC-E 6/2/0 6/2/0 5/3/0 3/4/1 3/3/2 3/3/2 3/3/2 29/20/7
UC-D 3/5/0 8/0/0 8/0/0 4/4/0 4/4/0 4/4/0 4/4/0 35/21/0
total 17/15/0 27/5/0 24/8/0 16/15/1 16/13/3 16/12/4 15/13/4

zero and the other elements Ci,j are uniformly sample from[
0, 2000 |{n:y

(n)=i}|
|{n:y(n)=j}|

]
. We acknowledge that the RP procedure

may not fully reflect realistic application needs. However, we
still adopt RP because it is a longstanding benchmark for
comparing CSMCC algorithms.

All the following experimental results are the average re-
sults of 20 experiments. In each run of the experiments, we
randomly sample 60% of data as the training set and the other
40% of data as the testing set. Then, we randomly select one
instance of each class in the training set as the initial labeled
pool Dl and let the other instances be the unlabeled pool Du.

A. Comparison with Cost-insensitive Algorithms

We first demonstrate that ALCE indeed select the instance
which contains more information with respect to the cost.
We compare ALCE with the following algorithms which do
not consider the costs: (1) UC-D: uncertainty sampling with
distance as the uncertainty [6] (2) UC-E: uncertainty sampling
with entropy as the uncertainty [3] (3) ID: representative
sampling with information density as the instance weights [7]
(4) HC: Representative sampling by hierarchy clustering [17].
We use SVM [16] as the classifier for UC-D and use SVM
with probability estimation [22] for UC-E, ID, and HC. For
ALCE, we set M = K and use M single-target ridge
regressors as the multi-target regressor. Note that the classifier
of ALCE (obtained by CE) is cost-sensitive. To achieve a fair
comparison, we also compare ALCE-N, which uses the same
selection strategy as ALCE but obtains the classifier with SVM
(cost-insensitive) rather than CE. We consider RBF kernel for
all the classifiers and regressors and the parameters are set to
the default parameters.

Figure 3 shows the test cost versus different percentages of
labeled data. From the figure, we first notice that among the
algorithms which use the cost-insensitive classifiers (UC-D,
UC-E, ID, HC, and ALCE-N), ALCE-N has the best perfor-
mance in most of the datasets. We further compare ALCE-N
with these algorithms based on the t-test at 95% confidence
level in Table II. The results justify that the selection strategy
by the proposed cost-sensitive uncertainty is indeed useful.
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Fig. 3. Test cost of ALCE, ALCE-N and other cost-insensitive algorithms

TABLE III
t-TEST AT 95% CONFIDENCE LEVEL FOR ALCE (# WIN/# TIE/# LOSS)

number of labeled data (% of data)
algorithm 5% 10% 15% 20% 25% 30% 40% total

MEC 6/2/0 7/1/0 6/2/0 6/2/0 6/2/0 6/2/0 6/2/0 43/13/0
CWMM 6/2/0 7/1/0 6/2/0 6/2/0 6/2/0 6/2/0 6/2/0 43/13/0

DGS 6/2/0 6/2/0 5/3/0 6/2/0 6/2/0 6/2/0 7/1/0 42/14/0
total 18/6/0 20/4/0 17/7/0 18/6/0 18/6/0 18/6/0 19/5/0

From Figure 3, we see that ALCE is generally better and
more stable than ALCE-N. This validates that the proposed CE
approach is able to catch the cost information to learn a cost-
sensitive classifier and make the cost-sensitive predictions.

B. Comparison with Cost-sensitive Algorithms

Next, we compare ALCE with the existing cost-sensitive
algorithms: (1) MEC: Maximum expected cost proposed by
Chen and Lin [14] (2) CWMM: Cost-weighted minimum
margin proposed by Chen and Lin [14] (3) DGS: DGS selec-
tion rule proposed by Agarwal [15]. These three algorithms
are all probabilistic uncertainty sampling algorithms, hence
we use SVM with probability estimation [22] for them. We
consider RBF kernel and the parameters are set to the default
parameters. Note that DGS is for stream-based active learning.
Thus, in each iteration, we keep uniformly and randomly
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Fig. 4. Test cost of ALCE and other cost-sensitive algorithms

sampling an instance from Du to present to DGS until one
instance is decided to query. This simulation is also used by
Li et al. [23] to compare pool-based active learning algorithms
and stream-based active learning algorithms.

Figure 4 shows the test cost versus different percentages of
labeled data. ALCE outperforms the cost-sensitive algorithms
(MEC, CWMM, DGS) in most of the datasets. Table III lists
the t-test results of ALCE versus the cost-sensitive algorithms
based on 95% confidence level. The results again demonstrate
the superiority of ALCE. ALCE does not rely on the prob-
ability estimation and hence could perform better for kernel
classifiers like SVM.

C. Dimension of Hidden Space

Finally, we discuss the influence of the dimension of the
hidden space. Figure 5 shows the results of ALCE with
different dimension M . From the figure, we notice that the
larger dimension leads to the better performance in general.
Nevertheless, when M is greater than 60% of K, the improve-
ment is insignificant. This implies that setting M as 60% of K
is generally sufficient to embed the cost information.
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Fig. 5. Test cost of ALCE with different dimensions of the hidden space

V. CONCLUSION

We proposed a novel uncertainty sampling algorithm for
cost-sensitive multiclass active learning called active learn-
ing with cost embedding (ALCE). ALCE is based on our
newly-proposed cost embedding approach (CE) for the cost-
sensitive multiclass classification (CSMCC). CE transforms
each possible label to a hidden point in a special hidden space
and embeds the cost information in the distance measure of
the hidden space with non-metric multidimensional scaling.
By our carefully designed mirroring trick, CE deals with
both symmetric and asymmetric cost information. The em-
bedding allows ALCE to define the cost-sensitive uncertainty
directly from the distance in the hidden space and select more
important instances to achieve the cost-sensitivity. Extensive
experimental results not only demonstrate that ALCE indeed
selects more useful instances by taking the cost information
into account through the embedding, but also show the supe-
riority of ALCE to the existing cost-sensitive active learning
algorithms.
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