
Noname manuscript No.
(will be inserted by the editor)

Cost-Sensitive Label Embedding for Multi-Label
Classification

Kuan-Hao Huang · Hsuan-Tien Lin

Received: date / Accepted: date

Abstract Label embedding (LE) is an important family of multi-label classifica-
tion algorithms that digest the label information jointly for better performance.
Different real-world applications evaluate performance by different cost functions
of interest. Current LE algorithms often aim to optimize one specific cost function,
but they can suffer from bad performance with respect to other cost functions. In
this paper, we resolve the performance issue by proposing a novel cost-sensitive LE
algorithm that takes the cost function of interest into account. The proposed al-
gorithm, cost-sensitive label embedding with multidimensional scaling (CLEMS),
approximates the cost information with the distances of the embedded vectors by
using the classic multidimensional scaling approach for manifold learning. CLEMS
is able to deal with both symmetric and asymmetric cost functions, and effectively
makes cost-sensitive decisions by nearest-neighbor decoding within the embed-
ded vectors. We derive theoretical results that justify how CLEMS achieves the
desired cost-sensitivity. Furthermore, extensive experimental results demonstrate
that CLEMS is significantly better than a wide spectrum of existing LE algorithms
and state-of-the-art cost-sensitive algorithms across different cost functions.

Keywords Multi-label classification, Cost-sensitive, Label embedding

1 Introduction

The multi-label classification problem (MLC), which allows multiple labels to be
associated with each example, is an extension of the multi-class classification prob-
lem. The MLC problem satisfies the demands of many real-world applications
(Carneiro et al, 2007; Trohidis et al, 2008; Barutçuoglu et al, 2006). Different ap-
plications usually need different criteria to evaluate the prediction performance of
MLC algorithms. Some popular criteria are Hamming loss, Rank loss, F1 score,
and Accuracy score (Tsoumakas et al, 2010; Madjarov et al, 2012).

Kuan-Hao Huang, Hsuan-Tien Lin
CSIE Department, National Taiwan University, Taipei, Taiwan
E-mail: {r03922062, htlin}@csie.ntu.edu.tw

ar
X

iv
:1

60
3.

09
04

8v
5

 [
cs

.L
G

]
 5

 A
ug

 2
01

7

2 Kuan-Hao Huang, Hsuan-Tien Lin

Label embedding (LE) is an important family of MLC algorithms that jointly
extract the information of all labels to improve the prediction performance. LE al-
gorithms automatically transform the original labels to an embedded space, which
represents the hidden structure of the labels. After conducting learning within the
embedded space, LE algorithms make more accurate predictions with the help of
the hidden structure.

Existing LE algorithms can be grouped into two categories based on the dimen-
sion of the embedded space: label space dimension reduction (LSDR) and label
space dimension expansion (LSDE). LSDR algorithms (Hsu et al, 2009; Kapoor
et al, 2012; Tai and Lin, 2012; Sun et al, 2011; Chen and Lin, 2012; Yu et al,
2014; Lin et al, 2014; Balasubramanian and Lebanon, 2012; Bi and Kwok, 2013;
Bhatia et al, 2015; Yeh et al, 2017) consider a low-dimensional embedded space
for digesting the information between labels and conduct more effective learning.
In contrast to LSDR algorithms, LSDE algorithms (Zhang and Schneider, 2011;
Ferng and Lin, 2013; Tsoumakas et al, 2011a) focus on a high-dimensional em-
bedded space. The additional dimensions can then be used to represent different
angles of joint information between the labels to reach better performance.

While LE algorithms have become major tools for tackling the MLC problem,
most existing LE algorithms are designed to optimize only one or few specific
criteria. The algorithms may then suffer from bad performance with respect to
other criteria. Given that different applications demand different criteria, it is
thus important to achieve cost (criterion) sensitivity to make MLC algorithms
more realistic. Cost-sensitive MLC (CSMLC) algorithms consider the criterion as
an additional input, and take it into account either in the training or the predicting
stage. The additional input can then be used to guide the algorithm towards more
realistic predictions. CSMLC algorithms are attracting research attention in recent
years (Lo et al, 2011, 2014; Dembczynski et al, 2010, 2011; Li and Lin, 2014), but
to the best of our knowledge, there is no work on cost-sensitive label embedding
(CSLE) algorithms yet.

In this paper, we study the design of CSLE algorithms, which take the in-
tended criterion into account in the training stage to locate a cost-sensitive hidden
structure in the embedded space. The cost-sensitive hidden structure can then be
used for more effective learning and more accurate predictions with respect to the
criterion of interest. Inspired by the finding that many of the existing LSDR algo-
rithms can be viewed as linear manifold learning approaches, we propose to adopt
manifold learning for CSLE. Nevertheless, to embed any general and possibly com-
plicated criterion, linear manifold learning may not be sophisticated enough. We
thus start with multidimensional scaling (MDS), one famous non-linear manifold
learning approach, to propose a novel CSLE algorithm. The proposed cost-sensitive
label embedding with multidimensional scaling (CLEMS) algorithm embeds the
cost information within the distance measure of the embedded space. We further
design a mirroring trick for CLEMS to properly embed the possibly asymmetric
criterion information within the symmetric distance measure. We also design an
efficient procedure that conquers the difficulty of making predictions through the
non-linear cost-sensitive hidden structure. Theoretical results justify that CLEMS
achieves cost-sensitivity through learning in the MDS-embedded space. Extensive
empirical results demonstrate that CLEMS usually reaches better performance
than leading LE algorithms across different criteria. In addition, CLEMS also
performs better than the state-of-the-art CSMLC algorithms (Li and Lin, 2014;

Cost-Sensitive Label Embedding for Multi-Label Classification 3

label space Y embedded space Z feature space X

Φ

Ψ
g

Fig. 1 Flow of label embedding

Dembczynski et al, 2010, 2011). The results suggest that CLEMS is a promising
algorithm for CSMLC.

This paper is organized as follows. Section 2 formalizes the CSLE problem and
Section 3 illustrates the proposed algorithm along with theoretical justifications.
We discuss the experimental results in Section 4 and conclude in Section 5.

2 Cost-sensitive label embedding

In multi-label classification (MLC), we denote the feature vector of an instance
by x ∈ X ⊆ Rd and denote the label vector by y ∈ Y ⊆ {0, 1}K where y[i] = 1
if and only if the instance is associated with the i-th label. Given the training
instances D = {(x(n),y(n))}Nn=1, the goal of MLC algorithms is to train a predictor
h : X → Y from D in the training stage, with the expectation that for any unseen
testing instance (x,y), the prediction ỹ = h(x) can be close to the ground truth y.

A simple criterion for evaluating the closeness between y and ỹ is Hamming
loss(y, ỹ) = 1

K

∑K
i=1Jy[i] 6= ỹ[i]K. It is worth noting that Hamming loss separately

evaluates each label component of ỹ. There are other criteria that jointly evaluate
all the label components of ỹ, such as F1 score, Rank loss, 0/1 loss, and Accuracy
score (Tsoumakas et al, 2010; Madjarov et al, 2012).

Arguably the simplest algorithm for MLC is binary relevance (BR) (Tsoumakas
and Katakis, 2007). BR separately trains a binary classifier for each label with-
out considering the information of other labels. In contrast to BR, label embed-
ding (LE) is an important family of MLC algorithms that jointly use the infor-
mation of all labels to achieve better prediction performance. LE algorithms try
to identify the hidden structure behind the labels. In the training stage, instead
of training a predictor h directly, LE algorithms first embed each K-dimensional
label vector y(n) as an M -dimensional embedded vector z(n) ∈ Z ⊆ RM by an
embedding function Φ : Y → Z. The embedded vector z(n) can be viewed as the
hidden structure that contains the information pertaining to all labels. Then, the
algorithms train a internal predictor g : X → Z from {(x(n), z(n))}Nn=1. In the
predicting stage, for the testing instance x, LE algorithms obtain the predicted
embedded vector z̃ = g(x) and use a decoding function Ψ : Z → Y to get the
prediction ỹ. In other words, LE algorithms learn the predictor by h = Ψ ◦ g.
Figure 1 illustrates the flow of LE algorithms.

Existing LE algorithms can be grouped into two categories based on M (the di-
mension of Z) and K (the dimension of Y). LE algorithms that work with M ≤ K
are termed as label space dimension reduction (LSDR) algorithms. They consider
a low-dimensional embedded space for digesting the information between labels
and utilize different pairs of (Φ, Ψ) to conduct more effective learning. Compressed

4 Kuan-Hao Huang, Hsuan-Tien Lin

sensing (Hsu et al, 2009) and Bayesian compressed sensing (Kapoor et al, 2012)
consider a random projection as Φ and obtain Ψ by solving an optimization prob-
lem per test instance. Principal label space transformation (Tai and Lin, 2012)
considers Φ calculated from an optimal linear projection of the label vectors and
derives Ψ accordingly. Some other works also consider optimal linear projections
as Φ but take feature vectors into account in the optimality criterion, includ-
ing canonical-correlation-analysis methods (Sun et al, 2011), conditional principal
label space transformation (Chen and Lin, 2012), low-rank empirical risk mini-
mization for multi-label learning (Yu et al, 2014), and feature-aware implicit label
space encoding (Lin et al, 2014). Canonical-correlated autoencoder (Yeh et al,
2017) extends the linear projection works by using neural networks instead. Land-
mark selection method (Balasubramanian and Lebanon, 2012) and column subset
selection (Bi and Kwok, 2013) design Φ to select a subset of labels as embed-
ded vectors and derive the corresponding Ψ . Sparse local embeddings for extreme
classification (Bhatia et al, 2015) trains a locally-linear projection as Φ and con-
structs Ψ by nearest neighbors. The smaller M in LSDR algorithms allows the
internal predictor g to be learned more efficiently and effectively.

Other LE algorithms work with M > K, which are called label space dimension
expansion (LSDE) algorithms. Canonical-correlation-analysis output codes (Zhang
and Schneider, 2011) design Φ based on canonical correlation analysis to generate
additional output codes to enhance the performance. Error-correcting codes (ECC)
algorithms (Ferng and Lin, 2013) utilize the encoding and decoding functions
of standard error-correcting codes for communication as Φ and Ψ , respectively.
Random k-labelsets (Tsoumakas et al, 2011a), a popular algorithm for MLC, can
be considered as an ECC-based algorithm with the repetition code (Ferng and Lin,
2013). LSDE algorithms use additional dimensions to represent different angles of
joint information between the labels to reach the better performance.

To the best of our knowledge, all the existing LE algorithms above are designed
for one or few specific criteria and may suffer from bad performance with respect
to other criteria. For example, the optimality criterion within principal label space
transformation (Tai and Lin, 2012) is closely related to Hamming loss. For MLC
data with very few non-zero y[i], which are commonly encountered in real-world
applications, optimizing Hamming loss can easily results in all-zero predictions ỹ[i],
which suffer from bad F1 score.

MLC algorithms that take the evaluation criterion into account are called
cost-sensitive MLC (CSMLC) algorithms and are attracting research attentions
in recent years. CSMLC algorithms take the criterion as an additional input and
consider it either in the training or the predicting stage. For any given criterion,
CSMLC algorithms can ideally make cost-sensitive predictions with respect to the
criterion without extra efforts in algorithm design. Generalized k-labelsets ensem-
ble (Lo et al, 2011, 2014) is extended from random k-labelsets (Tsoumakas et al,
2011a) and digests the criterion by giving appropriate weights to labels. The en-
semble algorithm performs well for any weighted Hamming loss but cannot tackle
more general criteria that jointly evaluate all the label components, such as F1
score. Two CSMLC algorithms for arbitrary criterion are probabilistic classifier
chain (PCC) (Dembczynski et al, 2010, 2011) and condensed filter tree (CFT)
(Li and Lin, 2014). PCC is based on estimating the probability of each label and
making a Bayes-optimal inference for the evaluation criterion. While PCC can in
principle be used for any criterion, it may suffer from computational difficulty un-

Cost-Sensitive Label Embedding for Multi-Label Classification 5

less an efficient inference rule for the criterion is designed first. CFT is based on
converting the criterion as weights when learning each label. CFT conducts the
weight-assignment in a more sophisticated manner than generalized k-labelsets
ensemble does, and can hence work with arbitrary criterion. Both PCC and CFT
are extended from classifier chain (CC) (Read et al, 2011) and form a chain of
labels to utilize the information of the earlier labels in the chain, but they cannot
globally find the hidden structure of all labels like LE algorithms.

In this paper, we study the design of cost-sensitive label embedding (CSLE)
algorithms that respect the criterion when calculating the embedding function Φ
and the decoding function Ψ . We take an initiative of studying CSLE algorithms,
with the hope of achieving cost-sensitivity and finding the hidden structure at
the same time. More precisely, we take the following CSMLC setting (Li and Lin,
2014). Consider a cost function c(y, ỹ) which represents the penalty when the
ground truth is y and the prediction is ỹ. We naturally assume that c(y, ỹ) ≥ 0,
with value 0 attained if and only if y and ỹ are the same. Given training instances
D = {(x(n),y(n))}Nn=1 and the cost function c(·, ·), CSLE algorithms learn an
embedding function Φ, a decoding function Ψ , and an internal predictor g, based
on both the training instance D and the cost function c(·, ·). The objective of
CSLE algorithms is to minimize the expected cost c(y, h(x)) for any unseen testing
instance (x,y), where h = Ψ ◦ g.

3 Proposed algorithm

We first discuss the difficulties of directly extending state-of-the-art LE algorithms
for CSLE. In particular, the decoding function Ψ of many existing algorithms,
such as conditional principal label space transformation (Chen and Lin, 2012) and
feature-aware implicit label space encoding (Lin et al, 2014), are derived from Φ
and can be divided into two steps. The first step is using some ψ : Z → RK that
corresponds to Φ to decode the embedded vector z to a real-valued vector ŷ ∈ RK ;
the second step is choosing a threshold to transform ŷ to ỹ ∈ {0, 1}K . If the
embedding function Φ is a linear function, the corresponding ψ can be efficiently
computed by pseudo-inverse. However, for complicated cost functions, a linear
function may not be sufficient to properly embed the cost information. On the other
hand, if the embedding function Φ is a non-linear function, such as those within
kernel principal component analysis (Schölkopf et al, 1998) and kernel dependency
estimation (Weston et al, 2002), ψ is often difficult to derive or time-consuming
in calculation, which then makes Ψ practically infeasible to compute.

To resolve the difficulties, we do not consider the two-step decoding function Ψ
that depends on deriving ψ from Φ. Instead, we first fix a decent decoding func-
tion Ψ and then derive the corresponding embedding function Φ. We realize that
the goal of Ψ is simply to locate the most probable label vector ỹ from Y, which
is of a finite cardinality, based on the predicted embedded vector z̃ = g(x) ∈ Z.
If all the embedded vectors are sufficiently far away from each other in Z, one
natural decoding function is to calculate the nearest neighbor zq of z̃ and return
the corresponding yq as ỹ. Such a nearest-neighbor decoding function Ψ is behind
some ECC-based LSDE algorithms (Ferng and Lin, 2013) and will be adopted.

The nearest-neighbor decoding function Ψ is based on the distance measure
of Z, which matches our primary need of representing the cost information. In

6 Kuan-Hao Huang, Hsuan-Tien Lin

particular, if yi is a lower-cost prediction than yj with respect to the ground
truth yt, we hope that the corresponding embedded vector zi would be closer
to zt than zj . Then, even if g makes a small error such that z̃ = g(x) deviates
from the desired zt, nearest-neighbor decoding function Ψ can decode to the lower-
cost yi as ỹ instead of yj . In other words, for any two label vectors yi,yj ∈ Y and
the corresponding embedded vectors zi, zj ∈ Z, we want the Euclidean distance
between zi and zj , which is denoted by d(zi, zj), to preserve the magnitude-
relationship of the cost c(yi,yj).

Based on this objective, the framework of the proposed algorithm is as fol-
lows. In the training stage, for each label vector yi ∈ Y, the proposed algorithm
determines an embedded vector zi such that the distance between two embedded
vectors d(zi, zj) in Z approximates the transformed cost δ(c(yi,yj)), where δ(·)
is a monotonic transform function to preserve the magnitude-relationship and will
be discussed later. We let the embedding function Φ be the mapping yi → zi and
use Q to represent the embedded vector set {Φ(yi) | yi ∈ Y}. Then the algorithm
trains a regressor g : X → Z as the internal predictor.

In the predicting stage, when receiving a testing instance x, the algorithm
obtains the predicted embedded vector z̃ = g(x). Given that the cost information
is embedded in the distance, for each zi ∈ Q, the distance d(zi, z̃) can be viewed as
the estimated cost if the underlying truth is yi. Hence the algorithm finds zq ∈ Q
such that the distance d(zq, z̃) is the smallest (the smallest estimated cost), and lets
the corresponding yq = Φ−1(zq) = ỹ be the final prediction for x. In other words,
we have a nearest-neighbor-based Ψ , with the first step being the determination
of the nearest-neighbor of z̃ and the second step being the utilization of Φ−1 to
obtain the prediction ỹ.

Three key issues of the framework above are yet to be addressed. The first
issue is the determination of the embedded vectors zi. The second issue is using
the symmetric distance measure to embed the possibly asymmetric cost functions
where c(yi,yj) 6= c(yj ,yi). The last issue is the choice of a proper monotonic
transform function δ(·). The issues will be discussed in the following sub-sections.

3.1 Calculating the embedded vectors by multidimensional scaling

As mentioned above, our objective is to determine embedded vectors zi such that
the distance d(zi, zj) approximates the transformed cost δ(c(yi,yj)). The objec-
tive can be formally defined as minimizing the embedding error

(d(zi, zj)− δ(c(yi,yj)))2.

We observe that the transformed cost δ(c(yi,yj)) can be viewed as the dissim-
ilarity between label vectors yi and yj . Computing an embedding based on the
dissimilarity information matches the task of manifold learning, which is able to
preserve the information and discover the hidden structure. Based on our discus-
sions above, any approach that solves the manifold learning task can then be taken
to solve the CSLE problem. Nevertheless, for CSLE, different cost functions may
need different M (the dimension of Z) to achieve a decent embedding. We thus
consider manifold learning approaches that can flexibly take M as the parameter,
and adopt a classic manifold learning approach called multidimensional scaling
(MDS) (Kruskal, 1964).

Cost-Sensitive Label Embedding for Multi-Label Classification 7

For a target dimension M , MDS attempts to discover the hidden structure
of LMDS objects by embedding their dissimilarities in an M -dimensional target
space. The dissimilarity is represented by a symmetric, non-negative, and zero-
diagonal dissimilarity matrix ∆, which is an LMDS×LMDS matrix with ∆i,j being
the dissimilarity between the i-th object and the j-th object. The objective of
MDS is to determine target vectors u1,u2, ...,uLMDS

in the target space to mini-
mize the stress, which is defined as

∑
i,j Wi,j(d(ui,uj)−∆i,j)2, where d denotes

the Euclidean distance in the target space, and W is a symmetric, non-negative,
and zero-diagonal matrix that carries the weight Wi,j of each object pair. There
are several algorithms available in the literature for solving MDS. A representa-
tive algorithm is Scaling by MAjorizing a COmplicated Function (SMACOF) (De
Leeuw, 1977), which can iteratively minimize stress. The complexity of SMACOF
is generally O((LMDS)3), but there is often room for speeding up with special
weight matrices W.

The embedding error (d(zi, zj)−δ(c(yi,yj)))2 and the stress (d(ui,uj)−∆i,j)2

are of very similar form. Therefore, we can view the transformed costs as the
dissimilarities of embedded vectors and feed MDS with specific values of ∆ and
W to calculate the embedded vectors to reduce the embedding error. Specifically,
the relation between MDS and our objective can be described as follows.

i-th object dissimilarity ∆i,j target vector ui
stress

(d(ui,uj)−∆i,j)2

label vector yi
transformed cost

embedded vector zi
embedding error

δ(c(yi,yj)) (d(zi, zj)− δ(c(yi,yj)))2

The most complete embedding would convert all label vectors y ∈ Y ⊆ {0, 1}K
to the embedded vectors. Nevertheless, the number of all label vectors is 2K ,
which makes solving MDS infeasible. Therefore, we do not consider embedding
the entire Y. Instead, we select some representative label vectors as a candidate
set S ⊆ Y, and only embed the label vectors in S. While the use of S instead of
Y restricts the nearest-neighbor decoding function to only predict from S, it can
reduce the computational burden. One reasonable choice of S is the set of label
vectors that appear in the training instances D, which is denoted as Str. We will
show that using Str as S readily leads to promising performance and discuss more
about the choice of the candidate set in Section 4.

After choosing S, we can construct ∆ and W for solving MDS. Let L denote the
number of elements in S and let C(S) be the transformed cost matrix of S, which
is an L×L matrix with C(S)i,j = δ(c(yi,yj)) for yi,yj ∈ S. Unfortunately, C(S)
cannot be directly used as the symmetric dissimilarity matrix ∆ because the cost
function c(·, ·) may be asymmetric (c(yi,yj) 6= c(yj ,yi)). To resolve this difficulty,
we propose a mirroring trick to construct a symmetric ∆ from C(S).

3.2 Mirroring trick for asymmetric cost function

The asymmetric cost function implies that each label vector yi serves two roles:
as the ground truth, or as the prediction. When yi serves as the ground truth, we
should use c(yi, ·) to describe the cost behavior. When yi serves as the prediction,

8 Kuan-Hao Huang, Hsuan-Tien Lin

embedded space Z

z
(p)
1

z
(p)
2

z
(p)
3z

(t)
1

z
(t)
2

z
(t)
3

δ(c(y1,y2))
δ(c(y2,y1))

Fig. 2 Embedding cost in distance

(a) ∆ (b) W

Fig. 3 Constructions of ∆ and W

we should use c(·,yi) to describe the cost behavior. This motivates us to view
these two roles separately.

For each yi ∈ S, we mirror it as y
(t)
i and y

(p)
i to denote viewing yi as the

ground truth and the prediction, respectively. Note that the two mirrored label

vectors y
(t)
i and y

(p)
i are in fact the same, but carry different meanings. Now,

we have two roles of the candidate sets S(t) = {y(t)
i }

L
i=1 and S(p) = {y(p)

i }
L
i=1.

Then, as illustrated by Figure 2, δ(c(yi,yj)), the transformed cost when yi is
ground truth and yj is the prediction, can be viewed as the dissimilarity between

the ground truth role y
(t)
i and the prediction role y

(p)
j , which is symmetric for

them. Similarly, δ(c(yj ,yi)) can be viewed as the dissimilarity between prediction

role y
(p)
i and ground truth role y

(t)
j . That is, all the asymmetric transformed costs

can be viewed as the dissimilarities between the label vectors in S(t) and S(p).
Based on this view, instead of embedding S by MDS, we embed both S(t)

and S(p) by considering 2L objects, the first L objects being the elements in S(t)

and the last L objects being the elements in S(p). Following the mirroring step
above, we construct symmetric ∆ and W as 2L × 2L matrices by the following
equations and illustrate the constructions by Figure 3.

∆i,j =

δ(c(yi,yj−L)) if (i, j) in top-right part

δ(c(yi−L,yj)) if (i, j) in bottom-left part

0 otherwise

(1)

Wi,j =

fi if (i, j) in top-right part

fj if (i, j) in bottom-left part

0 otherwise

(2)

We explain the constructions and the new notations fi as follows. Given that
we are concerned only about the dissimilarities between the elements in S(t) and
S(p), we set the top-left and the bottom-right parts of W to zeros (and set the
corresponding parts of ∆ conveniently to zeros as well). Then, we set the top-
right part and the bottom-left part of ∆ to be the transformed costs to reflect the
dissimilarities. The top-right part and the bottom-left part of ∆ are in fact C(S)
and C(S)> respectively, as illustrated by Figure 3. Considering that every label
vector may have different importance, to reflect this difference, we set the top-right
part of weight Wi,j to be fi, the frequency of yi in D, and set the bottom-left
part of weight Wi,j to be fj .

By solving MDS with the above-mentioned ∆ and W, we can obtain the

target vector u
(t)
i and u

(p)
i corresponding to y

(t)
i and y

(p)
i . We take U(t) and

Cost-Sensitive Label Embedding for Multi-Label Classification 9

Z

z
(p)
1

z
(p)
2

z
(p)
3

z
(t)
1

z
(t)
2

z
(t)
3

g

X

U(p)

(a) learning g from U(p)

Z

z
(p)
1

z
(p)
2

z
(p)
3

z
(t)
1

z
(t)
2

z
(t)
3

g

X

z̃

U(t)

(b) making prediction from U(t)

Fig. 4 Different use of two roles of embedded vectors

Algorithm 1 Training process of CLEMS

1: Given D = {(x(n),y(n))}Nn=1, cost function c, and embedded dimension M
2: Decide the candidate set S, and calculate ∆ and W by (1) and (2)

3: Solve MDS with ∆ and W, and obtain the two roles of embedding vectors U(t) and U(p)

4: Set embedding function Φ : S → U(p) and embedded vector set Q = U(t)

5: Train a regressor g from {(x(n), Φ(y(n)))}Nn=1

Algorithm 2 Predicting process of CLEMS
1: Given a testing example x
2: Obtain the predicted embedded vector z̃ = g(x)
3: Find zq ∈ Q such that d(zq , z̃) is the smallest
4: Make prediction ỹ = Φ−1(zq)

U(p) to denote the target vector sets {u(t)
i }

L
i=1 and {u(p)

i }
L
i=1, respectively. Those

target vectors minimize
∑

i,j Wi,j(d(u
(t)
i ,u

(p)
j)− δ(c(yi,yj)))2. That is, the cost

information is embedded in the distances between the elements in U(t) and U(p).

Since we mirror each label vector yi as two roles (y
(t)
i and y

(p)
i), we need to

decide which target vector (u
(t)
i and u

(p)
i) is the embedded vector zi of yi. Recall

that the goal of the embedded vectors is to train a internal predictor g and obtain z̃,
the “predicted” embedded vector. Therefore, we take the elements in U(p), which
serve the role of the prediction, as the embedded vectors of the elements in S,
as illustrated by Figure 4(a). Accordingly, the nearest embedded vector zq should
be the role of the ground truth because the cost information is embedded in the
distance between these two roles of target vectors. Hence, we take U(t) as Q, the
embedded vector set in the first step of nearest-neighbor decoding, and find the
nearest embedded vector zq from Q, as illustrated by Figure 4(b). The final cost-
sensitive prediction ỹ = yq is the corresponding label vector to zq, which carries
the cost information through nearest-neighbor decoding.

With the embedding function Φ using U(p) and the nearest-neighbor decoding
function Ψ using Q = U(t), we have now designed a novel CSLE algorithm. We
name it cost-sensitive label embedding with multidimensional scaling (CLEMS).
Algorithm 1 and Algorithm 2 respectively list the training process and the pre-
dicting process of CLEMS.

10 Kuan-Hao Huang, Hsuan-Tien Lin

3.3 Theoretical guarantee and monotonic function

The last issue is how to choose the monotonic transform function δ(·). We suggest
a proper monotonic function δ(·) based on the following theoretical results.

Theorem 1 For any instance (x,y), let z be the embedded vector of y, z̃ = g(x)
be the predicted embedded vector, zq be the nearest embedded vector of z̃, and yq

be the corresponding label vector of zq. In other words, yq is the outcome of the
nearest-neighbor decoding function Ψ . Then,

δ(c(y,yq))2 ≤ 5
(

(d(z, zq)− δ(c(y,yq)))2︸ ︷︷ ︸
embedding error

+ d(z, z̃)2︸ ︷︷ ︸
regression error

)
.

Proof Since zq is the nearest neighbor of z̃, we have d(z, z̃) ≥ 1
2d(z, zq). Hence,

embedding error + regression error = (d(z, zq)− δ(c(y,yq)))2 + d(z, z̃)2

≥ (d(z, zq)− δ(c(y,yq)))2 +
1

4
d(z, zq)2

=
5

4
(d(z, zq)− 4

5
δ(c(y,yq)))2 +

1

5
δ(c(y,yq))2

≥ 1

5
δ(c(y,yq))2.

This implies the theorem.

Theorem 1 implies that the cost of the prediction can be bounded by embed-
ding error and regression error. In our framework, the embedding error can be
reduced by multidimensional scaling and the regression error can be reduced by
learning a good regressor g. Theorem 1 provides a theoretical explanation of how
our framework achieves cost-sensitivity.

In general, any monotonic function δ(·) can be used in the proposed framework.
Based on Theorem 1, we suggest δ(·) = (·)1/2 to directly bound the cost by
c(y,yq) ≤ 5(embedding error+ regression error). We will show that the suggested
monotonic function leads to promising practical performance in Section 4.

4 Experiments

We conduct the experiments on nine real-world datasets (Tsoumakas et al, 2011b;
Read et al, 2016) to validate the proposed algorithm, CLEMS. The details of the
datasets are shown by Table 1. We evaluate the algorithms in our cost-sensitive
setting with three commonly-used evaluation criteria, namely F1 score(y, ỹ) =
2‖y∩ỹ‖1
‖y‖1+‖ỹ‖1 , Accuracy score(y, ỹ) = ‖y∩ỹ‖1

‖y∪ỹ‖1 , and Rank loss(y, ỹ) =
∑

y[i]>y[j]

(Jỹ[i] <

ỹ[j]K + 1
2 Jỹ[i] = ỹ[j]K). Note that F1 score and Accuracy score are symmetric

while Rank loss is asymmetric. For CLEMS, the input cost function is set as the
corresponding evaluation criterion.

All the following experimental results are averaged over 20 runs of experiments.
In each run, we randomly split 50%, 25%, and 25% of the dataset for training, vali-
dation, and testing. We use the validation part to select the best parameters for all

Cost-Sensitive Label Embedding for Multi-Label Classification 11

Table 1 Properties of datasets

Dataset # of instance N # of feature d # of labels K # of distinct labels
CAL500 502 68 174 502
emotions 593 72 6 27
birds 645 260 19 133

medical 978 1449 45 94
enron 1702 1001 53 753
scene 2407 294 6 15
yeast 2417 103 14 198

slashdot 3279 1079 22 156
EUR-Lex(dc) 19348 5000 412 1615

the algorithms and report the corresponding testing results. For all the algorithms,
the internal predictors are set as random forest (Breiman, 2001) implemented by
scikit-learn (Pedregosa et al, 2011) and the maximum depth of the trees is se-
lected from {5, 10, ..., 35}. For CLEMS, we use the implementation of scikit-learn
for solving SMACOF algorithm to obtain the MDS-based embedding and the pa-
rameters of SMACOF algorithm are set as default values by scikit-learn. For the
other algorithms, the rest parameters are set as the default values suggested by
their original papers. In the following figures and tables, we use the notation ↑ (↓)
to highlight whether a higher (lower) value indicates better performance for the
evaluation criterion.

4.1 Comparing CLEMS with LSDR algorithms

In the first experiment, we compare CLEMS with four LSDR algorithms intro-
duced in Section 2: principal label space transformation (PLST) (Tai and Lin,
2012), conditional principal label space transformation (CPLST) (Chen and Lin,
2012), feature-aware implicit label space encoding (FaIE) (Lin et al, 2014), and
sparse local embeddings for extreme classification (SLEEC) (Bhatia et al, 2015)

Since the prediction of SLEEC is a real-value vector rather than binary, we
choose the best threshold for quantizing the vector according to the given criterion
during training. Thus, our modified SLEEC can be viewed as “semi-cost-sensitive”
algorithm that learns the threshold according to the criterion.

Figures 5 and Figure 6 show the results of F1 score and Accuracy score across
different embedded dimensions M . As M increases, all the algorithms reach bet-
ter performance because of the better preservation of label information. CLEMS
outperforms the non-cost-sensitive algorithms (PLST, CPLST, and FaIE) in most
of the cases, which verifies the importance of constructing a cost-sensitive embed-
ding. CLEMS also exhibits considerably better performance over SLEEC in most
of the datasets, which demonstrates the usefulness to consider the cost informa-
tion during embedding (CLEMS) rather than after the embedding (SLEEC). The
results of Rank loss are shown by Figure 7. CLEMS again reaches the best in
most of the cases, which justifies its validity for asymmetric criteria through the
mirroring trick.

12 Kuan-Hao Huang, Hsuan-Tien Lin

0.2 0.4 0.6 0.8 1

F
1

sc
or

e

0.3

0.4

0.5
CAL500

0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7
emotions

0.2 0.4 0.6 0.8 1
0.5

0.6

0.7
birds

0.2 0.4 0.6 0.8 1

F
1

sc
or

e

0.6

0.7

0.8

0.9
medical

0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7
enron

0.2 0.4 0.6 0.8 1
0

0.5

1
scene

M / K
0.2 0.4 0.6 0.8 1

F
1

sc
or

e

0.5

0.6

0.7
yeast

M / K
0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6
slashdot

M / K
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8
EUR-Lex(dc)

CLEMS SLEEC FaIE PLST CPLST

Fig. 5 F1 score (↑) with the 95% confidence interval of CLEMS and LSDR algorithms

0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y
sc

or
e

0.2

0.25

0.3

0.35
CAL500

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8
emotions

0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7
birds

0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y
sc

or
e

0.5

0.6

0.7

0.8
medical

0.2 0.4 0.6 0.8 1
0.3

0.4

0.5
enron

0.2 0.4 0.6 0.8 1
0

0.5

1
scene

M / K
0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y
sc

or
e

0.4

0.5

0.6
yeast

M / K
0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6
slashdot

M / K
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8
EUR-Lex(dc)

CLEMS SLEEC FaIE PLST CPLST

Fig. 6 Accuracy score (↑) with the 95% confidence interval of CLEMS and LSDR algorithms

4.2 Comparing CLEMS with LSDE algorithms

We compare CLEMS with ECC-based LSDE algorithms (Ferng and Lin, 2013).
We consider two promising error-correcting codes, repetition code (ECC-RREP)
and Hamming on repetition code (ECC-HAMR) in the original work. The former
is equivalent to the famous Random k-labelsets (RAkEL) algorithm (Tsoumakas
et al, 2011a).

Cost-Sensitive Label Embedding for Multi-Label Classification 13

0.2 0.4 0.6 0.8 1

R
an

k
lo

ss

1000

1200

1400

1600
CAL500

0.2 0.4 0.6 0.8 1
1

2

3

4
emotions

0.2 0.4 0.6 0.8 1
4

6

8
birds

0.2 0.4 0.6 0.8 1

R
an

k
lo

ss

0

5

10

15
medical

0.2 0.4 0.6 0.8 1
20

30

40

50
enron

0.2 0.4 0.6 0.8 1
0

1

2

3
scene

M / K
0.2 0.4 0.6 0.8 1

R
an

k
lo

ss

8

10

12
yeast

M / K
0.2 0.4 0.6 0.8 1

0

5

10

15
slashdot

M / K
0.2 0.4 0.6 0.8 1

50

100

150

200
EUR-Lex(dc)

CLEMS SLEEC FaIE PLST CPLST

Fig. 7 Rank loss (↓) with the 95% confidence interval of CLEMS and LSDR algorithms

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10

F
1

sc
or

e

0.2

0.3

0.4

0.5
CAL500

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10
0.55

0.6

0.65

0.7
emotions

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10
0.5

0.6

0.7
birds

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10

F
1

sc
or

e

0.4

0.6

0.8

1
medical

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10
0.5

0.55

0.6

0.65
enron

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10
0.6

0.7

0.8
scene

M / K (CLEMS/others)
1.2/2 1.4/4 1.6/6 1.8/8 2.0/10

F
1

sc
or

e

0.55

0.6

0.65

0.7
yeast

M / K (CLEMS/others)
1.2/2 1.4/4 1.6/6 1.8/8 2.0/10

0.2

0.4

0.6
slashdot

M / K (CLEMS/others)
1.2/2 1.4/4 1.6/6 1.8/8 2.0/10

0.4

0.5

0.6

0.7
EUR-Lex(dc)

CLEMS ECC-RREP ECC-HAMR

Fig. 8 F1 score (↑) with the 95% confidence interval of CLEMS and LSDE algorithms

Figure 8 shows the results of F1 score. Note that in the figure, the scales of
M/K for CLEMS and other LSDE algorithms are different. The scale of CLEMS
is {1.2, 1.4, 1.6, 1.8, 2.0} while the scale of other LSDE algorithms is {2, 4, 6, 8, 10}.
Although we give LSDE algorithms more dimensions to embed the label informa-
tion, CLEMS is still superior to those LSDE algorithms in most of cases. Similar
results happen for Accuracy score and the Rank loss (Figure 9 and Figure 10).
The results again justify the superiority of CLEMS.

14 Kuan-Hao Huang, Hsuan-Tien Lin

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10

A
cc

ur
ac

y
sc

or
e

0.15

0.2

0.25

0.3
CAL500

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10
0.5

0.55

0.6

0.65
emotions

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10
0.5

0.6

0.7
birds

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10

A
cc

ur
ac

y
sc

or
e

0.4

0.6

0.8
medical

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10
0.4

0.45

0.5
enron

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10
0.5

0.6

0.7

0.8
scene

M / K (CLEMS/others)
1.2/2 1.4/4 1.6/6 1.8/8 2.0/10

A
cc

ur
ac

y
sc

or
e

0.45

0.5

0.55

0.6
yeast

M / K (CLEMS/others)
1.2/2 1.4/4 1.6/6 1.8/8 2.0/10

0.2

0.4

0.6
slashdot

M / K (CLEMS/others)
1.2/2 1.4/4 1.6/6 1.8/8 2.0/10

0.4

0.5

0.6

0.7
EUR-Lex(dc)

CLEMS ECC-RREP ECC-HAMR

Fig. 9 Accuracy score (↑) with the 95% confidence interval of CLEMS and LSDE algorithms

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10

R
an

k
lo

ss

1200

1400

1600
CAL500

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10
1.4

1.6

1.8

2
emotions

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10
4

6

8
birds

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10

R
an

k
lo

ss

0

5

10

15
medical

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10
20

30

40

50
enron

1.2/2 1.4/4 1.6/6 1.8/8 2.0/10
0.6

0.8

1

1.2
scene

M / K (CLEMS/others)
1.2/2 1.4/4 1.6/6 1.8/8 2.0/10

R
an

k
lo

ss

8

9

10

11
yeast

M / K (CLEMS/others)
1.2/2 1.4/4 1.6/6 1.8/8 2.0/10

4

6

8

10
slashdot

M / K (CLEMS/others)
1.2/2 1.4/4 1.6/6 1.8/8 2.0/10

50

100

150

200
EUR-Lex(dc)

CLEMS ECC-RREP ECC-HAMR

Fig. 10 Rank loss (↓) with the 95% confidence interval of CLEMS and LSDE algorithms

4.3 Candidate set and embedded dimension

Now, we discuss the influence of the candidate set S. In Section 3, we proposed to
embed Str instead of Y. To verify the goodness of the choice, we compare CLEMS
with different candidate sets. We consider the sets sub-sampled with different per-
centage from Str to evaluate the importance of label vectors in Str. Furthermore,
to know whether or not larger candidate set leads to better performance, we also

Cost-Sensitive Label Embedding for Multi-Label Classification 15

of elements in S / # of elements in S
tr

0.5 1 1.5 2

F
1

sc
or

e

0.62

0.64

0.66

0.68
yeast

of elements in S / # of elements in S
tr

0.5 1 1.5 2
0.3

0.4

0.5

0.6
slashdot

of elements in S / # of elements in S
tr

0.5 1 1.5 2
0.4

0.5

0.6

0.7
EUR-Lex(dc)

Fig. 11 F1 score (↑) of CLEMS with different size of candidate sets

of elements in S / # of elements in S
tr

0.5 1 1.5 2

A
cc

ur
ac

y
sc

or
e

0.45

0.5

0.55

0.6
yeast

of elements in S / # of elements in S
tr

0.5 1 1.5 2
0.3

0.4

0.5

0.6
slashdot

of elements in S / # of elements in S
tr

0.5 1 1.5 2
0.3

0.4

0.5

0.6

0.7
EUR-Lex(dc)

Fig. 12 Accuracy score (↑) of CLEMS with different size of candidate sets

of elements in S / # of elements in S
tr

0.5 1 1.5 2

R
an

k
lo

ss

8

8.5

9

9.5

10
yeast

of elements in S / # of elements in S
tr

0.5 1 1.5 2

5

6

7

slashdot

of elements in S / # of elements in S
tr

0.5 1 1.5 2
80

100

120

140
EUR-Lex(dc)

Fig. 13 Rank loss (↓) of CLEMS with different size of candidate sets

randomly sample different percentage of additional label vectors from Y \ Str and
merge them with Str as the candidate sets. The results of three largest datasets
are shown by Figures 11, 12, and 13. From the figures, we observe that sub-
sampling from Str generally lead to worse performance; adding more candidates
from Y \Str, on the other hand, does not lead to significantly-better performance.
The two findings suggest that using Str as the candidate set is necessary and
sufficient for decent performance.

We conduct another experiment about the candidate set. Instead of random
sampling, we consider Sall, which denotes the set of label vectors that appear in the
training instances and the testing instances, to estimate the benefit of “peeping”
the testing label vectors and embedding them in advance. We show the results of
CLEMS with Str (CLEMS-train) and Sall (CLEMS-all) versus different embedded
dimensions by Figure 14, 15, and 16. From the figures, we see that the improvement
of CLEMS-all over CLEMS-train is small and insignificant. The results imply again
that Str readily allows nearest-neighbor decoding to make sufficiently good choices.

Now, we discuss about the embedded dimensionM . From Figure 14, 15, and 16,
CLEMS reaches better performance as M increases. For LSDR, M plays an impor-
tant role since it decides how much information can be preserved in the embedded
space. Nevertheless, For LSDE, the improvement becomes marginal when M in-
creases. The results suggest that for LSDE, the influence of the additional dimen-
sion is not large, and setting the embedded dimension M = K is sufficiently good

16 Kuan-Hao Huang, Hsuan-Tien Lin

M / K
0.5 1 1.5 2

F
1

sc
or

e

0.6

0.64

0.68
yeast

M / K
0.5 1 1.5 2

0.4

0.5

0.6
slashdot

M / K
0.5 1 1.5 2

0.55

0.6

0.65

0.7
EUR-Lex(dc)

CLEMS-train CLEMS-all

Fig. 14 F1 score (↑) with the 95% confidence interval of CLEMS-train and CLEMS-all

M / K
0.5 1 1.5 2

A
cc

ur
ac

y
sc

or
e

0.45

0.5

0.55

0.6
yeast

M / K
0.5 1 1.5 2

0.3

0.4

0.5

0.6
slashdot

M / K
0.5 1 1.5 2

0.55

0.6

0.65

0.7
EUR-Lex(dc)

CLEMS-train CLEMS-all

Fig. 15 Accuracy score (↑) with the 95% confidence interval of CLEMS-train and CLEMS-all

M / K
0.5 1 1.5 2

R
an

kl
os

s

8

9

10

11
yeast

M / K
0.5 1 1.5 2

4

6

8
slashdot

M / K
0.5 1 1.5 2

80

90

100
EUR-Lex(dc)

CLEMS-train CLEMS-all

Fig. 16 Rank loss (↓) with the 95% confidence interval of CLEMS-train and CLEMS-all

in practice. One possible reason for the sufficiency is that the criteria of interest
are generally not complicated enough and thus do not need more dimensions to
preserve the cost information.

4.4 Comparing CLEMS with cost-sensitive algorithms

In this section, we compare CLEMS with two state-of-the-art cost-sensitive algo-
rithms, probabilistic classifier chain (PCC) (Dembczynski et al, 2010, 2011) and
condensed filter tree (CFT) (Li and Lin, 2014). Both CLEMS and CFT can handle
arbitrary criteria while PCC can handle only those criteria with efficient inference
rules. In addition, we also report the results of some baseline algorithms, such as
binary relevance (BR) (Tsoumakas and Katakis, 2007) and classifier chain (CC)
(Read et al, 2011). Similar to previous experiments, the internal predictors of all
algorithms are set as random forest (Breiman, 2001) implemented by scikit-learn
(Pedregosa et al, 2011) with the same parameter selection process.

Running Time. Figure 17 illustrates the average training, predicting, and total
running time when taking F1 score as the intended criterion for the six largest

Cost-Sensitive Label Embedding for Multi-Label Classification 17

medical enron scene yeast slashdot EUR-Lex(dc)

%
 o

f B
R

's
 ti

m
e

0

1000

2000

3000

4000
BR CC CLEMS CFT PCC

(a) average training time

medical enron scene yeast slashdot EUR-Lex(dc)

%
 o

f B
R

's
 ti

m
e

0

50

100

150
BR CC CLEMS CFT PCC

(b) average predicting time

medical enron scene yeast slashdot EUR-Lex(dc)

%
 o

f B
R

's
 ti

m
e

0

1000

2000

3000

4000
BR CC CLEMS CFT PCC

(c) average total running time

Fig. 17 Average running time when taking F1 score as cost function

datasets. The running time is normalized by the running time of BR. For training
time, CFT is the slowest, because it needs to iteratively estimate the importance
of each label and re-train internal predictors. CLEMS, which consumes time for
MDS calculations, is intuitively slower than baseline algorithms and PCC dur-
ing training, but still much faster than CFT. For prediction time, all algorithms,
including PCC (using inference calculation) and CLEMS (using nearest-neighbor
calculation) are similarly fast. The results suggest that for CSMLC, CLEMS is
superior to CFT and competitive to PCC for the overall efficiency.

Performance. We compare the performance of CLEMS and other algorithms across
different criteria. To demonstrate the full ability of CLEMS, in addition to F1
score, Accuracy score, and Rank loss, we further consider one additional criterion,
Composition loss = 1+5×Hamming loss−F1 score, as used by Li and Lin (2014).
We also consider three more datasets (arts, flags, and language-log) that comes
from other MLC works (Tsoumakas et al, 2011b; Read et al, 2016).

The results are shown by Table 2. Accuracy score and Composition loss for
PCC are left blank since there is no efficient inference rules. The first finding is
that cost-sensitive algorithms (CLEMS, PCC, and CFT) generally perform better
than non-cost-sensitive algorithms (BR and CC) across different criteria. This
validates the usefulness of cost-sensitivity for MLC algorithms.

For F1 score, Accuracy score, and Composition loss, CLEMS outperforms PCC
and CFT in most cases. The reason is that these criteria evaluate all the labels
jointly, and CLEMS can globally locate the hidden structure of labels to facilitate
more effective learning, while PCC and CFT are chain-based algorithms and only
locally discover the relation between labels. For Rank loss, PCC performs the
best in most cases. One possible reason is that Rank loss can be expressed as a

18 Kuan-Hao Huang, Hsuan-Tien Lin

Table 2 Performance across different criteria (mean ± ste (rank)) (best marked in bold)

Dataset Alg. F1 score (↑) Acc. score (↑) Rank loss (↓) Compo. loss (↓)

flags

BR 0.703 ± 0.006 (5) 0.591 ± 0.007 (3) 3.011 ± 0.056 (4) 1.583 ± 0.028 (3)
CC 0.704 ± 0.006 (4) 0.594 ± 0.008 (2) 2.998 ± 0.061 (3) 1.580 ± 0.028 (2)

CLEMS 0.731 ± 0.005 (1) 0.615 ± 0.008 (1) 2.930 ± 0.061 (2) 1.575 ± 0.026 (1)
CFT 0.692 ± 0.008 (3) 0.588 ± 0.009 (4) 3.075 ± 0.060 (5) 1.640 ± 0.033 (4)
PCC 0.706 ± 0.006 (2) – 2.857 ± 0.051 (1) –

CAL.

BR 0.338 ± 0.002 (4) 0.208 ± 0.001 (3) 1504.8 ± 7.98 (4) 1.366 ± 0.005 (1)
CC 0.328 ± 0.002 (5) 0.202 ± 0.002 (4) 1520.9 ± 9.04 (5) 1.371 ± 0.006 (2)

CLEMS 0.419 ± 0.002 (1) 0.273 ± 0.002 (1) 1247.9 ± 8.21 (3) 1.426 ± 0.004 (4)
CFT 0.371 ± 0.003 (3) 0.237 ± 0.002 (2) 1120.8 ± 8.46 (2) 1.378 ± 0.006 (3)
PCC 0.391 ± 0.002 (2) – 993.6 ± 4.75 (1) –

birds

BR 0.569 ± 0.007 (5) 0.551 ± 0.007 (4) 6.845 ± 0.139 (5) 0.656 ± 0.011 (4)
CC 0.570 ± 0.007 (4) 0.552 ± 0.007 (3) 6.825 ± 0.138 (4) 0.654 ± 0.011 (3)

CLEMS 0.677 ± 0.006 (1) 0.642 ± 0.007 (1) 4.886 ± 0.142 (2) 0.563 ± 0.012 (1)
CFT 0.601 ± 0.007 (3) 0.586 ± 0.007 (2) 4.908 ± 0.148 (3) 0.607 ± 0.012 (2)
PCC 0.636 ± 0.007 (2) – 3.660 ± 0.103 (1) –

emot.

BR 0.596 ± 0.005 (5) 0.523 ± 0.004 (4) 1.764 ± 0.022 (5) 1.352 ± 0.012 (4)
CC 0.615 ± 0.005 (4) 0.539 ± 0.004 (3) 1.715 ± 0.021 (4) 1.329 ± 0.013 (3)

CLEMS 0.676 ± 0.005 (1) 0.589 ± 0.006 (1) 1.484 ± 0.020 (2) 1.271 ± 0.013 (1)
CFT 0.640 ± 0.004 (3) 0.557 ± 0.004 (2) 1.563 ± 0.018 (3) 1.324 ± 0.016 (2)
PCC 0.643 ± 0.005 (2) – 1.467 ± 0.018 (1) –

medic.

BR 0.517 ± 0.006 (5) 0.496 ± 0.006 (4) 13.784 ± 0.175 (5) 0.562 ± 0.006 (4)
CC 0.533 ± 0.006 (4) 0.512 ± 0.006 (3) 13.328 ± 0.167 (4) 0.544 ± 0.007 (3)

CLEMS 0.814 ± 0.004 (1) 0.786 ± 0.004 (1) 5.170 ± 0.159 (2) 0.289 ± 0.005 (1)
CFT 0.635 ± 0.005 (2) 0.613 ± 0.005 (2) 5.811 ± 0.131 (3) 0.438 ± 0.007 (2)
PCC 0.573 ± 0.006 (3) – 4.234 ± 0.109 (1) –

lang.

BR 0.160 ± 0.004 (5) 0.159 ± 0.004 (4) 42.46 ± 0.271 (5) 0.919 ± 0.004 (4)
CC 0.161 ± 0.004 (4) 0.160 ± 0.004 (3) 42.42 ± 0.168 (4) 0.918 ± 0.004 (3)

CLEMS 0.375 ± 0.005 (1) 0.327 ± 0.005 (1) 31.03 ± 0.383 (2) 0.734 ± 0.007 (1)
CFT 0.168 ± 0.004 (3) 0.164 ± 0.004 (2) 34.16 ± 0.285 (3) 0.910 ± 0.005 (2)
PCC 0.247 ± 0.004 (2) – 19.11 ± 0.211 (1) –

enron

BR 0.543 ± 0.003 (4) 0.433 ± 0.003 (4) 44.83 ± 0.376 (5) 0.688 ± 0.004 (4)
CC 0.553 ± 0.003 (3) 0.443 ± 0.003 (3) 43.82 ± 0.429 (4) 0.678 ± 0.005 (3)

CLEMS 0.606 ± 0.003 (1) 0.491 ± 0.004 (1) 29.40 ± 0.300 (3) 0.659 ± 0.005 (1)
CFT 0.557 ± 0.004 (2) 0.448 ± 0.003 (2) 26.64 ± 0.311 (2) 0.677 ± 0.005 (2)
PCC 0.542 ± 0.003 (5) – 25.11 ± 0.263 (1) –

scene

BR 0.577 ± 0.003 (5) 0.568 ± 0.004 (4) 1.169 ± 0.010 (5) 0.866 ± 0.007 (4)
CC 0.598 ± 0.004 (4) 0.590 ± 0.004 (3) 1.122 ± 0.012 (4) 0.833 ± 0.009 (3)

CLEMS 0.770 ± 0.003 (1) 0.760 ± 0.004 (1) 0.672 ± 0.015 (2) 0.578 ± 0.009 (1)
CFT 0.703 ± 0.004 (3) 0.656 ± 0.004 (2) 0.723 ± 0.011 (3) 0.776 ± 0.009 (2)
PCC 0.745 ± 0.003 (2) – 0.645 ± 0.005 (1) –

yeast

BR 0.611 ± 0.002 (5) 0.503 ± 0.002 (4) 9.673 ± 0.048 (5) 1.345 ± 0.006 (3)
CC 0.612 ± 0.003 (4) 0.512 ± 0.003 (3) 9.530 ± 0.067 (4) 1.352 ± 0.009 (4)

CLEMS 0.671 ± 0.002 (1) 0.568 ± 0.002 (1) 8.302 ± 0.049 (1) 1.308 ± 0.006 (1)
CFT 0.649 ± 0.002 (2) 0.543 ± 0.002 (2) 8.566 ± 0.052 (3) 1.335 ± 0.007 (2)
PCC 0.614 ± 0.002 (3) – 8.469 ± 0.057 (2) –

slash.

BR 0.215 ± 0.002 (5) 0.208 ± 0.002 (4) 9.819 ± 0.030 (5) 1.007 ± 0.003 (4)
CC 0.230 ± 0.002 (4) 0.222 ± 0.002 (3) 9.662 ± 0.027 (4) 0.990 ± 0.003 (3)

CLEMS 0.568 ± 0.002 (1) 0.538 ± 0.002 (1) 4.986 ± 0.038 (2) 0.668 ± 0.003 (1)
CFT 0.429 ± 0.003 (3) 0.402 ± 0.003 (2) 5.677 ± 0.033 (3) 0.798 ± 0.003 (2)
PCC 0.503 ± 0.003 (2) – 4.472 ± 0.029 (1) –

arts

BR 0.167 ± 0.002 (5) 0.156 ± 0.002 (4) 17.221 ± 0.064 (5) 1.117 ± 0.003 (4)
CC 0.170 ± 0.002 (4) 0.160 ± 0.002 (3) 17.173 ± 0.064 (4) 1.113 ± 0.003 (3)

CLEMS 0.492 ± 0.002 (1) 0.451 ± 0.003 (1) 9.865 ± 0.079 (2) 0.815 ± 0.006 (1)
CFT 0.334 ± 0.002 (3) 0.281 ± 0.002 (2) 10.071 ± 0.060 (3) 1.001 ± 0.003 (2)
PCC 0.349 ± 0.002 (2) – 8.467 ± 0.047 (1) –

EUR.

BR 0.417 ± 0.002 (4) 0.411 ± 0.001 (3) 168.38 ± 0.63 (4) 0.593 ± 0.002 (3)
CC 0.416 ± 0.002 (5) 0.410 ± 0.001 (4) 168.57 ± 0.61 (5) 0.594 ± 0.002 (4)

CLEMS 0.670 ± 0.002 (1) 0.650 ± 0.002 (1) 89.52 ± 0.61 (2) 0.344 ± 0.002 (1)
CFT 0.456 ± 0.002 (3) 0.450 ± 0.002 (2) 129.53 ± 0.75 (3) 0.552 ± 0.002 (2)
PCC 0.483 ± 0.002 (2) – 43.28 ± 0.22 (1) –

special weighted Hamming loss that does not require globally locating the hidden
structure. Thus, chaining algorithms like PCC can still perform decently. Note,
however, that CLEMS is often the second best for Rank loss as well.

In summary, we identify two merits of CLEMS. The first is that while PCC
performs better on Rank loss, CLEMS is competitive for general cost-sensitivity
and can be coupled with arbitrary criteria. The second is that although CFT also
shoots for general cost-sensitivity, CLEMS outperforms CFT in most cases for all
criteria. The results make CLEMS a decent first-hand-choice for general CSMLC.

Performance on other criteria. So far, we have justified the benefits of CLEMS
for directly optimizing towards the criterion of interest. Next, we discuss about
whether CLEMS can be used to indirectly optimize other criteria of interest, par-
ticularly when the criterion cannot be meaningfully expressed as the input to

Cost-Sensitive Label Embedding for Multi-Label Classification 19

Table 3 Comparison for other criteria (best marked in bold)

Dataset Criterion BR CC
CLEMS CLEMS CLEMS PCC PCC
(F1) (Acc.) (Rank.) (F1) (Rank.)

emotions
Macro F1 (↑) 0.673 0.682 0.703 0.711 0.708 0.700 0.698
Micro F1 (↑) 0.672 0.708 0.705 0.717 0.708 0.679 0.700

Subset Acc. (↑) 0.282 0.317 0.248 0.337 0.262 0.277 0.248

medical
Macro F1 (↑) 0.345 0.364 0.395 0.424 0.408 0.361 0.188
Micro F1 (↑) 0.692 0.699 0.757 0.788 0.657 0.586 0.316

Subset Acc. (↑) 0.490 0.511 0.598 0.673 0.393 0.348 0.024

enron
Macro F1 (↑) 0.105 0.114 0.163 0.148 0.223 0.214 0.222
Micro F1 (↑) 0.453 0.477 0.559 0.531 0.501 0.511 0.420

Subset Acc. (↑) 0.033 0.036 0.073 0.073 0.007 0.029 0.000

scene
Macro F1 (↑) 0.693 0.682 0.766 0.783 0.766 0.748 0.698
Micro F1 (↑) 0.690 0.705 0.736 0.775 0.733 0.727 0.700

Subset Acc. (↑) 0.533 0.560 0.520 0.704 0.526 0.528 0.278

yeast
Macro F1 (↑) 0.450 0.458 0.496 0.492 0.506 0.464 0.474
Micro F1 (↑) 0.641 0.644 0.674 0.682 0.672 0.605 0.665

Subset. Acc. (↑) 0.164 0.220 0.150 0.214 0.127 0.121 0.132

Corel5k
Macro F1 (↑) 0.038 0.055 0.073 0.092 0.069 0.026 0.042
Micro F1 (↑) 0.072 0.071 0.264 0.272 0.255 0.197 0.091

Subset. Acc. (↑) 0.000 0.002 0.020 0.034 0.020 0.000 0.000

CLEMS. CLEMS follows the setting in Section 2 to accept example-based crite-
rion, which works on one label vector at a time. A more general type of criteria
considers multiple or all the label vectors at the same time, called label-based crite-
ria. Two representative label-based criteria are Micro F1 and Macro F1 (Madjarov
et al, 2012), and will be studied next. The former calculates the F1 score over all
the label components of testing examples, and the latter averages the per-label
F1 score across examples. To the best of our knowledge, there is no cost-sensitive
algorithms can handle arbitrary label-based criteria.

Another criterion that we will study is subset accuracy (Madjarov et al, 2012).
It can be expressed as an example-based criterion with two possible values: whether
the label vector is completely correct or not. The criterion is very strict and does
not come with trade-off on big or small prediction errors. Thus, it is generally not
meaningful to feed the criterion directly to CLEMS or other CSMLC algorithms.

Next, we demonstrate how CLEMS can indirectly optimize Micro/Macro F1
score and subset accuracy when fed with other criteria as inputs. We consider 6
pre-divided datasets (emotions, scene, yeast, medical, enron, and Corel5k) as used
by Madjarov et al (2012). We consider two baseline algorithms (BR and CC),
CLEMS with three different input criteria (F1 score, Accuracy score, Rank loss),
and PCC with two different criteria (F1 score and Rank loss) that come with
efficient inference rules. The results are shown in Table 3.

From the table, we observe that when selecting a proper criterion as the input
of CSMLC algorithms (CLEMS or PCC), they can readily perform better than
the baseline algorithms. The results justify the value of the CSMLC algorithms
beyond handling example-based criteria. In particular, the cost input to CSMLC
algorithms act as a tunable parameter towards optimizing other true criteria of
interests. We also observe that CLEMS, especially CLEMS-Acc, performs better
on the three criteria than PCC in the most datasets, which again validate the
usefulness of CLEMS. An interesting future direction is whether CLEMS can be
further extended to achieve cost-sensitivity for label-based criteria.

5 Conclusion

We propose a novel cost-sensitive label embedding algorithm called cost-sensitive
label embedding with multidimensional scaling (CLEMS). CLEMS successfully

20 Kuan-Hao Huang, Hsuan-Tien Lin

embeds the label information and cost information into an arbitrary-dimensional
hidden structure by the classic multidimensional scaling approach for manifold
learning, and handles asymmetric cost functions with our careful design of the
mirroring trick. With the embedding, CLEMS can make cost-sensitive predictions
efficiently and effectively by decoding to the nearest neighbor within a proper can-
didate set. The empirical results demonstrate that CLEMS is superior to state-
of-the-art label embedding algorithms across different cost functions. To the best
of our knowledge, CLEMS is the very first algorithm that achieves cost-sensitivity
within label embedding, and opens a promising future research direction of design-
ing cost-sensitive label embedding algorithms using manifold learning approaches.

Acknowledgements We thank the anonymous reviewers for valuable suggestions. This ma-
terial is based upon work supported by the Air Force Office of Scientific Research, Asian Office
of Aerospace Research and Development (AOARD) under award number FA2386-15-1-4012,
and by the Ministry of Science and Technology of Taiwan under number MOST 103-2221-E-
002-149-MY3.

References

Balasubramanian K, Lebanon G (2012) The landmark selection method for mul-
tiple output prediction. In: ICML

Barutçuoglu Z, Schapire RE, Troyanskaya OG (2006) Hierarchical multi-label pre-
diction of gene function. Bioinformatics 22(7):830–836

Bhatia K, Jain H, Kar P, Varma M, Jain P (2015) Sparse local embeddings for
extreme multi-label classification. In: NIPS, pp 730–738

Bi W, Kwok JT (2013) Efficient multi-label classification with many labels. In:
ICML, pp 405–413

Breiman L (2001) Random forests. Machine Learning 45(1):5–32
Carneiro G, Chan AB, Moreno PJ, Vasconcelos N (2007) Supervised learning

of semantic classes for image annotation and retrieval. IEEE Transactions on
Pattern Analysis and Machine Intelligence 29(3):394–410

Chen YN, Lin HT (2012) Feature-aware label space dimension reduction for multi-
label classification. In: NIPS, pp 1538–1546

De Leeuw J (1977) Applications of convex analysis to multidimensional scaling.
Recent Developments in Statistics pp 133–145

Dembczynski K, Cheng W, Hüllermeier E (2010) Bayes optimal multilabel classi-
fication via probabilistic classifier chains. In: ICML, pp 279–286

Dembczynski K, Waegeman W, Cheng W, Hüllermeier E (2011) An exact algo-
rithm for F-measure maximization. In: NIPS, pp 1404–1412

Ferng CS, Lin HT (2013) Multilabel classification using error-correcting codes of
hard or soft bits. IEEE Transactions on Neural Networks and Learning Systems
24(11):1888–1900

Hsu D, Kakade S, Langford J, Zhang T (2009) Multi-label prediction via com-
pressed sensing. In: NIPS, pp 772–780

Kapoor A, Viswanathan R, Jain P (2012) Multilabel classification using bayesian
compressed sensing. In: NIPS, pp 2654–2662

Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika 29(1):1–27

Cost-Sensitive Label Embedding for Multi-Label Classification 21

Li CL, Lin HT (2014) Condensed filter tree for cost-sensitive multi-label classifi-
cation. In: ICML, pp 423–431

Lin Z, Ding G, Hu M, Wang J (2014) Multi-label classification via feature-aware
implicit label space encoding. In: ICML, pp 325–333

Lo HY, Wang JC, Wang HM, Lin SD (2011) Cost-sensitive multi-label learn-
ing for audio tag annotation and retrieval. IEEE Transactions on Multimedia
13(3):518–529

Lo HY, Lin SD, Wang HM (2014) Generalized k-labelsets ensemble for multi-label
and cost-sensitive classification. IEEE Transactions on Knowledge and Data
Engineering 26(7):1679–1691

Madjarov G, Kocev D, Gjorgjevikj D, Dzeroski S (2012) An extensive experimental
comparison of methods for multi-label learning. Pattern Recognition 45(9):3084–
3104

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel
M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau
D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12:2825–2830

Read J, Pfahringer B, Holmes G, Frank E (2011) Classifier chains for multi-label
classification. Machine Learning 85(3):333–359

Read J, Reutemann P, Pfahringer B, Holmes G (2016) MEKA: A multi-
label/multi-target extension to Weka. Journal of Machine Learning Research
17(21):1–5

Schölkopf B, Smola A, Müller K (1998) Nonlinear component analysis as a kernel
eigenvalue problem. Neural computation 10(5):1299–1319

Sun L, Ji S, Ye J (2011) Canonical correlation analysis for multilabel classification:
A least-squares formulation, extensions, and analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence 33(1):194–200

Tai F, Lin HT (2012) Multilabel classification with principal label space transfor-
mation. Neural Computation 24(9):2508–2542

Trohidis K, Tsoumakas G, Kalliris G, Vlahavas IP (2008) Multi-label classification
of music into emotions. In: ISMIR, pp 325–330

Tsoumakas G, Katakis I (2007) Multi-label classification: An overview. Interna-
tional Journal of Data Warehousing and Mining 3(3):1–13

Tsoumakas G, Katakis I, Vlahavas IP (2010) Mining multi-label data. In: Data
Mining and Knowledge Discovery Handbook, pp 667–685

Tsoumakas G, Katakis I, Vlahavas IP (2011a) Random k-labelsets for multi-
label classification. IEEE Transactions on Knowledge and Data Engineering
23(7):1079–1089

Tsoumakas G, Spyromitros-Xioufis E, Vilcek J, Vlahavas IP (2011b) MULAN:
A java library for multi-label learning. Journal of Machine Learning Research
12:2411–2414

Weston J, Chapelle O, Vapnik V, Elisseeff A, Schölkopf B (2002) Kernel depen-
dency estimation. In: NIPS, pp 873–880

Yeh CK, Wu WC, Ko WJ, Wang YCF (2017) Learning deep latent space for
multi-label classification. In: AAAI, pp 2838–2844

Yu HF, Jain P, Kar P, Dhillon IS (2014) Large-scale multi-label learning with
missing labels. In: ICML, pp 593–601

Zhang Y, Schneider JG (2011) Multi-label output codes using canonical correlation
analysis. In: AISTATS, pp 873–882

	1 Introduction
	2 Cost-sensitive label embedding
	3 Proposed algorithm
	4 Experiments
	5 Conclusion

