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Abstract—We propose a novel method, Cyclic Classifier Chain
(CCC), for multilabel classification. CCC extends the classic
Classifier Chain (CC) method by cyclically training multiple
chains of labels. Three benefits immediately follow the cyclic
design. First, CCC resolves the critical issue of label ordering in
CC, and therefore reaches more stable performance. Second,
CCC matches the task of cost-sensitive multilabel classifica-
tion, an important problem for satisfying application needs.
The cyclic aspect of CCC allows estimating all labels during
training, and such estimates makes it possible to embed the cost
information into weights of labels. Experimental results justify
that cost-sensitive CCC can be superior to state-of-the-art cost-
sensitive multilabel classification methods. Third, CCC can be
easily coupled with gradient boosting to inherit the advantages
of ensemble learning. In particular, gradient boosted CCC
efficiently reaches promising performance for both linear and
non-linear base learners. The three benefits, stability, cost-
sensitivity and efficiency make CCC a competitive method for
real-world applications.

1. Introduction

Multilabel classification is an important machine-
learning problem that enjoys many real-world applications.
It has many applications in text categorization [20], [25],
image, video or sound tagging [4], [6], and bioinformatics
[3], [11]. Multilabel classification allows an example to
be associated with multiple classes simultaneously, which
makes it very different from multiclass classification, an-
other important problem. Multiclass classification allows
only one class per example.

There are two types of methods for solving the mul-
tilabel classification problem [21]: algorithm adaptation
and problem transformation. Algorithm adaptation meth-
ods modify or develop algorithms to specifically solve the
problem, such as MLkNN [26] and BP-MLL [15]. Problem
transformation methods transform the multilabel problem to
other simpler problems we are familiar with, and most of
them are binary classification or multiclass classification.
The main benefit of problem transformation methods is
to reuse the many mature and powerful tools to tackle

multilabel classification problems, such as support vector
machine, logistic regression, and decision tree. This paper
proposes a problem transformation method, so we illustrate
it more.

Arguably the simplest method in problem transforma-
tion is called “Binary Relevance” (BR) [22]. BR simply
transforms the multilabel classification problem to multiple
binary classification problems, one for the existence of each
class. The key benefit of BR is its efficiency. However,
BR is often criticized for ignoring the relations that may
exist among the labels. For example, if a table appears
in a picture, it is highly possible that a chair is also in
the same picture. BR cannot use such relations to improve
performance. Therefore, it is usually the baseline method.
Label powerset (LP) method is another simple idea [22]. It
views each label set as a class, so the problem is transformed
to be a 2K-classes multiclass classification, where K is the
number of labels. However, 2K is usually very big, and
many classes may not or seldom appear in the training data.
Therefore, training using LP is extremely hard in practice.
To solve the problems in BR and LP method, many methods
are proposed, such as Random k-Labelset (RAkEL) [24],
Classifier Chain [19], Conditional Principle Label Space
Transformation (CPLST) [7], etc.

Classifier Chain (CC) is one of the most popular methods
for multilabel classification because it is simple and can
capture some relations among the labels. Many studies are
trying to improve CC [8], [16], or use similar concepts to
develop new methods [14]. Our proposed method also use
the similar concept. CC is a method that transforms the prob-
lem into multiple binary classifications. We first determine
the label order, and then train a classifier for each label one
by one. Unlike in BR, when we train a classifier, CC can
use the previously trained labels as features. Therefore, it
can discover more relations of the labels. CC is usually as
fast as BR if we train it serially, because they both train K
classifiers. Though CC has more features for its classifiers,
we can assume that the number of features is much more
than the number of labels. Thus, the increasing number of
features does not affect the time complexity much. If the
assumption is not true, it is actually another problem known
as extreme multilabel classification [18]. We will not discuss



this problem in this study.
Though CC reaches promising results in many appli-

cations, there is a problem: the label order affect the per-
formance much. In addition, determining a good order is
extremely hard. Ensemble Classifier Chain (ECC) [19] is
one of the methods to reduce this problem. ECC builds
multiple CCs with different label order and use the ensemble
model of those CCs to predict. This paper proposes a novel
method, Cyclic Classifier Chain (CCC), to solve the label
ordering problem in another way. The root cause of the
label order problem is that the classifiers near the tail of the
chain get more information than the classifiers near the head
get. Some of the labels may highly depend on some other
labels, so it would be better if they are near the tail; some
of the labels can be easily predicted using only the original
features, so it would be better if they are near the head and
help to predict the succeeding labels. Therefore, CCC tries
to make every classifiers get all other labels during training.
This is done by training many CCs repeatedly. Beginning
at the second chain, we can get all other labels from the
previous chains.

There are many evaluation criteria for multilabel classi-
fication. Therefore, another popular research problem exists
for dealing with the evaluation criteria. We want to take
the evaluation criteria into account in the algorithms and
improve the results on those criteria. We call this problem
Cost-sensitive multilabel classification (CSMLC). The pre-
vious state-of-the-art CSMLC methods are all extensions
of CC. Probabilistic Classifier Chain (PCC) [8] is a cost-
sensitive method based on CC. If a CC use the classifiers
that can predict probability (e.g., logistic regression), we
can use a special inference rule during predicting, and the
inference rule can actually be Bayes optimal for any cost.
However, a general inference rule requires O(2K+1T ) time,
where T is the predicting time of each classifier. Therefore,
a general inference rule is not feasible for use in real-world
applications. For this reason, we must produce a special
inference algorithm for each cost to optimize it efficiently,
but it is extremely difficult to do that. Therefore, only the
inference algorithms for Hamming loss, rank loss, and F1
score are designed and can be used [8], [9], [10].

Our proposed method also has a cost-sensitive version,
and we do not need to design a special algorithm for each
cost. The user only need to define how to calculate the
cost given a label set and the ground truth of an example.
Another state-of-the-art method known as Condensed Filter
Tree (CFT) [14] can also achieve this. This method is also a
chain-like method because its predicting process is exactly
the same as in CC. It solves the cost-sensitive problem by
a bottom-up training process, which trains from the tail of
the chain to the head. With the bottom-up process, CFT can
embed the cost within the weight of each example during
training and decrease the cost. Though our proposed method
do not have a bottom-up training process, we also can get
the label information from all other labels, so we can use
the similar example weighting method and then minimize
the given cost.

In Section 2, we introduce CC and its ensemble version,

ECC, and some cost-sensitive chain-like methods such as
PCC and CFT. In Section 3, we illustrate our proposed
method, CCC, and then extend CCC to the cost-sensitive
and gradient-boosted versions. In Section 4, we use some
real-world dataset to verify the performance of the proposed
method, and compare with its variations and some related
methods.

2. Classifier Chain

A multilabel classification problem assumes that K la-
bels exist, and that the label set L = {1, 2, ...,K} is a finite
set that comprises those K labels. Each example has a label
set y ⊆ L. For convenience of mathematical operations, y
is usually converted to a binary vector y ∈ {0, 1}K . In this
study, we call this a label vector. When the i-th element of
y (i.e., y[i]) equals 1, it means li ∈ y. Otherwise, it means
li /∈ y.

The formal definition of the multilabel classifica-
tion problem is that when given training data D =
{(xn,yn)}Nn=1 (where xn denotes the numeric features of
the n-th example, yn is the label vector of the n-th example,
and N is the number of examples), we want to predict the
label vector y of a new example given its features x.

2.1. Classifier Chain

A Classifier Chain (CC) divides the multilabel classifi-
cation problem into multiple binary classification problems.
Each classifier in the chain predicts a corresponding label.
Thus, in this study we call it a single-label classifier. All
chain-like methods consist of multiple single-label classi-
fiers, and a CC has K single-label classifiers g1, g2, ..., gK ,
where gk can predict the label y[k].

To train the K single-label classifiers, we first must
determine the label order o = (o1, o2, ..., oK), where 1 ≤
oi ≤ K for all i = 1, 2, ...,K and oi 6= oj for all i 6= j. After
the label order is set, we can train the single-label classifiers
in the order of go1 , go2 , ..., goK . For convenience, we assume
that the labels have been sorted by the determined order such
that o = (1, 2, ...,K). Unlike in binary relevance, while
training gk, we can use the features (x, ŷ[1...k− 1]), where
ŷ is the predicted label vector. We refer to the y[1...k − 1]
labels as preceding labels because they are at the preceding
positions in the chain. The preceding label predictions can
be used because they can be predicted by the preceding
single-label classifiers during testing. These predictions are
used as additional features. Therefore, we refer to these as
label features in this study. With these label features, CC
can model the relations of the labels.

Algorithm 1 shows the details of the training process
of CC. Some studies use the ground truth y[k] as the
label feature instead of ŷ[k] during training. However, our
proposed method is logical only when we use ŷ[k] as the
label feature. Therefore, we use this as the standard version.
Algorithm 2 shows the details of the testing process.



Algorithm 1 Training Classifier Chain
1: gk is the single-label classifier for label k
2: D = {(xn,yn)}Nn=1 is the training data with N exam-

ples
3: xn is the features of the n-th example
4: yn ∈ {0, 1}K is the ground truth label vector of the
n-th example

5: ŷn ∈ {0, 1}K is the label predictions of the n-th
example

6: for each label k from 1 to K do
7: D′ ← {}
8: for each (xn,yn) ∈ D do
9: D′ ← D′ ∪ ((xn, ŷn[1...k − 1]),yn[k])

10: end for
11: train the classifier gk using training data D′
12: for each (xn,yn) ∈ D do
13: ŷn[k] ← use gk and feature (xn, ŷn[1...k − 1])

to predict
14: end for
15: end for
16: return g1, g2, ..., gK

Algorithm 2 Testing Classifier Chain
1: gk is the trained single-label classifier for label k
2: D = {xn}Nn=1 is the testing data with N examples
3: xn is the features of the n-th example
4: ŷn ∈ {0, 1}K is the label predictions of the n-th

example
5: for each label k from 1 to K do
6: for each xn ∈ D do
7: ŷn[k] ← use gk and feature (xn, ŷn[1...k − 1])

to predict
8: end for
9: end for

10: return ŷ1, ŷ2, ..., ŷN

2.2. Ensemble Classifier Chain

Choosing the optimal label order for the CC is not easy,
while it affects performance considerably. A method known
as the Ensemble Classifier Chain (ECC) is proposed to solve
this problem in the original study on CC [19]. The idea is to
train many Classifier Chains independently using different
label orders and different sampled training data. Both the
randomness of label orders and training data can provide
considerable diversity. Therefore, the ensemble framework
works well. This tells us that the label order has considerable
effect.

2.3. Probabilistic Classifier Chain

In real-world applications, different types of costs are
needed to evaluate performance more effectively. One spe-
cial type of cost, known as example-based cost, is often
used. Example-based cost is a cost that can be calculated
for each example. We only need to define a cost function

L(y, ŷ), where y is the ground truth label vector and ŷ is the
label prediction. Given the ground truth and the prediction
of an example, we can calculate its cost L(y, ŷ). Therefore,
the expected cost for all examples is 1

N

∑N
n=1 L(yn, ŷn).

For example, some commonly used costs are Hamming
loss Hamming(y, ŷ) = 1

K

∑K
k=1Jy[k] 6= ŷ[k]K, and the

negative F1 score F1(y, ŷ) = − 2‖y∩ŷ‖1
‖y‖1+‖ŷ‖1 . The goal of the

cost-sensitive multilabel classification (CSMLC) problem
for the example-based cost is to minimize the expected
cost. Other types of metrics such as micro-F1 and macro-F1
scores are difficult to optimize. The example-based cost is
effective in most cases. Therefore, in this study, we only
discuss example-based costs.

The Probability Classifier Chain (PCC) tries to solve
the cost-sensitive multilabel classification problem using the
Bayes optimal decisions [8]:

g(x) = argmin
ŷ

Ey|xL(y, ŷ). (1)

To calculate the expectation, the following probability must
be obtained:

P (y|x) = P (y[1]|x)P (y[2]|y[1],x)...P (y[K]|y[1...K−1],x).

The conditional probability P (y[k]|y[1...k − 1],x) can be
estimated by means of the k-th single-label classifier in
a normal CC. Note that the single-label classifier (e.g.,
logistic regression) must be able to estimate the probability.
Therefore, we only need to train a normal CC, and then
use the Bayes optimal decisions in (1) to infer the labels.
However, a general inference rule requires O(2K+1T ) time
to enumerate all possible y and its probability P (y|x),
where T is the predicting time of each single-label classifier.
Therefore, a general inference rule is not feasible for use in
real-world applications. For this reason, we require a special
inference algorithm for each cost to calculate (1) efficiently.
However, producing such an algorithm is extremely difficult.
Therefore, only the inference algorithm for Hamming loss,
rank loss, and F1 score is designed and can be used [8], [9],
[10].

2.4. Condensed Filter Tree

Condensed Filter Tree (CFT) [14] is a general CSMLC
method and can also minimize the example-based costs.
Unlike in PCC, it does not require a special inference rule.
Its predicting process is the same as in CC. Therefore, it
is also a chain-like method, and is efficient in predicting
regardless of the cost.

Without a special inference rule, the CFT requires a
special training process to minimize the cost. CFT trains
its single-label classifier from the tail of the chain to the
head. This bottom-up process repeats M times. Therefore,
we train M chains during the training process. Every time a
chain is trained, we use it to predict the labels and then save
it. Thus, when training a single-label classifier, we know the
preceding label predictions by the ground truth and the label
predictions from the previous chains. Because we have m



possible preceding labels when we train the m-th chain, m
examples will exist for each example in the original training
data, and they may have different label features and example
weights. If M is large enough, we can cover a sufficient
number of patterns of the preceding labels.

The benefit of the bottom-up process is that we not
only roughly know the preceding labels, but we also have
the succeeding classifiers. When training the k-th single-
label classifier in a chain, we can first assume that the k-
th label prediction ŷ[k] = 0, and then use this label and
the succeeding classifiers to predict the succeeding labels.
With these succeeding labels, the cost c0 for ŷ[k] = 0 can
be calculated for each example. Similarly, we can assume
that ŷ[k] = 1, and then obtain the cost c1 for ŷ[k] = 1.
With these two costs, we know that the ground truth for
this example should be argmin

i
ci, and the example weight

should be |c0− c1|. The example weight should be |c0− c1|
because if we wrongly predict this example, it will roughly
generate |c0 − c1| cost. This is known as a regret. CFT can
minimize the cost because it can estimate the regret when a
label is wrongly predicted. This enables us to train a single-
label classifier to minimize the regret for each label. In other
words, we can minimize the cost if we know all other labels
while training a single-label classifier.

However, this training process is extremely space- and
time-consuming. First, the training data grows linearly when
we have more chains because we must use the preceding
label predictions from the previous chains. Second, every
time we train a single-label classifier, we must predict the
succeeding labels twice for ŷ[k] = 0 and ŷ[k] = 1. In
Section 3.2, we discuss the time complexity and compare it
to our method.

3. Proposed Method

From CC and ECC [19], we learned that the label order
is critical, and ECC works well because the random label or-
der provides sufficient diversity. From CFT [14], we learned
that if we can know all other labels while training a single-
label classifier, we can embed the cost within the weight
of each example in order to decrease the cost. Inspired by
these studies, we propose a novel method that we call Cyclic
Classifier Chain (CCC). CCC avoids the aforementioned
problems while retaining many good properties from those
studies. Section 3.1 illustrates the basic concept behind CCC
that solves the label order problem. Section 3.2 describes
an approach to make CCC cost-sensitive that embeds the
cost as weight when other labels are known. In Section 3.3
and 3.4, we further improve the cost-sensitive version by
applying the concept of gradient boosting.

3.1. Cyclic Classifier Chain

The label order is critical in CC because if the position
of a single-label classifier is near the head, it will possess
fewer label features than those of the classifier near the tail.
Determining the label order is difficult because there are

K! possible orders. In addition, even if we can choose the
best order, the classifier near the head clearly loses some
information. A simple solution is to train an additional CC
after we train the original CC. A single-label classifiers in
the additional CC do not need to obtain all its label features
from the preceding classifiers. Instead, it can use the label
predictions from the previous CC. For example, while the
additional CC trains the single-label classifier for label k,
it uses the label predictions ŷ[k + 1...K] from the original
CC, and ŷ[1...k − 1] from the additional CC as features.
By contrast, the classic CC uses only its preceding label
predictions ŷ[1...k − 1] as features. Therefore, this method
enables us to use the succeeding label predictions ŷ[k +
1...K] while training a single-label classifier.

Using this additional CC, we can lower the effect of the
label order because all single-label classifiers have the same
number of features. However, the effect of the label order
remains because the label predictions from the first CC are
affected, and the label features in the additional CC are also
affected. Therefore, we add more CCs and also let them get
their succeeding label predictions from their previous CC.
The entire training process is similar to connecting the head
and tail of a CC to form a cycle and cyclically training
the single-label classifiers. Thus, we call this method a
Cyclic Classifier Chain. After we train many cycles, the
label predictions will converge and be sufficiently accurate
to generate stable and improved predictions regardless of
the label order.

Algorithm 3 Training Cyclic Classifier Chain
1: gc,k is the single-label classifier for label k in the c-th

cycle
2: D = {(xn,yn)}Nn=1 is the training data with N exam-

ples
3: xn is the features of the n-th example
4: yn ∈ {0, 1}K is the ground truth label vector of the
n-th example

5: ŷn ∈ {0, 1}K is the label predictions of the n-th
example

6: run Algorithm 1 and Algorithm 2 to get the initial
classifiers g1,1, g1,2, ..., g1,K and the initial predictions
ŷ1, ŷ2, ..., ŷN

7: for each cycle c from 2 to C do
8: for each label k from 1 to K do
9: D′ ← {}

10: for each (xn,yn) ∈ D do
11: D′ ← D′ ∪ ((xn, ŷn[1...k − 1], ŷn[k +

1...K]),yn[k])
12: end for
13: train gc,k using training data D′
14: for each (xn,yn) ∈ D do
15: ŷn[k]← use gc,k and feature (xn, ŷn[1...k−

1], ŷn[k + 1...K]) to predict
16: end for
17: end for
18: end for
19: return gc,k for c = 1, 2, ..., C and k = 1, 2, ...,K



Algorithm 4 Testing Cyclic Classifier Chain
1: gc,k is the single-label classifier for label k in the c-th

cycle
2: D = {xn}Nn=1 is the training data with N examples
3: xn is the features of the n-th example
4: ŷn ∈ {0, 1}K is the previous label prediction of the
n-th example

5: run Algorithm 2 with the classifiers g1,1, g1,2, ..., g1,K
and get the initial predictions ŷ1, ŷ2, ..., ŷN

6: for each cycle c from 2 to C do
7: for each label k from 1 to K do
8: for each xn ∈ D do
9: ŷn[k]← use gc,k and feature (xn, ŷn[1...k−

1], ŷn[k + 1...K]) to predict
10: end for
11: end for
12: end for
13: return ŷ1, ŷ2, ..., ŷN

Algorithm 3 shows the details of the training process.
This algorithm involves two stages. The first stage involves
training the initial classifiers g1,k, which is the same as that
for a classic CC. The second stage involves training C − 1
cycles of CCs. Algorithm 4 shows the details of the testing
process. It can be derived by simply removing the training
part of the single-label classifiers.

3.2. Cost-Sensitive Cyclic Classifier Chain

After the first cycle of the CC, the single-label classifiers
can use all other label predictions as features. Furthermore,
this additional information not only can be used as features,
but also can provide some information about the cost. In
Section 2.4, we describe the manner in which CFT can
optimize any given example-based cost. The main property
that makes it easily achieve this also appears in CCC. While
training a single-label classifier in a CFT, we can calculate
the cost of each class for every example, and simply use
the difference of the cost as the example weight. We can
thus minimize the provided cost. Similarly, this can also be
accomplished in CCC because we also know all other labels
while training a single-label classifier. We call this variation
of CCC the Cost-Sensitive Cyclic Classifier Chain (C4).

While training the single-label classifier for label k, we
use the preceding label predictions ŷ[1...k − 1] from the
current cycle, as well as the succeeding label predictions
ŷ[k+1...K] from the last cycle. Therefore, we can calculate
the cost of predicting label k as 0:

c0 = L(yn, (ŷn[1...k − 1], 0, ŷn[k + 1...K])),

and the cost of predicting label k as 1:

c1 = L(yn, (ŷn[1...k − 1], 1, ŷn[k + 1...K])),

where L is the cost function. As in CFT, we then use the
regret |c0 − c1| as the example weight to minimize the
expected cost.

Algorithm 5 Training Cost-Sensitive Cyclic Classifier
Chain

1: assign each example a weight by replacing the line 11
in Algorithm 3 with the following lines:

2: c0 = L(yn, (ŷn[1...k − 1], 0, ŷn[k + 1...K]))
3: c1 = L(yn, (ŷn[1...k − 1], 1, ŷn[k + 1...K]))
4: w ← |c0 − c1|
5: y ← argmin

i
ci

6: D′ ← D′ ∪ ((xn, ŷn[1...k − 1], ŷn[k + 1...K]), y, w)

Algorithm 5 shows the details of the training process. We
only need to calculate the example weight according to the
costs for each example, and then use this weight to train the
single-label classifiers in Algorithm 3. The testing process
is the same as the cost-insensitive version in Algorithm 4.

C4 operates in a reversed way comparing to CFT though
they are very similar in the concept of example weighting.
While C4 knows exactly the prediction of the preceding
labels, CFT only roughly knows it. By contrast, the former
only roughly knows the prediction of the succeeding labels,
whereas the latter knows it exactly. We divided the training
process into “rough prediction” and “exact prediction” to
determine the differences between them.

For the rough prediction, CFT hides all the label predic-
tions of the previous trees in the training data. Therefore,
it knows many possible predictions of the preceding labels.
However, this causes the training data to grow considerably
at the end of every round. If we train M rounds of CFT, the
number of training examples will grow to MN in the last
round, where N is the original number of training examples.
Therefore, the time complexity for training a CFT is

O
(
Ttree(N) + Ttree(2N) + ...+ Ttree(MN)

)
, (2)

where Ttree(·) is the training time for a round of CFT if
we consider only the number of examples as variable. This
complexity is actually extremely large (which we discuss
later). Therefore, M can only be extremely small (e.g., M =
8 in the experiments in [14]). CFT costs much to know
the preceding label predictions, while C4 simply knows its
succeeding label predictions from the previous round but do
not know any information about the succeeding classifiers
in this round.

For the exact prediction, C4 knows the exact predictions
of the preceding labels because this knowledge is inherent
in CC. However, CFT requires considerable time for this
because it must predict the succeeding labels every time
it calculates the example weights. If we assume that the
number of features is much greater than the number of
labels, the time complexity for training a round of CFT is
given by:

O
(
K · Ttrain(N ′)+

(Tpredict(N
′) + 2 · Tpredict(N ′) + ...+K · Tpredict(N ′))

)
= O

(
K · Ttrain(N ′) +K2 · Tpredict(N ′)

)
, (3)



where K is the number of labels, N ′ is the number of
examples in this round, and Ttrain(·) and Tpredict(·) are
the training and predicting time of a single-label classifier
respectively. The K2 in the complexity means that training
a CFT for many labels is extremely difficult.

We next combine the effect of these two time-consuming
processes. Assume that we use a single-label classifier with
Ttrain(N

′) = O(N2) and Tpredict(N ′) = O(N). The time
complexity for training a round (3) then becomes O(KN ′2+
K2N ′), and the time complexity for training a CFT (2)
becomes O(KM3N2 +K2M2N), while only

O
(
KC(Ttrain(N) + Tpredict(N))

)
= O(KCN2)

is used for a C4 with C cycles. If Ttrain(·) and Tpredict(·)
are greater than we assumed previously, the difference be-
tween the two complexity will be greater because M also
affects Ttrain(N ′) and Tpredict(N ′). Therefore, C4 is more
scalable than CFT in training.

3.3. Gradient Boosted C4

For some cost or score metrics such as F1 score and
accuracy, if most labels are predicted incorrectly, the ex-
ample weights will be extremely sparse. In other words,
most examples have the same cost regardless of whether
the single-label classifier predicts the label as being 0 or
1. Therefore, only some of the examples have non-zero
weights. This means a single-label classifier cannot learn
much when the predictions of other labels are not suffi-
ciently accurate. In addition, the results will not be stable
because the classifier only use a few examples to train in
each cycle. Therefore, we propose a stable method based
on gradient boosting to enable a single-label classifier to
cooperate with the classifiers for the same label in previous
cycles.

CCC is a model that iteratively trains multiple base
learners (i.e., single-label classifier). Therefore, using the
boosting technique is suitable. Gradient Tree Boosting is
a popular model in machine learning competitions and re-
cently has won several first place awards [1], [2]. Therefore,
we use the same idea proposed by Friedman [12], [13]. The
basic idea of a general Gradient Boosting Machine is to
train C base learners iteratively, and assign weight to each
of them. The model then obtains a real value prediction
given the feature x:

FC(x) = const+

C∑
c=1

γcgc(x),

where gi is the i-th base learner, and γi is the weight for
the i-th base learner. In our case, for the C4 with C cycles,
the k-th label prediction of the n-th example becomes

FC,k(xn) = constk +

C∑
c=1

γc,kgc,k(xn,c,k).

Note that x is changed to xn,i,k because we use different
label features for different labels and cycles. Because we

want to conduct binary classification for each label, we use
the following logistic function to transform the real value
prediction into a probability:

PC,k(y = 1|xn) =
eFC,k(xn)

1 + eFC,k(xn)
,

and we use the negative log-likelihood as the loss function:

L(yn[k], FC,k(xn)) = − logPC,k(y = yn[k]|xn)

= − log
eyn[k]FC,k(xn)

1 + eFC,k(xn)
.

Because we want to solve a cost-sensitive problem here, we
must calculate the weighted sum of the loss using:

N∑
n=1

wn,C,kL(yn[k], FC,k(xn))

= −
N∑
n=1

wn,C,k log
eyn[k]FC,k(xn)

1 + eFC,k(xn)
,

where wn,C,k is the example weight of the n-th example
in the C-th cycle for the k-th label. We can then formulate
the optimization problem. When we add a new base learner
gk,c for the k-th label in the c-th cycle, the new prediction
becomes:
Fc,k(x)

= Fc−1,k(x)+(
argmin
g∈H

N∑
n=1

wn,c,kL(yn[k], Fc−1,k(xn) + gc,k(xn,c,k))
)
(x).

A greedy approach [12] to solve the argmin is to use the
steepest descent. We first train a base learner to predict the
gradient:

gc,k : x→ ∇FL(y[k], Fc−1,k(x)), (4)

where

∇FL(y[k], Fc−1,k(x)) = y[k]− Pc−1,k(y = 1|x),

and then find a γ that minimizes the loss of Fc,k:

Fc,k(x) = Fc−1,k(x)− γc,kgc,k(xn,c,k)

γc,k = argmin
γc,k

N∑
n=1

L(yn[k], Fc,k(xn)).

= argmin
γc,k

N∑
n=1

L(yn[k], Fc−1,k(xn)− γc,kgc,k(xn,c,k)).

We estimate γc,k by a single Newton-Raphson step:

γc,k =

∑N
n=1 wn,c,k(yn[k]− pn)gc,k(xn,c,k)∑N
n=1 wn,c,kpn(1− pn)gc,k(xn,c,k)2

, (5)

where pn = Pc,k(y = 1|xn,c,k). We can iteratively train the
gc,k (4) and γc,k (5) from c = 1 to c = C. We should also
iterate over the labels in each cycle in the same manner as
described in Section 3.2. A basic Gradient Boosted C4 is



then built. A simple regularization strategy is proposed [12]
to scale the contribution of each base learner by a learning
rate ν such that a prediction of the c-th cycle becomes:

Fc,k(xn) = constk +

c∑
i=1

νγi,kgi,k(xn,i,k).

Finally, the constant constk can be learned by simply cal-
culating the log odds ratio

log

∑N
n=1 yn[k]∑N

n=1(1− yn[k]).

3.4. Gradient Tree Boosted C4

If Regression Tree [5] is used as the base learner, a
special modification can be used [12]. In Regression Tree,
each leaf has a predicted value. Because the number of
leaves is finite, we can actually train multiple γ for each leaf
to fit the loss. To calculate the γ for each leaf, we simply
use (5), and modify the summation to be over examples in
a leaf. This technique can speed up the training process.

4. Experiment

4.1. Convergence of Cyclic Classifier Chain and the
Effect of the Label Order

We first check the convergence of the cost-insensitive
Cyclic Classifier Chain (CCC) with a simple experiment.
With this experiment, we can also see whether the effect
of label order decreases. The dataset yeast is used in this
experiment. We randomly split the dataset into 50% training
data and 50% testing data, and then use the training data to
train the cost-insensitive CCC with 40 different label orders
while all other hyper-parameters are fixed. After training,
we evaluate the models on testing data using Hamming loss
and F1 score for each number of cycles, and calculate the
mean and standard deviation among different label orders.

Figure 1 and 2 are the results of Hamming loss and F1
score respectively. Note that when the number of cycles is
1, it is equivalent to the classic Classifier Chain (CC). We
can observe that the training performance gets significantly
better in the first few cycles, and then converges after about
5 cycles. The testing F1 score also has this property, but the
testing Hamming loss only decreases a little bit at the second
cycles, and then the model overfits on the training data. It
is not very surprising because the classic CC actually does
not have much improvement comparing to Binary Relevance
(BR). Therefore, the label features are not useful enough in
Hamming loss. Figure 3 is the standard deviation among
the 40 different label orders. We can see that the overall
trend is that the standard deviation is decreasing even on
the testing Hamming loss. The decreasing of the deviation
means that the effect of the label order decreases. Therefore,
we can say that the proposed CCC can help us deal with
the label ordering problem, and also get significantly better
performance in some evaluation metrics, e.g., F1 score.
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Figure 1. Hamming loss of the Cyclic Classifier Chain on yeast with
40 different label orders (the lower the better)
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Figure 2. F1 score of the cost-insensitive Cyclic Classifier Chain on yeast
with 40 different label orders (the higher the better)

4.2. Experiment Setup

In the following sections, we use more general experi-
ments to compare our proposed methods with other meth-
ods. The methods we are going to compare are the variations
of CCC and some previous state-of-the-art methods: Binary
Relevance (BR), CC, CCC, Cost-sensitive CCC (C4), Gra-
dient Boosted CCC and C4 (GBCCC and GBC4), Gradi-
ent Tree Boosted CCC and C4 (GTBCCC and GTBC4),
Probabilistic CC (PCC), and Condensed Filter Tree (CFT).
The single-label classifier for BR, CC, CCC, C4, and PCC
is logistic regression, and CFT uses linear Support Vector
Machine (SVM). The base learner is ridge regression for
GBCCC and GBC4, and regression tree for GTBCCC and
GTBC4. The gradient boosting variations are all modi-
fied from the GradientBoostingClassifier in the
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Figure 3. standard deviation of the cost-insensitive Cyclic Classifier Chain
on yeast with 40 different label orders

Python package Scikit-learn [17].
We test the methods on 7 real-world datasets,

emotions, yeast, scene, medical, enron, CAL500,
tmc2007-500, downloaded from MULAN [23]. For each
dataset, we randomly split it into 50% training data and 50%
testing data. This random split is performed 20 times, so we
have 20 different split for each dataset. We use the training
data of each split to train, and then use the corresponding
testing data to evaluate the methods.

The parameter selection is conducted using 3-fold cross
validation on the training data of each split. We only search
the C in logistic regression and SVM, the alpha in ridge
regression, the max_depth in regression tree, and the
number of cycles for the variations of CCC. The parameters
C, alpha and max_depth are the parameters in the
Scikit-learn package. We search the number of cycles in
the variations of CCC from 2 to 100. The best number of
cycles we got varies in different datasets, methods and cost
functions. Most of the time, the best number of cycles is
less than 50.

Table 1, 2 and 3 are the results of Hamming loss, F1
score and rank loss respectively, and the mean and standard
error of them are reported. To compare the cost-sensitive
methods with cost-insensitive methods, we also put some
cost-insensitive methods in Table 2 and 3. Note that CCC is
equivalent to C4 when we optimize Hamming loss, so Table
1 only report the results of CCC. We also perform the t-
test with 95% confidence level to determine whether our
methods win, tie, or lose versus other methods. Table 4, 5
and 6 compare C4, GBC4, GTBC4 with other methods
respectively.

4.3. Comparison between Cost-sensitive and
Cost-insensitive

Because all of the cost-insensitive methods are optimiz-
ing Hamming loss, so we simply compare their F1 score

and rank loss in this section. In Table 2 and Table 3, we
can observe that the cost-sensitive versions of the proposed
methods (C4, GBC4 and GTBC4) almost win in all sit-
uations versus their cost-insensitive versions. Only GBC4

and GTBC4 on medical have the results that the cost-
insensitive version outperform the cost-sensitive version in
F1 score. For other cost-insensitive methods, BR and CC,
our 3 cost-sensitive methods never lose. We can see that in
Table 4, 5 and 6. Therefore, the example weighting frame-
work for cost-sensitive multilabel classification (CSMLC)
works very well with our CCC methods.

4.4. Comparison among the variations of CCC

We first compare the Hamming loss of CC, C4, GBC4

and GTBC4. In Table 4, C4 outperforms CC on only two
dataset, and ties on other datasets. That is not very surprising
because the label features can only improve the Hamming
loss very little in the previous experience of CC. In Table 5,
GBC4 outperforms CC but is only slightly better than C4.
Therefore, it has a little improvement with the more stable
prediction. In Table 6, GTBC4 is significantly better than
other methods in four datasets, but a little worse in three
datasets. It is not surprising that GTBC4 wins because it
is highly non-linear. GTBC4 easily overfits on medical,
enron, and CAL500, so maybe it is not suitable for some
datasets. Actually, it is not fair to compare GTBC4 with
others. We put it here only to show that the C4 can be
easily extended to a highly non-linear version.

In F1 score and rank loss, from Table 5, GBC4 out-
performs C4 much. The stability of the prediction is more
important in F1 because when one label changes, it may
affect much in F1 score. If we rely much on the unstable
labels, the risk of overfitting will be increased because we
will not know when the label predictions are correct and
can be relied on. GBC4 solves this issue by not changing
the label predictions much in a few cycles, so we at least
know that one label has a high probability to be correct in
some ranges of cycles.

4.5. Comparison with CFT and PCC

From Table 4, we can observe that C4 outperforms PCC.
It wins on ten datasets, and loses on only seven datasets. C4

has similar results with CFT. It wins on seven datasets, and
loses on nine datasets. Therefore, C4 is at least competitive
with PCC and CFT. In Table 5, GBC4 outperforms PCC
very much and outperforms CFT a little. The reason why
the number of wins in GBC4 versus CFT does not increase
is that GBC4 is usually better than C4 a little bit, but
the cases C4 loses versus CFT are big losses. Thus, the
improvement of GBC4 can only turn four losses into ties.
Generally, our proposed methods outperforms PCC much,
and are competitive with CFT, while our training time is
much less than CFT because of the reasons we discussed in
Section 3.2.



TABLE 1. THE RESULTS OF HAMMING LOSS (THE LOWER THE BETTER)

emotions yeast scene medical enron CAL500 tmc2007-500

BR .2054± .0013 .2039± .0006 .1011± .0005 .0108± .0001 .0467± .0001 .1370± .0003 .0581± .0001
CC .2084± .0016 .2035± .0006 .0964± .0007 .0107± .0001 .0467± .0001 .1373± .0004 .0579± .0001
CCC .2046± .0019 .2033± .0006 .0931± .0007 .0104± .0001 .0467± .0002 .1375± .0003 .0576± .0001
GBCCC .2027± .0019 .2024± .0008 .0910± .0006 .0102± .0002 .0471± .0002 .1373± .0004 .0573± .0001
GTBCCC .1978± .0020 .1991± .0007 .0825± .0007 .0115± .0002 .0480± .0002 .1410± .0004 .0522± .0002
CFT .2138± .0014 .2013± .0005 .1004± .0005 .0102± .0002 .0467± .0002 .1368± .0003 .0572± .0000
PCC .2297± .0017 .2006± .0005 .0962± .0005 .0110± .0002 .0462± .0002 .1370± .0003 .0576± .0000

TABLE 2. THE RESULTS OF F1 SCORE (THE HIGHER THE BETTER)

emotions yeast scene medical enron CAL500 tmc2007-500

BR .586± .004 .602± .001 .617± .002 .740± .004 .530± .002 .358± .001 .677± .001
CC .595± .004 .604± .002 .678± .002 .752± .003 .540± .001 .351± .002 .680± .001
CCC .629± .005 .606± .002 .719± .002 .768± .003 .551± .002 .357± .002 .686± .001
C4 .653± .003 .643± .001 .735± .002 .778± .003 .578± .002 .476± .001 .716± .000
GBCCC .635± .003 .609± .002 .726± .003 .800± .003 .545± .001 .354± .002 .687± .001
GBC4 .662± .003 .647± .001 .741± .002 .752± .019 .582± .002 .479± .001 .717± .000
GTBCCC .635± .004 .607± .002 .730± .003 .781± .004 .569± .002 .343± .002 .719± .001
GTBC4 .641± .004 .647± .002 .753± .002 .747± .013 .587± .002 .454± .001 .726± .001
CFT .637± .003 .649± .001 .717± .002 .796± .002 .598± .002 .473± .001 .714± .000
PCC .639± .003 .638± .001 .735± .002 .817± .002 .574± .001 .460± .001 .714± .000

TABLE 3. THE RESULTS OF RANK LOSS (THE LOWER THE BETTER)

dataset emotions yeast scene medical enron CAL500 tmc2007-500
model

BR 1.865± .015 9.918± .041 1.064± .006 7.511± .122 44.837± .283 1453.216± 4.561 7.735± .019
CC 1.877± .019 9.853± .044 .978± .006 7.317± .116 44.275± .262 1457.082± 5.120 7.700± .018
CCC 1.731± .022 9.813± .047 .889± .007 6.941± .103 43.361± .271 1445.233± 5.090 7.629± .019
C4 1.618± .017 8.913± .027 .716± .005 3.914± .087 25.637± .161 968.037± 2.373 3.927± .007
GBCCC 1.724± .018 9.734± .056 .882± .007 5.425± .095 43.325± .249 1458.651± 4.757 7.721± .016
GBC4 1.595± .020 8.807± .034 .686± .005 3.851± .077 25.530± .151 965.783± 3.449 3.903± .008
GTBCCC 1.691± .019 9.675± .040 .799± .008 5.392± .122 41.056± .250 1510.553± 3.913 6.872± .021
GTBC4 1.605± .021 8.692± .041 .677± .006 3.344± .095 26.412± .201 1021.947± 4.145 3.945± .009
CFT 1.632± .015 8.747± .019 .739± .004 3.602± .072 24.907± .099 963.130± 1.738 3.894± .006
PCC 1.763± .016 8.753± .022 .696± .004 2.942± .052 24.379± .088 967.930± 1.987 3.952± .005

TABLE 4. C4 VERSUS OTHER METHODS USING t-TEST WITH 95%
CONFIDENCE LEVEL (#WIN/#TIE/#LOSS)

BR CC CFT PCC

Hamming 3/4/0 2/5/0 2/3/2 3/2/2
F1 score 7/0/0 7/0/0 4/0/3 5/1/1
Rank loss 7/0/0 7/0/0 1/2/4 2/1/4

overall 17/4/0 16/5/0 7/5/9 10/4/7

TABLE 5. GBC4 VERSUS OTHER METHODS USING t-TEST WITH 95%
CONFIDENCE LEVEL (#WIN/#TIE/#LOSS)

BR CC C4 CFT PCC

Hamming 3/3/1 4/2/1 2/4/1 2/4/1 4/1/2
F1 score 6/1/0 6/1/0 5/2/0 4/1/2 6/0/1
Rank loss 7/0/0 7/0/0 3/4/0 1/4/2 2/3/2

overall 16/4/1 17/3/1 10/10/1 7/9/5 12/4/5

TABLE 6. GTBC4 VERSUS OTHER METHODS USING t-TEST WITH 95%
CONFIDENCE LEVEL (#WIN/#TIE/#LOSS)

BR CC C4 GBC4 CFT PCC

Hamming 4/0/3 4/0/3 4/0/3 4/0/3 4/0/3 4/0/3
F1 score 6/1/0 6/1/0 4/0/3 3/2/2 2/2/3 4/1/2
Rank loss 7/0/0 7/0/0 3/2/2 2/2/3 2/2/3 2/2/3

overall 17/1/3 17/1/3 11/2/8 9/4/8 8/4/9 10/3/8

5. Conclusions

This paper proposes a novel method, Cyclic Classifier
Chain, for multilabel classification based on the concept
of Classifier Chain. It tries to solve the label ordering
problem in Classifier Chain, and is extended to deal with
cost-sensitive multilabel classification. Similar to Condensed
Filter Tree, it can also optimize any given example-based
cost. Its performance is better than Probabilistic Classifier



Chain, and is competitive with Condensed Filter Tree, while
we have shown that its training time complexity is much
smaller than Condensed Filter Tree. To improve the stability
of the prediction, we further propose Gradient Boosted
Cyclic Classifier Chain, and it slightly improves Cyclic
Classifier Chain. It is extremely easy to add the gradient
boosting concept to our method, so the training process is
also efficient. Because Gradient Boosted Cyclic Classifier
Chain can be trained efficiently, we further replace the base
learner with regression tree, and make it be similar to the
popular Gradient Tree Boosting method. The regression tree
is non-linear, so the Gradient Tree Boosted Cyclic Classifier
Chain becomes a non-linear method, and can outperform
very much versus other linear methods on some datasets.
This means our method can also be easily extended to a
non-linear version to significantly improve the performance,
and can be trained efficiently.

The difference between Cyclic Classifier Chain and
Condensed Filter Tree is that they use different methods
to estimate all other labels during training a single-label
classifier. The success of Cyclic Classifier Chain means that
we can try any methods to estimate other labels, and then
use them to optimize any example-based costs. Therefore,
this study also gives us a direction of future research on the
general cost-sensitive multilabel classification.
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