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Abstract Active learning is an important machine learning setup for reducing the
labelling effort of humans. Although most existing works are based on a simple
assumption that each labelling query has the same annotation cost, the assump-
tion may not be realistic. That is, the annotation costs may actually vary between
data instances. In addition, the costs may be unknown before making the query.
Traditional active learning algorithms cannot deal with such a realistic scenario.
In this work, we study annotation-cost-sensitive active learning algorithms, which
need to estimate the utility and cost of each query simultaneously. We propose
a novel algorithm, the cost-sensitive tree sampling(CSTS) algorithm, that con-
ducts the two estimation tasks together and solve it with a tree-structured model
motivated from hierarchical sampling, a famous algorithm for traditional active
learning. Extensive experimental results using datasets with simulated and true
annotation costs validate that the proposed method is generally superior to other
annotation cost-sensitive algorithms.

Keywords annotation cost-sensitive · active learning · clustering · decision tree

1 Introduction

In many machine learning scenarios, vast quantities of unlabelled instances can be
easily acquired, yet high-quality labels are costly to obtain. For example, in fields
such as medicine (Liu (2004)) or biology (King et al (2004)), a massive number of
experiments and analyses are needed to label a single instance, whereas collecting
samples is a relatively easy task. Active learning is a machine learning setup that
allows the machines to “ask questions” to the labelling oracle strategically (Settles
(2010)) to reduce the labelling cost. In particular, given a budget of the labelling
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cost, active learning algorithms aim to create a set of labelled data with a sequence
of labelling queries (questions) so that the labelled set carries sufficient information
to train an accurate learning model.

Active learning algorithms generally work by measuring the utility of each un-
labelled instance for the learning model. Uncertainty sampling algorithms, which
query the instances that are the most uncertain to the learning model, are ar-
guably the most fundamental family of active learning algorithms (Lewis and Gale
(1994); Tong and Koller (2001); Holub et al (2008)). That is, the uncertainty of
each instance is taken as a measure of its utility within uncertainty sampling al-
gorithms. Another important family is representative sampling algorithms, which
take the uncertainty and representativeness of each instance as the utility mea-
sure (Kang et al (2004); Huang et al (2010); Xu et al (2003); Dasgupta and Hsu
(2008)). The representativeness is often calculated on basis of clustering of the
unlabelled instances. As a concrete example of representative sampling, the hi-
erarchical sampling algorithm forms clusters by hierarchical clustering and then
queries the instances within uncertain clusters (Dasgupta and Hsu (2008)).

For the algorithms introduced above, and actually for most existing active
learning algorithms, it is assumed that the labelling cost of each query is uniform.
That is, the costs for the oracle to label every instance are exactly the same.
Nevertheless, this assumption might not be true in real-world scenarios. For an
article classification problem, the labelling cost could be the time spent by an oracle
(usually a human annotator) while deciding the label, which depends on the length
of the text and the complexity of the language and can differ from article to article.
Nonuniform costs can deteriorate existing active learning algorithms. For instance,
articles that are confusing to the annotator may have higher labelling costs, but
uncertainty sampling may suggest querying them. Then, with a fixed budget of
the labelling cost, uncertainty sampling can only query a few instances, leading
to a possibly less-accurate model. It is thus important to design active learning
algorithms that are annotation-cost-sensitive (or labelling-cost-sensitive) and will
be the main focus of this work. For simplicity, we will use the term cost-sensitive
active learning to describe our focus, while noting that it should not be confused
with other works that study prediction-cost-sensitive active learning (Huang and
Lin (2016)).

There are some variations in the setup of cost-sensitive active learning. In
Margineantu (2005), the labelling costs for all data instances are assumed to be
known before querying, whereas in Settles et al (2008), the cost of a data instance
can only be acquired after querying its label. We focus on the latter setup, which
closely matches the real-world scenario of human annotation. In other words, in
each query of our setup, both the cost and label of the queried instance are re-
vealed, while others’ costs and labels remain unknown. Existing works (Haertel
et al (2008); Tomanek and Hahn (2010)) thus need to estimate both the utility
and cost of each instance at the same time in the setup and choose the instances
with a high utility and low cost.

In this paper, we improve the joint estimation of the utility and cost for cost-
sensitive active learning with a tree-structured model. The model is inspired by
hierarchical sampling (Dasgupta and Hsu (2008)), which also forms a tree with
each internal node representing a cluster of instances. The key idea behind hier-
archical sampling is that instances within the same cluster are likely to share the
same label (Seeger (2000); Chapelle et al (2003)). We extend the idea by assuming
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a smooth cost function, so that the cost of an instance should be similar with its
neighbors’.On the basis of the extended idea, we propose the cost-sensitive tree
sampling (CSTS) algorithm for cost-sensitive active learning, in which both the
utilities and costs are estimated in the tree-structured clusters constructed by a
revised decision tree algorithm. In contrast to the hierarchical sampling algorithm,
CSTS builds the clusters in a top-down manner to better use the label information.
CSTS achieves cost-sensitivity by including cost estimation in its procedure and
querying on the basis of a carefully designed criterion that mixes both the utility
and cost. Extensive experiments using real-world datasets with simulated costs
demonstrate that CSTS can usually provide superior results in comparison with
existing cost-sensitive active learning algorithms. Furthermore, for a real-world
benchmark dataset with true annotation costs, CSTS is stably superior to existing
algorithms. The results justify the validity of the proposed CSTS algorithms.

The remainder of this paper is organized as follows. Section 2 summarizes the
related works. In Section 3 we introduce the background of CSTS in detail and
present the algorithms. Experiment results are discussed in Section 4. Finally,
Section 5 concludes the paper.

2 Related work

There are two categories of active learning: stream-based and pool-based. Unla-
belled data instances can be sampled from the actual distribution with low costs
under stream-based active learning; in the mean time, the active learning algo-
rithm should be able to decide immediately whether to query the label of a newly
sampled data instance or not (Cohn et al (1994)). On the other hand, pool-based
active learning (Settles (2010)) assumes that there exists a pool of available un-
labelled data instances, and the active learning algorithm can query the label of
any data instance inside the pool until the cost of total queries exceeds the bud-
get. In general, pool-based learning is a more realistic setup regarding real-world
problems, which is also the category we focus on.

Different querying strategies have been proposed to solve pool-based active
learning problems. They mostly follow several major approaches, such as uncer-
tainty sampling, representative sampling, query-by-committee, information theo-
retic, etc. Regarding the connection with cost-sensitive active learning, we focus
on two popular approaches: uncertainty sampling and representative sampling

– Uncertainty Sampling. The idea of uncertainty sampling (Lewis and Gale
(1994)) is to query the label for the data instance with the highest uncertainty
in the classifier. For instance, Tong and Koller (2001) proposes querying of the
data instance that is the closest to the decision boundary in a support vector
machine (SVM); Holub et al (2008) selects data instances for querying on
the basis of the entropy of the label probabilities from a probabilistic classifier.
These algorithms assume that the trained classifier is already sufficiently good;
therefore only fine-tuning around the decision boundary is needed.

– Representative Sampling. In representative sampling, algorithms select
data instances considering both representativeness and informativeness by seek-
ing a way to model the data distribution. Among them, the clustering structure
of the data instances is widely used. In Kang et al (2004), the data instances
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that are closest to the centroid of each cluster are queried before other se-
lection criteria are used; Huang et al (2010) measures the representativeness
of each data instance from both the cluster structure of unlabelled data in-
stances and the class assignments of labelled data, and Xu et al (2003) clusters
those data instances close to the decision boundary in an SVM, and queries
the labels of data instances near the center of each cluster; In Nguyen and
Smeulders (2004), clustering is used to estimate the label probability for unla-
belled data instances, which is the key component in measuring the utilities of
each data instance. The approaches in this category argue that by training on
the representative data instances, the classifier should be able to reach similar
performance as training on the complete dataset.

In terms of the labelling cost, traditional active learning assumes a uniform
cost for labelling data instances, which is argued to be an unrealistic assumption
in real-world active learning problems. Therefore, annotation cost-sensitive active
learning is proposed to consider the real human annotation costs in the active
learning algorithms.

In the paper, we focus on the general multi-class cost-sensitive active learning
problems with single labeler and the costs remaining unknown before querying.
There are various works targeting on annotation cost sensitive active learning with
different problem settings, such as the querying target (Greiner et al (2002)), the
number of the labelers (Donmez and Carbonell (2008); Huang et al (2017); Guillory
and Bilmes (2009)), the availability of annotation costs (Cuong and Xu (2016);
Golovin and Krause (2011)), the targeting classification problem (Yan and Huang
(2018)) and the applied data domain (Vijayanarasimhan and Grauman (2011);
Liu et al (2009)). However, most of these works could not be intuitively applied
to our problem setting due to the fundamental difference.

To discuss the cost-sensitive active learning with unknown costs, the question
that ought to be answered first is whether the human annotation costs can be
accurately estimated. In Arora et al (2009) and Ringger et al (2007), different
unsupervised models are proposed to estimate the annotation costs for corpus
datasets, while Settles et al (2008) further shows that the annotation costs can be
accurately estimated by using a supervised learning model.

In solving the cost-sensitive active learning problems, Tomanek and Hahn
(2010) discusses the role of cost and the benefit (utility) in cost-sensitive active
learning and proposed a querying strategy, return on investment, which combines
the utility and cost in a measure. Haertel et al (2008) compares three different
querying strategies in cost-sensitive learning and demonstrates their performance
with real-world datasets. However, the estimations of the utility and cost are usu-
ally taken as two independent tasks in cost-sensitive active learning, and the con-
nection between them is lacking in discussion, leading to unreasonable settings in
existing approaches. We will discuss this issue in the following section.

3 The Proposed Approach

The Summary of CSTS are presented in algorithm 1. There are two major stages
in CSTS:

– Query stage: Pick up the querying instance in the tree structure, which requires
the selection of leaf and the selection of the querying instance within the leaf.
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Algorithm 1 The Summary of Cost-Sensitive Tree Sampling.

1: Initialize a tree structure with only a root node;
2: Assign all data instance to the root node;
3: while total costs < Costbudget do
4: //Query stage
5: Leaf selection: Select a leaf node v from the tree for querying;
6: Instance selection: Select an unlabelled instance z in v to do the query;
7: Query z’s label and cost;
8: //Tree structure update stage
9: Update the performance metric in the tree with z’s label and cost

10: Tree reconstruction: find all nodes whose split needs renewal.
11: Tree expansion: find all leaves that ready to be split.
12: Update the tree structure by splitting the found nodes and leaves.
13: end while;
14: Label assigning Construct the labelled dataset for base learner

Fig. 1: 1-D sample dataset with two classes(strip and solid). Assume data are
distributed uniformly within each box.

– Tree structure update stage: Update the tree structure on the basis of the newly
acquired label and cost, including renewing old split and splitting leaf nodes
in the tree.

After the total costs meet the budget, a labelled dataset will be built by label
assigning trick in order to train the base learner.

We shall discuss the detail of each stage of CSTS in this section. First, the
motivation of the design of CSTS and the advantages in using tree structure to
solve cost-sensitive active learning problems are demonstrated. Then, the cost-
sensitive tree sampling algorithm (CSTS) is proposed with the construction of tree-
structured clusters, the query strategies and the label assigning trick explained in
detail.

3.1 Background

The querying strategies in cost-sensitive active learning have two important com-
ponents:

– Utilities: the benefit that the classification task can gain for knowing the label
of each data instance.

– Costs: the prices we need to pay to acquire the labels of data instances.

The uncertainty is a popular criterion for estimating the utilities in cost-
sensitive active learning algorithms (Haertel et al (2008); Settles et al (2008)),
yet a well-known drawback of the uncertainty sampling is the sample bias prob-
lem. The uncertainty measurement is highly related to the decision boundary in
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the trained classifier. Consider the case in figure 1. If the initial boundary in the
1-D dataset is in the center group, the uncertainty sampling will be trapped in the
decision boundary ω with 95% accuracy. However, the optimal boundary should
be ω∗, which has 97.5% accuracy. On the basis of the example, if the data have
multiple possible decision boundaries, the selected instances will be trapped in
one of the boundaries on the basis of the initial queried data instances, resulting
in the inconsistency of the algorithm or return a suboptimal solution (Dasgupta
(2011)). Aside from the model inconsistency issue, the sampling bias problem will
also affect the cost estimate. In Settles et al (2008), it was shown that a well-tuned
regressor is capable of accurately estimating the annotation costs under 10-fold-
cross-validation. However, the cross-validation setting in the experiments implies
the demand on the unbiasedness of the training data. Therefore, when using bias
samples from uncertainty-based cost-sensitive active learning algorithms to train
the cost-estimating regressor, it is unlikely to yield promising result.

In the estimation of costs, unsupervised models are widely used in cost-sensitive
active learning. For instance, Haertel et al (2008) uses the hourly cost model (Ring-
ger et al (2007)) to estimate the annotation costs of corpus datasets before applying
active learning algorithms. In these approaches, the costs are estimated without
knowledge of the labels. However, the labels may play an importance role in accu-
rately estimating the costs. Consider the case in which doctors attempt to diagnose
a disease in a group of patients; doctors will likely need more time to arrive at a
diagnosis for patients without obvious symptoms. In the example, the annotation
costs are highly related to the decision boundary in the label prediction; therefore
they cannot be accurately estimated without considering the information from the
labels. Furthermore, these unsupervised models can be only applied to restricted
data types, as the hourly cost model only works for corpus datasets. Owing to
the issue, cost-sensitive active learning algorithms that rely on unsupervised cost-
estimation models are constrained to limited applications, losing their versatility.

To avoid the problems mentioned above, our proposed method aims to esti-
mate the cost and utility jointly with the tree-structure clusters. There are many
advantages in using tree-structured clusters for active learning:

– Solve the model inconsistency issue in the sample bias problem (Dasgupta and
Hsu (2008)). Moreover, the sampling bias will no longer affect the cost esti-
mate as mentioned above, owing to the independence between clusters and the
uniform estimation of all data instances within the same cluster.

– Give feasibility when modeling the label and cost distributions. The tree struc-
ture allows us to reconstruct an impure cluster without reclustering and affect-
ing other clusters.

– Mimic the behavior of uncertainty sampling. During the exploration of tree-
structured clusters, the clusters close to the decision boundary will suffer from
a low label purity; hence, more labels are required to build smaller clusters
when replacing them in order to better model the label distribution. As a
consequence, the active learning algorithm will favor querying data instances
closed to the boundary, which follows the querying strategy in uncertainty
sampling.

We then extend the usage of tree-structured clusters to the cost-sensitive active
learning. On the basis of the assumption of same label for data in the same cluster
and the similar cost with neighbors, we could further argue that with a set of fine-
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grained clusters, data instances in the same cluster should share the same label
and similar costs. By estimating the utility with the label uncertainty and using
the average known costs as the estimated cost, we could gradually find the major
label in each cluster as the amount of queried data increases, and further label the
entire dataset if the label purity permits.

In real world datasets, the assumption of data instances having similar costs
with neighbors may not perfectly hold. In the case that datasets come with drifts
between the costs of certain pairs of neighboring instances, our tree-structured
clusters shall remain effective as the drift can be handled by splitting these pairs
into different nodes. However, if the dataset completely break the assumption, i.e.,
the costs in the dataset are no longer continuous, then the costs prediction becomes
an unsolvable problem for all approaches if no further information provided.

The practicality of the main assumption of clustering-based active learning
algorithms, data instances belong to the same cluster are likely to share the same
label, remains a problem. Since clustering algorithms are unsupervised approaches,
label information is assume unknown or ignored in the algorithms. Therefore,
there is no guarantee on the label purity in clusters, making the assumption in
clustering-based active learning algorithms questionable, especially on the real
world datasets. This is also a seriously problem preventing clustering-based active
learning algorithms from practical usage.

Dasgupta and Hsu (2008) proposed an innovation approach to find out high
purity clusters. To solve a traditional pool-based active learning problem, they
start by utilizing the hierarchical clustering algorithm to model data instances
into tree-structured clusters. An active learning strategy is then proposed to dis-
cover and exploit informative pruning of the cluster tree. The work mainly focus
on solving the model inconsistency issue in the sample bias problem. On the other
hand, the hierarchical clustering structure guarantee the existence of pure label
clusters within the tree structure. However, the algorithm still requires the exis-
tence of high purity clusters in the top layers of hierarchical structure, leading
to poor performances in real world datasets that fail to meet the requirement.
Nevertheless, it still reduces the impractical assumption problem, and gives an
inspiration on our proposed method.

While tree-structured clusters is built in advance under a bottom-up hierarchi-
cal clustering approach in Dasgupta and Hsu (2008), it is hard to integrate label
and cost information within the cluster structure. Therefore, we design a revised
decision tree algorithm which can build the tree-structured clusters in a top-down
manner during the query stage. The top-down building approach allows us to in-
tegrate known cost and label information, which can be regarded as a supervised
approach, leading to a better guarantee on label purity and cost similarity than
other unsupervised approaches. Combining with a designed query strategy, the
cost-sensitive tree sampling (CSTS) is then proposed to solve the cost-sensitive ac-
tive learning problems, which can divided into three parts: tree-structured clusters
construction, queried instance selection and label assignment.

3.2 Tree-Structured Clusters Construction

Here, we shall discuss the revised decision tree algorithm for constructing the tree-
structured clusters. The original decision tree algorithm is first discussed. Then,
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we propose a designed metric to evaluate the quality of a node, following with the
detail design in the tree-structured clusters construction.

3.2.1 Decision tree algorithm

In machine learning, the decision tree algorithm is a well-known tree-structured
model(Quinlan (1986, 2014); Breiman et al (1984)). The procedure of training a
decision tree model includes three important components: a splitting method, an
evaluation metric, and a stop criterion.

Splitting Method Node splitting is mostly carried out by a simple decision
stump algorithm, which uses a simple threshold for a specific dimension of a feature
to split data instances into two halves. This part remains the same in our proposed
algorithm.

Evaluation Metric Although there are many possible ways to split a node,
an evaluation metric is needed to define which one is the best. In the cost-sensitive
active learning problem, the tree-structured clusters should be able to model both
the label and cost; therefore, a novel evaluation metric is proposed to fulfill this
goal.

Stop criterion The stop criterion is key for preventing the model from over-
fitting. In a binary classification problem, consider the following VC inequality
(Vapnik (2013)) for the nodes of the decision tree model:

P

[
sup
f∈F

∣∣∣R̂N (f)−R (f)
∣∣∣ > ε

]
≤ 8S(F , N) exp

(
−Nε2/32

)
,

where F is the collection of all possible decision stump classifiers, R̂N (f) is the
0/1 loss of classifier f for N training instances, R (f) stands for the testing er-
ror for classifier f , and S(F , N) is the growth function of decision stump, which
is 2N . The inequality says that the upper bound of the probability for the de-
viation between the training and testing errors being less than ε is proportional
to 16N exp(−Nε2/32), which is a monotonically decreasing function for N ≥ 1.
Therefore, for a small N , the algorithm may overfit on the labelled, leading to a
difference between training error and testing error. We can extend the discussion
to the worst case of our active learning algorithm, i.e., querying instances ran-
domly. The issue becomes even harsher owing to the limited amount of labelled
data. As a results, how to prevent our tree-structured clusters from overfitting
on the known label datasets is an essential problem to tackle. Here, we delicately
solve the issue within the evaluation metric, which will be discussed in detail in
the following section.

3.2.2 Metric for node evaluation

Owing to the demands of the evaluations on cost similarity and label purity, we
propose a novel metric to measure the quality of tree nodes, which contains two
parts: the Gini impurity and cost variance.

Gini impurity. The Gini impurity is a famous metric that is used by the
CART algorithm (Breiman et al (1984)). When solving an L-classes classification
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Table 1: Key quantities in the algorithm

L total number of classes in the dataset
nv number of labelled data instances in node v
sv number of data instances in node v
fv,l real label l fraction in node v

f̂v,l known label l fraction in node v from labelled data

f̃v,l estimated label l fraction in node v
Cv the set of known costs in node v

problem, let fv,l be the fraction with label l within the node v. Then, the Gini
impurity is computed by

G(fv) =
L∑

l=1

fv,l(1− fv,l).

However, in an active learning setting, the number of labelled instances inside the
node may be too few to approximate the true label fraction. To solve this issue,
we design an inherit approach to estimate the label fraction for all nodes except
the root.

Inside node v, sv denotes the total number of data instances, nv is the number
of labelled instances, and f̂v,l stands for the fraction with label l in the nv labelled
instances. By assuming data instances within a node are i.i.d., the estimation of
the true label fraction fv,l is actually the same as the estimation of a Bernoulli
distribution by conducting nv i.i.d experiments if we regard the appearance of the
label l as an outcome 1 and the rest as 0. Therefore, we can use the length of the
normal approximation confidence interval to show how confident we are using f̂v,l
to estimate fv,l:

∆v,l =

√
1

nv
f̂v,l(1− f̂v,l).

In contrast to the traditional distribution approximation problem, we have
a limited number of samples sv, which means as nv approaches sv, the length
of the confidence interval should become smaller. Moreover, for computational
convenience, we use a global confidence interval for all of the labels within the
same node. On the basis of these facts, we propose the following revised confidence
interval:

∆̂v = (1− nv

sv
)× 1

nv
+ (1− nv

sv
)×

(
L∏

l=1

√
1

nv
f̂v,l(1− f̂v,l)

) 1
L

. (1)

The 1 − nv

sv
term considers the situation with limited samples; 1

nv
ensures that

∆̂v 6= 0 when only a single type of label is queried and that the confidence in-
terval will become larger if less labelled data exist, which prevent the tree from
overexpanding; the last term is the geometric mean of ∆v,l for all labels.

On the basis of revised confidence interval, we define the estimated label frac-
tion as

f̃v,l =

{
∞ if α∆̂v ≥ 1

(1− α∆̂v)f̂v,l + α∆̂v f̃p,l else
, (2)
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where d is the depth of node v, and f̃p,l is the estimated label fraction of its
parents(set as uniform label fractions for the top node). α is a parameter that can
control how much we trust in f̂v,l. To simplify the algorithm, we set α = 2 in our
experiments.

The design of the estimated label fraction has two key points:

– Preventing overfitting. As we mentioned in previous section, how to prevent
overfitting is an important question that ought to be answered in building the
tree-structured clusters. In our algorithm, the combination of parameter α and
the revised confidence interval ∆̂v can fulfill the target. A smaller value of ∆̂v

indicates the higher confidence that the known label fractions f̂v are close to
the true label fractions fv, which is less likely for the node v to be overfit.
Combine with a parameter α to feasibly control the threshold, a judgment
α∆̂v ≥ 1 is proposed to define when we are confident enough to build node
v without overfitting. If a node meet the judgment, it indicates the revised
confidence interval is too large to make current estimation trustworthy. As a
results, infinite values are assigned to the label fractions, which further prevent
the parent node from being split into the case.

– Conservative inheriting estimation. While the revised confidence interval
indicates the trust level of the known label fractions, it needs to be integrated
into the estimated label fractions to better decide the optimal split of a node.
In our designed approach, we use the formula of inner division point to calcu-
late estimated label fractions f̃v, the weights of the known label fractions are
decided by 1−α∆̂v, which depends on the length of confidence interval, show-
ing how trustworthy the known label fractions are. The remain part inherits
the estimated label fractions f̃p from the parent p. The inheriting fraction can
stands for the result of the split overfit on the known labels, so a part of the
unknown labels still follow the parent’s fractions. The design yields a conser-
vative estimation on the label fractions, which also prevents the algorithm to
over-trust the partial label information.

In summary, equation (2) prevents our tree model from overfitting, and utilizes
the partially inheriting approach to integrate the confidence information into the
estimated label fractions.

On the basis of equation (2) and the original Gini impurity formula, the Gini
impurity of node v is estimated by

Ge(f̃v) =
L∑

l=1

|f̃v,l(1− f̃v,l)|. (3)

Cost variance. In order to carry out cost estimation, the cost variance is
another factor in the node evaluation, which is calculated by

V (Cv) =
1

n2
v

nv∑
i=1

nv∑
j=1

1

2
(Cv,i − Cv,j)2

with the known annotation costs Cv for nv labelled data instances.

Scaling of the annotation costs is required when constructing the performance
metric. Since the optimal value for both the Gini impurity and cost variance is 0,
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the main idea is to scale the worst case of the cost variance to the same value as
the Gini impurity, which is computed by

Vscaled(Cv) = V (Cv)× Gw

Vw
, (4)

where {
Gw =

∑L
i=1

1
L (1− 1

L ) = 1− 1
L ,

Vw = 1
4 (max(Cp)−min(Cp))2,

and Cp is the annotation costs of v’s parent.
The largest value of the Gini impurity for an L-class classification problem can

be computed by the Cauchy-Schwarz inequality. As to the worst case of the cost
variance, we use the largest variance for all possible splits from the node, which
is splitting only two labelled data instances with the largest and smallest costs to
the same node.

Performance metric. Combining both factors, the metric used for the eval-
uation is defined as

M(v) = (1− β)×Ge(f̃v) + β × Vscaled(Cv), (5)

where Ge(f̃v) and Vscaled(Cv) are defined in equations (3) and (4), and β is a
parameter for adjusting the importance of these two factors. For simplicity, we use
β = 0.5 in our experiments, which means that both factors have the same weights
in the evaluation.

3.2.3 Tree structure construction

Our model starts from all of the data instances in the root node. As more and more
labels are queried, the tree will be expanded until no further split on leaves can
improve the performance metric. Furthermore, we also propose a reconstruction
criterion to ensure all expansions are actually improving the performance metric
during the query stage.

Tree expansion. The procedure of tree expansion is as follow: Use the decision
stump algorithm on each data dimension to determine a way to split the node that
leads to the optimal performance metric. If the expansion does help in improving
the performance, we say that the node is ready to be split. To emphasize, the
confidence interval we propose in equation (1) takes the amount of labelled data
instances and the label distribution in to consideration. Therefore, when combining
it with parameter α in equation (2), the user can adjust the tolerance on the
confidence level to prevent the tree model from overfitting.

Tree reconstruction. Even though we can prevent a tree from overfitting, we
cannot guarantee that all expansions are effective at any time. In the other words,
we may find that some splits of nodes in the tree do not optimize the value of the
performance metric when we acquire new labels and costs. Therefore, during the
query stage, the model will keep track of the metric values of all nodes. Once it
finds a split of a node that leads to a poorer metric value, it will mark the node
as dirty, so the split of the node and its subtree will be renewed during the tree
structure update.

Tree structure update. In order to reduce the computational overhead and
improve the regularization, we use a dirty bit to indicate if the node is ready to
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be split or needs reconstruction. Notice that if a node needs reconstruction, all of
the nodes in its subtree will be set as dirty. Once the proportion of dirty leaves
exceeds a certain threshold γ, our algorithm will update the tree structure from
the top of the tree by finding the best split of the dirty nodes and expand them
until no leaf node can be expanded. The detail of tree structure update is showed
in in algorithm 2.

3.3 Cost-sensitive Tree Sampling

In using the proposed tree-structured clusters to solve the cost-sensitive active
learning problems, how to pick the querying instance is another key issue. In the
following, we shall discuss the two important components in the query stage: leaf
selection and instance selection. After that, the label assigning trick are introduced,
which could further improve the performance of CSTS. The full design of CSTS is
listed in algorithm 2.

3.3.1 Query stage

To use the tree model to solve cost-sensitive active learning problems, it is nec-
essary to specify the selection of data instances to query their labels. During the
query stage, the instances are always selected from a leaf inside the tree struc-
ture; therefore, the problem can be split into two parts: leaf selection and instance
selection within leaves.

Leaf selection. The estimated impurity multiplied by the number of unla-
belled data instances within a node stands for the estimate of the utilities in our
proposed approach, whereas the estimated cost is the average cost of a labelled
data instance in the cluster. Combining both factors, the probability that a leaf
node v is selected is as follows:

pv ∝ Ge(f̃v)× (sv − nv)︸ ︷︷ ︸
utility

/ C̄v︸︷︷︸
cost

, (6)

where C̄v is the average annotation cost in the leaf node.
Some analysis of the behavior of the query criterion. The estimated utility

includes the estimated impurity and the number of unlabelled data instances.
The estimated impurity is calculated by equation (3), in which considers both
the estimated confidence and label impurity issue. Therefore, the proposed query
criteria is a coordination of four elements in a leaf: estimated confidence, label
impurity, number of unlabelled instances and estimated costs. Since the effect of
the estimated costs on the query criterion is straightforward, we focus only on the
behavior of utility and assume an uniform cost for simplicity.

Consider a case that two children from the same parent share the same quan-
tities, except that the first child has less labelled data instances then the second
one. Therefore, the first child have a longer confidence interval, leading to a larger
inherit fraction and end up with higher estimated Gini impurity. As a results, we
could observe the favor to enhance the less confident node in our designed query
criteria. On the other hands, suppose two children have different label fractions
while other quantities remain the same, the query criteria will naturally focus on
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the one with higher Gini impurity value and select more instances to query from
it.

On the other hand, considering the number of unlabelled data instances in our
query criteria can balance the query selection. Suppose there are only two labels,
and only two same sized clusters are found. Cluster A has 5% of minority label, and
can be split out by decision stump, while cluster B has even label fractions(50%
each) and cannot be improved by further splitting. Our query criteria will first
focus on improving cluster B, even though the impurity cannot be reduced after
queries in the cluster B. As the number of unlabelled data instance gradually drops
in cluster B, the query criteria may turn to select data instance from cluster A,
and therefore, take the chance to further improve the label purity.

To sum up, the designed query criteria considers the trade off between costs and
utilities, where includes label purity, label confidence and label instances balancing,
making it an strong query criteria in solving cost-sensitive active learning problems
with our proposed tree-structured clusters.

Instances selection within leaves. We use the length of the confidence
interval ∆̂v to measure whether a node is trustworthy with its labelled data.
Therefore, regardless of the method for selecting queried instances, it will not
change the guarantee of the stable condition in the performance metric, which
gives us flexibility in choosing data instances inside a leaf. The followings are
some options:

– Random sampling: Choose any unlabelled instances with uniform probabil-
ity.

– Uncertainty sampling on a classifier: Choose the instance with the min-
imum distance to current decision boundary or tge maximum value of any
uncertainty measurement.

– Representative sampling: Choose the unlabelled data instance closest to
the centroid of the selected leaf.

– Least cost sampling: Choose the unlabelled data instance closest to instance
with the lowest cost in the selected leaf.

Here, we simply use the random sampling approach in all the experiments, which
choose any unlabelled instances to query with a uniform probability.

3.3.2 Label assigning trick

At the end of the query stage, a natural ability of the tree model is to label all the
unlabelled data instances with the majority label inside every leaf node. However,
as the evaluation metric for tree construction does not focus entirely on enhancing
the label purity, it is unlikely to accurately label all the data instances. Therefore,
if we simply label all the data instances, it may made a large number of mistakes at
those impure nodes and further degrade the performance of the model trained on
it. A design in our model is that the estimated Gini impurity can properly reflect
the label purity within each nodes. Hence, we introduce another parameter t as a
threshold on the estimated Gini impurity, and only regard the majority label in a
cluster as trustworthy when the impurity ≤ t and assign the majority label to the
unlabelled data instances.
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Algorithm 2 Cost-Sensitive Tree Sampling.

Input: pool of unlabelled data P ; Cost budget B
1: T ← {root}; (all data instances in the root)
2: while current budget < B do
3: while dirty leaf proportion < γ do
4: //Query stage
5: Leaf selection: v ← select leaf(T ) base on 6;
6: Instance selection:z ← select instance(v, P);
7: Query z’s label and cost;
8: remove z from P ;
9: Update performance metric for all nodes in T ;

10: Tree reconstruction: Set nodes that need split renewal as dirty;
11: Tree expansion: Set leaves that ready to be split as dirty;
12: end while;
13: //Tree structure update
14: for all dirty nodes n ∈ T in top-down order do
15: set n as not dirty;
16: T ← T \ {subtree of n};
17: children← decision stump(n);
18: if children 6= Null then
19: set children as dirty;
20: T ← T ∪ children;
21: end if
22: end for
23: end while;
24: for all leaf node v ∈ T do
25: if Ge(f̃v) < t then
26: Label assigning: Assign majority label to all unlabelled data in v
27: end if
28: end for

4 Experiments

In the section, we shall first discuss the experiment settings, followed by quanti-
tative comparisons between CSTS and other state-of-the-art competitors on three
types of datasets: dataset with artificial costs, dataset with attribute costs and
dataset with real annotation costs. Finally, extensive experiments on CSTS using
different parameters are conducted in order to analyze the parameter sensitivity.

4.1 Experiment Setting

In all the following experiments, we simply set parameters (α, β, γ) = (2, 0.5, 0.5)
in CSTS to generalize the model, despite the fact that further experiments show
the performance of CSTS can be improved if an optimal set of parameters is used.
Parameter t is tuned with 4-fold-cross-validation by adding self-labelled data in-
stances to the training validation set for different values of t in order to coordinate
the various properties of the datasets.

We compared CSTS with four different methods: random sampling (RS), cost-
sensitive hierarchical sampling (CSHS), return on investment (ROI) (Haertel et al
(2008)) and rank combination cost-constrained sampling (LRK) (Tomanek and
Hahn (2010)).
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– RS: Random sampling is a baseline approach that chooses a data instance to
label at random, ignoring both the utility and the annotation cost.

– CSHS: Cost-sensitive hierarchical sampling is a transformation of hierarchical
sampling (Dasgupta and Hsu (2008)). The only change is to divide the original
probability for choosing a leaf to query by the average of known annotation
costs in the leaf, turning it into a cost-sensitive method.

– ROI and LRK: These methods are two different ways of combining the utility
and cost to form the query criteria. To estimate the utilities, both of them
use the uncertainty measurement, calculated by the entropy of the predicted
probabilities in each class. The costs are estimated by a regression tree with
tuned limited depth ∈ [5, 10, 15, 20, 25], in order to give even comparisons with
our tree-structured model. Note that the tree model will be retrained every
time when a data instance is newly queried and added to the training set.In
ROI, it uses the ratio of the utility and cost as the selection criterion; LRK
determines the ranks of data instances for the utility and cost and combines
the rank with a ratio, which we set as 0.5 in our experiments, to form the
metric for choosing data instances to label.

We used a l2-regularized logistic regression as the base learner to be trained on
the label data we acquire from active learning for all methods. The parameters of
the base learner are tuned by 4-fold-cross-validation independently in each method.
For all datasets, we reserve 80% of the data as the data pool and retain 20% as the
final testing set. The presented results are the average over 10 times of experiments,
and the budget of label costs grows in small increments with a maximum 30% of
the total costs.

4.2 Datasets with Artificial Costs

Table 2: Characteristics of UCI datasets

Dataset N L Dataset N L Dataset N L

liver 345 2 german 996 2 knowledge 258 4
vote 411 2 mushroom 8124 2 vehicle 846 4
breast 699 2 adult 32561 2 nursey 12960 5
diabetes 764 2 seeds 210 3 yeast 1484 9

4.2.1 Dataset

We compare CSTS with other competitors on twelve datasets from the UCI Repos-
itory (Lichman (2013)) with artificially created annotation costs. The size of the
datasets N and the number of classes L are summarized in Tab. 2.

4.2.2 Artificial Costs Creation

The annotation cost is created on the basis of two assumptions:



16 Yu-Lin Tsou, Hsuan-Tien Lin

– The data instances closed to the decision boundary should have larger costs.
– The cost distribution should have a connection to the data distribution.

The first assumption is based on the argument that if a data instance is closer to
the decision boundary, the feature that we can directly use to classify it is less clear,
so the oracle (usually human beings) will need to spend more effort to correctly
label the data instance. On the other hand, two similar data instances should
have similar annotation costs, indicating that the data distribution is essential in
creating the annotation cost, which implies the second assumption.

Fig. 2 demonstrate the procedure to create the costs. Notice that the cost
creation is independent from the active learning, so we assume all the labels in
datasets are available.

1. Utilize a SVM model with RBF kernel and the parameter C = 100 to fit on
the datasets, take the hyper-planes as the decision boundaries in the oracle.

2. Model the data distribution, where the k-means clustering with k = N/10 is
used. Base on the assumption (2), we simply assume that those data instances
in the same cluster share the same annotation cost.

3. Calculate D̄v, the average distance to the closest decision boundary for data
instances in v, which is used to construct the reverse distance cost and the
distance cost.

The reverse distance cost takes the original assumption by setting the annota-
tion cost of data instances that belong to cluster v as 1/D̄v. However, the setting
will lead to a dilemma in uncertainty sampling since the instances with higher costs
are also the ones that are most informative in their criteria. Therefore, we also con-
duct experiments on distance cost, setting the average distances to the boundaries
D̄v in cluster v as the annotation cost. The setting gives a considerable advantage
to uncertainty-sampling-based algorithm, in order to observe if CSTS is able to
adapt to different cost settings and provide comparable performance.

4.2.3 Experiments Results on Reverse Distance Cost

Tab. 3 shows the area under the cost/accuracy curve (AUC) of algorithms for
all twelve datasets under reverse distance cost. Fig. 3 shows the results for six
selected datasets. We also compare the mean accuracy scores from different algo-
rithms when setting different percentages of the total cost as the budget. Tab. 4

Fig. 2: Procedure of cost creation.
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Table 3: AUC scores for UCI datasets with the reverse distance cost

Datasets CSTS RS CSHS ROI LRK

liver 16.58/1.749(4) 16.98/2.257(3) 14.99/1.573(5) 18.29/0.782(1) 17.63/1.341(2)
vote 26.41/0.888(2) 26.46/0.783(1) 25.66/1.182(5) 26.3/0.49(4) 26.33/0.65(3)
breast 27.47/0.485(1) 27.42/0.481(2) 27.23/0.371(3) 27.06/0.362(4) 27.01/0.4(5)
diabetes 22.29/1.09(3) 22.14/0.709(4) 21.32/1.165(5) 22.65/0.499(1) 22.59/0.552(2)
german 21.03/0.681(1) 20.66/0.865(2) 20.38/1.083(3) 20.14/0.424(5) 20.37/0.523(4)
mushroom 27.32/0.449(1) 27.21/0.482(3) 27.27/0.223(2) 26.97/0.141(5) 27.0/0.155(4)
adult 23.97/0.066(1) 23.92/0.086(2) 23.66/0.08(5) 23.89/0.037(4) 23.9/0.031(3)
seeds 25.68/1.274(1) 25.03/1.333(4) 23.34/2.575(5) 25.54/1.078(2) 25.24/1.241(3)
knowledge 19.65/1.866(1) 19.36/2.712(3) 15.83/2.232(5) 19.36/1.093(2) 19.16/1.217(4)
vehicle 19.85/0.825(1) 19.29/1.443(2) 14.91/1.1(5) 19.11/0.638(4) 19.22/0.539(3)
nursey 21.79/0.175(3) 21.71/0.176(4) 19.88/0.582(5) 21.86/0.103(2) 21.86/0.091(1)
yeast 15.64/0.639(1) 15.16/0.61(2) 14.52/1.081(5) 14.93/0.345(4) 15.03/0.341(3)

sum of ranks 20 32 53 38 37
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Fig. 3: Test accuracy for selected UCI datasets

Table 4: Win/tie/lose based on a two-sample t-test

base: CSTS percentage of total queried instance’s costs
competitors 5% 10% 15% 20% 25% 30% total

RS 2/9/1 2/10/0 2/10/0 2/10/0 1/11/0 1/11/0 10/61/1
CSHS 5/7/0 8/4/0 11/1/0 9/3/0 10/2/0 7/5/0 50/22/0
ROI 5/5/2 4/6/2 2/8/2 6/4/2 4/7/1 3/7/2 24/37/11
LRK 5/5/2 4/6/2 2/8/2 5/6/1 4/5/3 3/8/1 23/38/11

total 17/26/5 18/26/4 17/27/4 22/23/3 19/25/4 14/31/3 107/158/23

summarizes a comparison of CSTS against the others using a two-sample t-test at
95% significance, which gives better insights into the model performance at each
query stage.

The results in Tab. 3 clearly indicates that none of the algorithms are capable
of providing consistently superior performance. Despite this, CSTS has the best
performance for 8 datasets, which is the most compared with the others. Regarding
the overall performance, the sum of the ranks indicates that CSTS is still the best
model on average.
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There are two important observation in the table:

– Our proposed approach significantly outperforms CSHS. The observation indi-
cates that the supervised tree-structured clusters building approach can lead
to a better performance than traditional unsupervised approach.

– Our proposed approach have better performance in most of the datasets in
comparison with ROI and LRK, proving that CSTS can be a better approach in
solving cost-sensitive active learning problems than uncertainty-based meth-
ods.

We can also observe that CSHS, ROI and LRK have worse performance than
the random sampling in parts of the datasets. As discussed in Section 3, a main
criticism for the clustering based active learning approaches is that they over-rely
on the performance of unsupervised clustering methods. Therefore, the CSHS can
only provide effective performance on few datasets (german and mushroom) which
can be easily modelled by the clusters. The uncertainty based approaches, ROI and
LRK, suffer from the contradiction between the cost setting and their query strategy.
Besides, the cost learning in these approaches are based on the bias data, making
it harder to give accurate predictions on the annotation costs. Our approach, on
the other hand, can deal with all the issues mentioned above and yield promising
performance.

From the two-sample t-test comparison in Tab. 4, we can observe that CSTS is
mostly able to provide comparable or even better accuracy than the competitors
in each stage, especially when the budget reach around 20% of total costs. While
the early stage are highly affected by the initially queried instance and all models
have sufficient labelled instances to provide similar performance in the later stage,
the superiority of CSTS in the middle stage strongly prove its effectiveness once
again.

4.2.4 Experiment Results on Distance Cost

Table 5: AUC scores for UCI datasets with the distance cost

Datasets CSTS RS CSHS ROI LRK

liver 16.92/2.072(4) 16.93/1.779(3) 14.13/1.429(5) 17.67/1.575(2) 17.84/1.323(1)
vote 26.55/0.932(1) 26.39/0.771(3) 25.55/1.136(5) 26.33/0.53(4) 26.41/0.506(2)
breast 27.48/0.381(1) 27.4/0.446(2) 27.33/0.314(3) 26.89/0.205(5) 27.0/0.311(4)
diabetes 22.41/0.826(3) 22.36/0.942(4) 21.47/0.741(5) 22.56/0.508(1) 22.46/0.467(2)
german 21.16/0.781(1) 20.66/0.694(2) 20.48/1.231(3) 20.28/0.441(4) 20.24/0.501(5)
mushroom 27.34/0.503(1) 27.18/0.319(3) 27.31/0.226(2) 26.97/0.154(5) 26.99/0.129(4)
adult 23.96/0.08(1) 23.92/0.065(2) 23.7/0.077(5) 23.88/0.037(4) 23.88/0.031(3)
seeds 25.37/1.582(3) 25.06/1.286(4) 23.88/1.907(5) 25.37/1.289(2) 25.38/1.103(1)
knowledge 19.05/2.423(4) 19.34/2.066(3) 15.16/2.777(5) 19.46/1.337(1) 19.38/1.021(2)
vehicle 20.04/1.01(1) 19.56/1.362(3) 14.58/1.433(5) 19.61/0.475(2) 19.34/0.591(4)
nursey 21.71/0.266(3) 21.7/0.143(4) 19.84/0.525(5) 21.87/0.096(2) 21.88/0.101(1)
yeast 15.28/0.712(2) 15.52/0.626(1) 14.46/0.941(5) 14.77/0.448(4) 14.86/0.423(3)

sum of ranks 25 34 53 36 32

Tab. 5 present the experiment results on distance cost. Compared with the
reverse distance cost, both LRK and ROI have a slight improvement on the sum
of ranks and also have the best AUC for more datasets; in the mean time, the
ranks of CSTS slightly drop under the new setting. However, comparing the sum of



Annotation Cost-sensitive Active Learning by Tree Sampling 19

0 5 10 15 20 25 30
% of total cost

0.55

0.60

0.65

0.70

0.75

A
c
c
u
ra
c
y

german with attribute cost

CSTS

random

CSHS

ROI

LRK

Fig. 4: Test accuracy of CSTS and the competitors.

the ranks, CSTS still provides the best performance under such a favorable setting
for uncertainty sampling, indicating that our proposed method is able to handle
different cost distributions and yield stable performance.

4.3 Dataset with Attribute Costs

4.3.1 Dataset

The UCI (Lichman (2013)) german dataset collects attributes for a group of peo-
ple to predict their credit risk. Among the attributes, one of them is the duration
of people’s checking account in month. As a longer duration of the checking ac-
count requires longer time to analyze, the cost for human beings to label an data
instance should be highly related to the duration of the checking account. There-
fore, we remove the duration attribute from the dataset and use it as the costs in
our ACSAL setup, in order to observe if CSTS could adapt to the nearly real world
costs setting.

4.3.2 Experiment Results

Figu. 4 shows the test accuracy. We can observe that CSTS stably outperforms
the other approaches. In the mean time, CSHS yields a comparable performance in
the early stage. The experiments results show the superiority of clustering based
active learning approach, indicating that the dataset can be easily modeled by the
clusters. On the other hand, both the uncertainty based approach, ROI and LRK,
only have similar performance as random sampling. In summary, the experimental
results shows the superiority of CSTS and the effectiveness of clustering based active
learning approaches.
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4.4 Dataset with Real Annotation Costs

4.4.1 Dataset

Due to the limited number of datasets with annotation costs information, we only
conduct experiments on one dataset, the Speculative Text Corpus dataset provided
by Settles et al (2008), to show the performance of CSTS for real annotation costs.
It includes 850 sentences labelled to be speculative or definite by three different
people, and the average annotation time is taken as the cost. In the experiments,
we use a bag-of-words representation for the sentences, removing stopping words
and terms with a frequency less than two.

4.4.2 Experiment Results

Figu. 5 shows the test accuracy. We can observe that CSTS outperforms the other
approaches as the budget increases to 10% of the total cost. The trend is consistent
with the design: In the early stage, the number of labelled data instance may be
too few to build high quality clusters, which leads to the similar performance
with random sampling; as more and more labels and costs we obtain, high quality
clusters can be built and a significant improvement on the model performance
can be observed. In summary, the experimental results indicate that our proposed
approach is capable of providing superior results in comparison with four other
methods for the dataset with real annotation costs.

4.5 Parameter Sensitivity Analysis

4.5.1 Parameters

We further conduct experiments to analyze the parameter’s impact on the model
performance. There are four important parameters in our proposed methods: In
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equation 2, α controls the proportion of known label fraction f̂ in estimated la-
bel fraction f̃ and the threshold on confidence interval in deciding whether the
estimation is trustworthy; β decides the balance between Gini impurity and cost
variance in the evaluation metric; γ is the threshold on the fraction of dirty leaves,
controlling when the tree structure should be updated; t decides whether the un-
labelled data instances in a cluster can be labelled with the majority label and be
included in the training dataset for the base learner.

To better demonstrate the results, we only test the performance of CSTS on
german dataset with the artificial reverse distance costs. Except for the changed
parameter, others are always set as (α, β, γ) = (2, 0.5, 0.3) and t ∈ {0, 0.1, 0.2, 0.3}
is tuned by 4-fold cross validation. In parameter t, we simply compare three dif-
ferent settings in order to demonstrate the effectiveness of label assigning trick:

– cv tuned: tuned the threshold t ∈ {0, 0.1, 0.2, 0.3} by 4-fold cross validation.
– optimal: used the optimal threshold t ∈ {0, 0.1, 0.2, 0.3} that leads to the best

accuracy on testing set.
– no label assigned: set t as 0, that is, no additional data instance is labelled

and added to the training dataset except the queried data instances.

4.5.2 Discussion

Figure 6 shows the experiments results on four parameters (α, β, γ, t). As can be
seen, the performance of CSTS does not significantly change when different values
set to parameter α, β and γ, which prove that our proposed CSTS algorithm is less
sensitive to the parameter values and capable of providing stable performance.
Some observations on the parameters’ behavior:

– parameter α. A lower value on α can let a leaf be easier to be split, creating
more clusters and leading to a higher label purity, but with a higher risk on
overfitting. Therefore, when parameter α is set to a larger value 8, it could
prevent CSTS from overfitting and reach the best performance in the early and
middle stage; while α = 1 could provide the best performance in the final stage
where the number of label is large enough to lower the chance of overfitting.

– parameter β. A higher β makes the tree structure focusing more on the cost
variance, giving a better control on the costs but losing the label purity, while
a lower β has the opposite behavior. Since there is no superiority in either
settings, the experiment result shows no clear trend in model performance as
β increases.

– parameter γ. With higher γ (0.7 and 0.9), the performance of CSTS slightly
drop owing to the low tree structure update rate.

– parameter α and γ. We extract two of the most sensitive parameters, α and
γ, for joint analysis. The experiment result shows that when both α and γ
are set to either high values(α=8, γ=0.5/0.9) or low values(α=2, γ=0.1), the
algorithm has the better performance. The results indicating that when the
leaves are easier to be split, the algorithm requires a higher tree structure
update rate, while a low structure update rate is needed when the model is
more conservative in splitting leaves.

– parameter t. As can be seen, the label assigning trick performs a strong im-
provement on the accuracy. Notice that there is a great difference between
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using the optimal threshold and the cross-validation tuned threshold, indi-
cating that the performance of CSTS can still be further improved if a better
threshold parameter t is set.

In summary, changes on the parameter α, β and γ only lead to minor difference
on the performance of CSTS, demonstrating that it is a stable approach in terms
of the parameter sensitivity. On the other hand, the label assigning trick does
enhance the model performance, while the cross-validation tuned threshold t still
has a great room for improvement.
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Fig. 6: Parameter-Performance Analysis
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5 Conclusion

In this paper, we proposed the CSTS approach for annotation cost-sensitive ac-
tive learning. The main contributions can be split to two areas: First, our pro-
posed method is an innovative algorithm that jointly model both label and cost
distribution in the supervised-built clustering structure when solving annotation
cost-sensitive active learning. Furthermore, it is the first algorithm that tackles
the annotation cost-sensitive active learning problems by representative sampling
to the best of our knowledge. Second, the supervised tree constructing algorithm
solves the issue on the impractical pure label cluster assumption in traditional
representative sampling based active learning algorithms, while the overfitting
problem can be delicately handled by the proposed evaluation metric. Empiri-
cal studies demonstrate the comparability and superiority of CSTS in comparing
with previous methods on datasets with simulated and real annotation costs. The
experiments results confirm the validity of our proposed method, and indicate
CSTS is a promising approach for annotation cost-sensitive active learning. Future
research should certainly further studies on label estimation considering the non-
i.i.d. data distribution within a node, which could possibly be handle by other
probability distributions and improve the accuracy of the estimation on the con-
fidence interval and the label fractions. More real datasets are also welcome to
better understands the behavior of CSTS in solving real world problems.
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Arora S, Nyberg E, Rosé CP (2009) Estimating annotation cost for active learning in a multi-
annotator environment. In: Proceedings of the NAACL HLT 2009 Workshop on Active
Learning for Natural Language Processing, Association for Computational Linguistics, pp
18–26

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC
press

Chapelle O, Weston J, Schölkopf B (2003) Cluster kernels for semi-supervised learning. Ad-
vances in neural information processing systems pp 601–608

Cohn D, Atlas L, Ladner R (1994) Improving generalization with active learning. Machine
learning 15(2):201–221

Cuong N, Xu H (2016) Adaptive maximization of pointwise submodular functions with budget
constraint. In: Advances in Neural Information Processing Systems, pp 1244–1252

Dasgupta S (2011) Two faces of active learning. Theoretical computer science 412(19):1767–
1781

Dasgupta S, Hsu D (2008) Hierarchical sampling for active learning. In: Proceedings of the
25th international conference on Machine learning, ACM, pp 208–215

Donmez P, Carbonell JG (2008) Proactive learning: cost-sensitive active learning with mul-
tiple imperfect oracles. In: Proceedings of the 17th ACM conference on Information and
knowledge management, ACM, pp 619–628

Golovin D, Krause A (2011) Adaptive submodularity: Theory and applications in active learn-
ing and stochastic optimization. Journal of Artificial Intelligence Research 42:427–486

Greiner R, Grove AJ, Roth D (2002) Learning cost-sensitive active classifiers. Artificial Intel-
ligence 139(2):137–174

Guillory A, Bilmes J (2009) Average-case active learning with costs. In: International Confer-
ence on Algorithmic Learning Theory, Springer, pp 141–155



24 Yu-Lin Tsou, Hsuan-Tien Lin

Haertel R, Seppi KD, Ringger EK, Carroll JL (2008) Return on investment for active learning.
In: Proceedings of the NIPS Workshop on Cost-Sensitive Learning

Holub A, Perona P, Burl MC (2008) Entropy-based active learning for object recognition.
In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops, IEEE, pp 1–8

Huang KH, Lin HT (2016) A novel uncertainty sampling algorithm for cost-sensitive multiclass
active learning. In: Proceedings of the IEEE International Conference on Data Mining
(ICDM)

Huang SJ, Jin R, Zhou ZH (2010) Active learning by querying informative and representative
examples. In: Advances in neural information processing systems, pp 892–900

Huang SJ, Chen JL, Mu X, Zhou ZH (2017) Cost-effective active learning from diverse labelers.
In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, AAAI
Press, pp 1879–1885

Kang J, Ryu KR, Kwon HC (2004) Using cluster-based sampling to select initial training set for
active learning in text classification. In: Pacific-Asia Conference on Knowledge Discovery
and Data Mining, Springer, pp 384–388

King RD, Whelan KE, Jones FM, Reiser PG, Bryant CH, Muggleton SH, Kell DB, Oliver SG
(2004) Functional genomic hypothesis generation and experimentation by a robot scientist.
Nature 427(6971):247–252

Lewis DD, Gale WA (1994) A sequential algorithm for training text classifiers. In: Proceedings
of the 17th annual international ACM SIGIR conference on Research and development in
information retrieval, Springer-Verlag New York, Inc., pp 3–12

Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml
Liu A, Jun G, Ghosh J (2009) Spatially cost-sensitive active learning. In: Proceedings of the

2009 SIAM International Conference on Data Mining, SIAM, pp 814–825
Liu Y (2004) Active learning with support vector machine applied to gene expression data for

cancer classification. Journal of chemical information and computer sciences 44(6):1936–
1941

Margineantu DD (2005) Active cost-sensitive learning. In: Proceedings of International Joint
Conference on Artificial Intelligence, pp 1622–1623

Nguyen HT, Smeulders A (2004) Active learning using pre-clustering. In: Proceedings of the
21th international conference on Machine learning, ACM, p 79

Quinlan JR (1986) Induction of decision trees. Machine learning 1(1):81–106
Quinlan JR (2014) C4.5: programs for machine learning. Elsevier
Ringger E, McClanahan P, Haertel R, Busby G, Carmen M, Carroll J, Seppi K, Lonsdale

D (2007) Active learning for part-of-speech tagging: Accelerating corpus annotation. In:
Proceedings of the Linguistic Annotation Workshop, Association for Computational Lin-
guistics, pp 101–108

Seeger M (2000) Learning with labeled and unlabeled data. Tech. rep., technical report, Uni-
versity of Edinburgh

Settles B (2010) Active learning literature survey. University of Wisconsin, Madison 52(55-
66):11

Settles B, Craven M, Friedland L (2008) Active learning with real annotation costs. In: Pro-
ceedings of the NIPS workshop on cost-sensitive learning, pp 1–10

Tomanek K, Hahn U (2010) A comparison of models for cost-sensitive active learning. In:
Proceedings of the 23rd International Conference on Computational Linguistics: Posters,
Association for Computational Linguistics, pp 1247–1255

Tong S, Koller D (2001) Support vector machine active learning with applications to text
classification. Journal of machine learning research 2(Nov):45–66

Vapnik V (2013) The nature of statistical learning theory. Springer science & business media
Vijayanarasimhan S, Grauman K (2011) Cost-sensitive active visual category learning. Inter-

national Journal of Computer Vision 91(1):24–44
Xu Z, Yu K, Tresp V, Xu X, Wang J (2003) Representative sampling for text classification using

support vector machines. In: European Conference on Information Retrieval, Springer, pp
393–407

Yan Y, Huang SJ (2018) Cost-effective active learning for hierarchical multi-label classification.
In: IJCAI, pp 2962–2968

http://archive.ics.uci.edu/ml

	Introduction
	Related work
	The Proposed Approach
	Experiments
	Conclusion

