
Data Mining and Knowledge Discovery manuscript No.
(will be inserted by the editor)

A Simple Cost-sensitive Multiclass Classification Algorithm
Using One-versus-one Comparisons

Hsuan-Tien Lin

Abstract Many real-world applications require varying costs for different types of mis-
classification errors. Such a cost-sensitive classification setup can be very different from the
regular classification one, especially in the multiclass case. Thus, traditional meta-algorithms
for regular multiclass classification, such as the popular one-versus-one approach, may not
always work well under the cost-sensitive classification setup. In this paper, we extend the
one-versus-one approach to the field of cost-sensitive classification. The extension is derived
using a rigorous mathematical tool called the cost-transformation technique, and takes the
original one-versus-one as a special case. Experimental results demonstrate that the pro-
posed approach can achieve better performance in many cost-sensitive classification sce-
narios when compared with the original one-versus-one as well as existing cost-sensitive
classification algorithms.

Keywords cost-sensitive classification, one-versus-one, meta-learning

1 Introduction

Many real-world applications of machine learning and data mining require evaluating the
learned system with different costs for different types of mis-classification errors. For in-
stance, a false-negative prediction for a spam classification system only takes the user an
extra second to delete the email, while a false-positive prediction can mean a huge loss
when the email actually carries important information. When recommending movies to a
subscriber with preference “romance over action over horror”, the cost of mis-predicting a
romance movie as a horror one should be significantly higher than the cost of mis-predicting
the movie as an action one. Such a need is also shared by applications like targeted market-
ing, information retrieval, medical decision making, object recognition and intrusion de-
tection (Abe et al, 2004), and can be formalized as the cost-sensitive classification setup.
In fact, cost-sensitive classification can be used to express any finite-choice and bounded-
loss supervised learning setups (Beygelzimer et al, 2005). Thus, it has been attracting much
research attention in recent years (Domingos, 1999; Margineantu, 2001; Abe et al, 2004;
Beygelzimer et al, 2005; Langford and Beygelzimer, 2005; Beygelzimer et al, 2007).

H.-T. Lin
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.
E-mail: htlin@csie.ntu.edu.tw

2

Abe et al (2004) grouped existing research on cost-sensitive classification into three
categories: making a particular classifier cost-sensitive, making the prediction procedure
cost-sensitive, and making the training procedure cost-sensitive. The third category con-
tains mostly meta-algorithms that reweight training examples before feeding them into the
underlying learning algorithm. Such a meta-algorithm can be used to make any existing
algorithm cost-sensitive. While a promising meta-algorithm exists and is well-understood
for cost-sensitive binary classification (Zadrozny et al, 2003), the counterpart for multiclass
classification remains an ongoing research issue (Abe et al, 2004; Langford and Beygelz-
imer, 2005; Zhou and Liu, 2006).

In this paper, we propose a general meta-algorithm that reduces cost-sensitive multi-
class classification tasks to regular classification ones. The meta-algorithm is based on the
cost-transformation technique, which converts one cost to another by not only reweight-
ing the original training examples, but also relabeling them. We show that any cost can be
transformed to the regular mis-classification one with the cost-transformation technique. As
a consequence, general cost-sensitive classification and general regular classification tasks
are equivalent in terms of hardness.

We further couple the meta-algorithm with another popular meta-algorithm in regu-
lar classification—the one-versus-one (OVO) decomposition from multiclass to binary. The
resulting algorithm, which is called cost-sensitive one-versus-one (CSOVO), can perform
cost-sensitive multiclass classification with any base binary classifier. Interestingly, CSOVO
is algorithmically similar to an existing meta-algorithm for cost-sensitive classification:
weighted all-pairs (WAP; Beygelzimer et al, 2005). Nevertheless, CSOVO is not only sim-
pler but also more efficient than WAP. Our experimental results on real-world data sets
demonstrate that CSOVO shares a similar performance over WAP, while both of them can
be significantly better than OVO. Therefore, CSOVO is a preferable OVO-type cost-sensitive
classification algorithm. Moreover, when compared with other meta-algorithms that reduce
cost-sensitive classification to binary classification—namely, one-versus-all (Lin, 2008),
error-correcting output code (Langford and Beygelzimer, 2005), tree (Beygelzimer et al,
2005), filter tree and all-pair filter tree (Beygelzimer et al, 2007) decompositions—we see
that CSOVO can often achieve the best test performance. Those results further validate the
usefulness of CSOVO.

The paper is organized as follows. In Section 2, we formalize the cost-sensitive classifi-
cation setup. Then, we present the cost-transformation technique with its theoretical impli-
cations in Section 3, and derive our proposed CSOVO algorithm in Section 4. Finally, we
compare CSOVO with other algorithms empirically in Section 5 and conclude in Section 6.

2 Problem Setup

We start by defining the setup that will be used in this paper.

Definition 1 (weighted classification) Assume that there is an unknown distribution Dw on
X × Y × R+. where the input space X ⊆ RD and the label space Y = {1, 2, · · · ,K}. A
weighted example is a tuple (x, y, w) ∈ X × Y × R+, where the non-negative numbers
w ∈ R+ are called the weights. In the weighted classification setup, we are given a set of
i.i.d. weighted training examples Sw = {(xn, yn, wn)}Nn=1 ∼ D

N
w . Use

E(g,D) ≡ E
(x,y,w)∼D

(
w · Jy 6= g(x)K

)

3

to denote the expected weighted classification error of any classifier g : X → Y with re-
spect to some distribution D. The goal of the weighted classification is to use Sw to find a
classifier ĝ such that E(ĝ,Dw) is small.

For K = 2, the setup is called (weighted) binary classification; for K > 2, the setup is
called (weighted) multiclass classification. When the weights are constants (say, 1), weighted
classification becomes a special case called regular classification, which has been widely
and deeply studied for years (Beygelzimer et al, 2005). In general, weighted classification
can be easily reduced to regular classification for both binary and multiclass cases using the
famous COSTING reduction (Zadrozny et al, 2003). In addition, many of the existing regu-
lar classification algorithms can be easily extended to perform weighted classification. Thus,
there are plenty of useful theoretical and algorithmic tools for both weighted classification
and regular classification (Beygelzimer et al, 2005).

The main setup that we will study in this paper is cost-sensitive classification, which is
more general than weighted classification.

Definition 2 (cost-sensitive classification) Assume that there is an unknown distributionDc
on X ×Y×RK . A cost-sensitive example is a tuple (x, y, c) ∈ X ×Y×RK , where c[k] de-
notes the cost to be paid when x is predicted as category k. In the cost-sensitive classification
setup, we are given a set of i.i.d. cost-sensitive training examples Sc = {(xn, yn, cn)}Nn=1 ∼
DNc . We shall reuse

E(g,D) ≡ E
(x,y,c)∼D

c[g(x)] .

to denote the expected cost of any classifier g : X → Y with respect to some distribu-
tion D. The goal of the cost-sensitive classification is to use Sc to find a classifier ĝ such
that E(ĝ,Dc) is small.

We make two remarks here. First, when looking at the definition of E, we see that the
label y is actually not needed in evaluating the classifier g. We keep the label there to better
illustrate the connection between cost-sensitive and regular/weighted classification. Natu-
rally, we assume that Dc would only generate examples (x, y, c) such that c[y] = cmin =

min1≤`≤K c[`].
Secondly, let us define the classification cost vector c

(`)
c [k] ≡ J` 6= kK. We see that

weighted classification is a special case of cost-sensitive classification using c = w · c(y)c
as the cost vector of (x, y, w), and regular classification is a special case of cost-sensitive
classification using c = c

(y)
c as the cost vector.

While both regular and weighted classification have been widely studied, cost-sensitive
classification is theoretically well-understood only in the binary case (Zadrozny et al, 2003),
in which weighted classification and cost-sensitive classification simply coincide. Next,
we will introduce the cost-transformation technique, which allows us to tightly connect
cost-sensitive classification with regular/weighted classification, and helps understand cost-
sensitive classification better in the multiclass case.

3 Cost Transformation

Cost-transformation is a tool that connects a cost vector to other cost vectors. In particular,

we hope to link any cost vector c with the classification cost vectors Cc =
{
c
(`)
c

}K
`=1

, be-
cause the link allows us to reduce cost-sensitive classification (which deals with c) to regular

4

classification (which deals with Cc). We start introducing the cost-transformation technique
by making two definitions about the relations between cost vectors. The first definition re-
lates two cost vectors c̃ and c.

Definition 3 (similar cost vectors) A cost vector c̃ is similar to c by ∆ if and only if c̃[·] =
c[·] +∆ with some constant ∆.

For instance, (4, 3, 2, 3) is similar to (2, 1, 0, 1) by 2. We shall omit the “by ∆” part
when it is clear from the context. Note that when c̃ is similar to c, using c̃ for evaluating
a prediction g(x) is equivalent to using c plus a constant cost of ∆. The constant shifting
from c to c̃ does not change the relative cost difference between the prediction g(x) and the
best prediction y.

Next, we relate a cost vector c to a set of cost vectors Cb.

Definition 4 (decomposable cost vectors) A cost vector c is decomposable to a set of base

cost vectors Cb =
{
c
(t)
b

}T
t=1

if and only if there exists non-negative coefficients q[t] such

that c[·] =
∑T
t=1 q[t] · c

(t)
b [·].

That is, a cost vector c is decomposable to Cb if we can split c to a conic combination of
the base cost vectors c(t)b . Why is such a decomposition useful? Let us take a cost-sensitive
example (x, y, c) and choose the classification cost Cc as Cb. If c is decomposable to Cc,
then for any classifier g,

c[g(x)] =

K∑
`=1

q[`] · c(`)c [g(x)] =

K∑
`=1

q[`] · J` 6= g(x)K .

That is, if we randomly generate ` proportional to q[`] and relabel the cost-sensitive exam-
ple (x, y, c) to a regular one (x, `, w = 1), then the cost that any classifier g needs to pay for
its prediction on x is proportional to the expected classification error, where the expectation
is taken with respect to the relabeling process. Thus, if a classifier g performs well for the
“relabeled” (regular classification) task, it would also perform well for the original cost-
sensitive classification task. The non-negativity of q[`] ensures that q can be normalized to
form a probability distribution.1

Definition 4 is a key of the cost-transformation technique. It not only allows us to trans-
form one cost vector c to an equivalent representation

{
(q[t] , c

(t)
b)
}

for some general Cb,
but more specifically also lets us relabel a cost-sensitive example (x, y, c) to another (ran-
domized) regular example (x, `, 1). However, is every cost vector c decomposable to the
classification cost Cc? The short answer is no. For instance, the cost vector c = (6, 3, 0, 3)

is not decomposable to Cc, because c yields a unique linear decomposition of Cc with some
negative coefficients:

c = −2 · c(1)c + 1 · c(2)c + 4 · c(3)c + 1 · c(4)c .

Although the cost vector (6, 3, 0, 3) itself is not decomposable to Cc, we can easily see
that its similar cost vector, (12, 9, 6, 9), is decomposable to Cc. In fact, for any cost vector c,
there is an infinite number of its similar cost vectors c̃ that are decomposable to Cc, as
formalized below.

1 We take a minor assumption that not all q[`] are zero. Otherwise c = 0 and the example (x, y, c) can
be simply discarded.

5

Theorem 1 (decomposition via a similar vector; Lin 2008) Consider any cost vector c.
Assume that c̃ is similar to c by ∆. Then, c̃ is decomposable to Cc if and only if

∆ ≥ (K−1) cmax −
K∑
k=1

c[k] ,

where cmax = max
1≤`≤K

c[`].

The proof (Lin, 2008) uses the fact that Cc is linearly independent while spanning RK ,
and the constant cost vector (∆,∆, · · · ,∆) with a positive ∆ is decomposable to Cc with
q[`] = ∆

K−1 .
From Theorem 1, there are infinitely many cost vectors c̃ that we can use. The next

question is, which is more preferable? Recall that with a given q̃, the relabeling probability
distribution is p̃[`] = q̃[`]

/∑K
k=1 q̃[k] . To reduce the variance with respect to the relabel-

ing process, one possibility is to require the discrete probability distribution p̃[·] to be of the
least entropy. That is, we want to solve the following optimization problem.

min
p̃,q̃,∆

K∑
`=1

p̃[`] log
1

p̃[`]
, (1)

subject to c[·] =
K∑
`=1

q̃[`] · c(`)c [·]−∆, p̃[·] = q̃[·]

/
K∑
k=1

q̃[k] ;

∆ ≥ (K−1) cmax −
K∑
k=1

c[k] .

Theorem 2 (decomposition with minimum-entropy; Lin 2008) If not all c[`] are equal,
the unique optimal solution to (1) is

q̃[`] = cmax − c[`] , (2)

∆ = (K−1) cmax −
K∑
k=1

c[k] . (3)

Note that the resulting ∆ is the smallest one that makes c̃ decomposable to Cc. The details
of the proof can be found in the previous work (Lin, 2008). Using Theorem 2, we can then
define the following distribution Dr(x, `, w) from Dc(x, y, c).

Dr(x, `, w) = Jw = 1K · Λ−11 ·
∫
y,c

q̃[`] · Dc(x, y, c),

where q̃[`] is computed from c using (2) and

Λ1 =

∫
x,y,c

K∑
`=1

q̃[`] · Dc(x, y, c).

is a normalization constant.2 Then, we can derive the following theorem.

2 Even when all c[`] are equal, equation (2) can still be used to get q̃[`] = 0 for all `, which means the
example (x, y, c) can be dropped instead of relabeled.

6

Theorem 3 (cost-transformation) For any classifier g,

E(g,Dc) = Λ1 · E(g,Dr)− Λ2 ,

where Λ2 is a constant that can be computed by integrating over the ∆ term associated with
each c ∼ Dc from (3).

Theorem 3 can then be used to further prove the following regret equivalence theorem.

Theorem 4 (regret equivalence) Consider Dc and its associated Dr . If g∗ is the optimal
classifier under Dc, and g̃∗ is the optimal classifier under the associated Dr . Then, for any
classifier g,

E(g,Dc)− E(g∗,Dc) = Λ1 ·
(
E(g,Dr)− E(g̃∗,Dr)

)
.

That is, if a regular classification algorithm Ar can return some ĝ that is close to g̃∗
under Dr , the very same ĝ would be close to the optimal classifier g∗ for the original cost-
sensitive classification task.

Theoretically, Theorem 4 indicates an equivalence in terms of hardness between gen-
eral cost-sensitive classification tasks and general regular classification tasks. Then, we can
reduce cost-sensitive classification to regular classification using Algorithm 1.

Algorithm 1 Reduction with Relabeling

1. Obtain N ′ independent regular training examples Sr = {(xn, `n, 1)}N
′

n=1 from Dr :
(a) Transform each (xn, yn, cn) to (xn, q̃n) by (2).
(b) Apply the COSTING reduction (Zadrozny et al, 2003) and accept the multi-labeled example

(xn, q̃n) with probability proportional to
∑K

`=1 q̃n[`].
(c) For those (xn, q̃n) that survive from COSTING, randomly assign its label `n with probability

proportional to q̃n[`].
2. Use a regular classification algorithm Ar on Sr to obtain a classifier ĝr that ideally yields a small

E(ĝr,Dr).
3. Return ĝ ≡ ĝr .

From Algorithm 1, any good regular classification algorithm Ar can be turned into
a good cost-sensitive classification algorithm Ac, and trivially vice versa. That is, cost-
sensitive classification is as hard as (or as easy as) regular classification. Note that the “hard”
part of the arguments is quite important, as illustrated below.

While the cost-transformation steps above are supported with theoretical guarantees
from Theorems 3 and 4, they may not work well in practice. For instance, if we look
at an example (xn, yn, cn) with yn = 1 and cn = (0, 1, 1, 334), the resulting q̃n =

(334, 333, 333, 0). Because of the large value in cn[4], the example looks almost like a uni-
form mixture of labels {1, 2, 3}, with only 0.334 of probability to keep its original label. In
other words, for the purpose of encoding some large components in a cost vector, the rela-
beling process could pay a huge variance (like noise) and relabel (or mislabel) the example
more often than not. Then, the regular classification algorithmAr may receive some Sr that
contains lots of misleading labels, making it hard for the algorithm to return a decent ĝr .

The observation above indicates that cost-transformation can introduce noise to the
learning process through relabeling. In other words, it reduces the original cost-sensitive
classification task to a possibly more noisy regular classification task. The noise makes the

7

learning process less stable, and hence the returned ĝr may not be good. One small improve-
ment that aims at decreasing the relabeling variance is to use Algorithm 2, called training
set expansion and weighting (TSEW), instead of relabeling. Note that the algorithm reduces
cost-sensitive classification to weighted classification rather than regular classification.

Algorithm 2 Training Set Expansion and Weighting

1. Obtain NK training examples Sw = {(xn`, yn`, wn`)}:
(a) Transform each (xn, yn, cn) to (xn, q̃n) by (2).
(b) For every `, let (xn`, yn`, wn`) = (xn, `, q̃n[`])
(c) Add (xn`, yn`, wn`) to Sw .

2. Use a weighted classification algorithmAw on Sw to obtain a classifier ĝw .
3. Return ĝ ≡ ĝw .

In Algorithm 2, it is not hard to show that Dr(x, `, 1) ∝ w · Dw(x, `, w) for some Dw,
and Sw contains (dependent) examples generated from Dw. We can think of Sw, which
trades independence for smaller variance, as a more stable version of Sr . The expanded
training set Sw contains all possible `, and hence always includes the correct label yn along
with the largest weight wnyn = q̃n[yn].

Note that the Aw in TSEW can also be performed by a regular classification algo-
rithmAc using the COSTING reduction (Zadrozny et al, 2003). Then, Algorithm 1 is simply
a special (and possibly less stable) case of TSEW.

The TSEW algorithm is a good representative of our proposed cost-transformation tech-
nique. Note that TSEW is actually the same as the data space expansion (DSE) algorithm
proposed by Abe et al (2004). Nevertheless, our derivation from the minimum entropy per-
spective is novel, and our theoretical results on the out-of-sample cost E(g,Dc) are more
general than the in-sample cost analysis by Abe et al (2004). Xia et al (2007) also proposed
an algorithm similar to TSEW using LogitBoost asAw based on a restricted version of The-
orem 3. It should be noted that the results discussed in this section are partially influenced
by the work of Abe et al (2004) but are independent from the work of Xia et al (2007).

From the experimental results in literature, a direct use of TSEW (DSE) does not per-
form well in practice (Abe et al, 2004). A possible explanation is that although Sw does
not contain relabeling noise, it still carries multi-labeling ambiguities. That is, the same in-
put vector xn can come with many different labels (with possibly different weights) in Sw.
Thus, common Aw can find Sw too difficult to digest (Xia et al, 2007). One could improve
the basic TSEW algorithm by using (or designing) an Aw that is robust with multi-labeled
training feature vectors. We shall present one such algorithm in the next section.

4 Cost-Sensitive One-Versus-One

In this section, we propose a novel cost-sensitive classification algorithms by coupling the
cost-transformation technique with the popular and robust one-versus-one (OVO) algorithm
for regular classification. Before we get into our proposed cost-sensitive one-versus-one
(CSOVO) algorithm, we shall introduce the original OVO first.

8

4.1 Original One-versus-one

We shall present a weighted version of OVO here. As shown in Algorithm 3, OVO decom-
poses the multiclass classification task into K(K−1)

2 binary classification subtasks. Because
of the O(K2) growth in the number of subtasks, OVO is usually more suited when K is not
too large (Hsu and Lin, 2002).

Algorithm 3 One-versus-one (Hsu and Lin, 2002)

1. For each i, j that 1 ≤ i < j ≤ K,
(a) Take the original Sw = {(xn, yn, wn)}Nn=1 and construct a binary training set S(i,j)b =
{(xn, yn, wn) : yn = i or j}.

(b) Use a weighted binary classification algorithmAb on S(i,j)b to get a binary classifier ĝ(i,j)b .

2. Return ĝ(x) = argmax
1≤`≤K

∑
i<j

r
ĝ
(i,j)
b (x) = `

z
.

In short, each binary classification subtask consists of comparing examples from two
categories only. That is, each ĝ(i,j)b (x) intends to predict whether x “prefers” category i or

category j, and ĝ predicts with the preference votes gathered from those ĝ(i,j)b . The goal

of Ab is to locate binary classifiers ĝ(i,j)b with a small E
(
ĝ
(i,j)
b ,D(i,j)

OVO

)
, where

D(i,j)
OVO

(
x, y, u

)
=

r
u = Jy = i or jK

z∫
w

Dr
(
x, y, w

)
.

In particular, it has been proved (Beygelzimer et al, 2005) that

E(ĝ,Dr) ≤ 2
∑
i<j

E
(
ĝ
(i,j)
b ,D(i,j)

OVO

)
.

That is, if E
(
ĝ
(i,j)
b ,D(i,j)

OVO

)
are all small, then E(ĝ,Dr) should also be small.

4.2 Cost-sensitive One-versus-one

By coupling OVO with the cost-transformation technique (TSEW in Algorithm 2), we can
easily get a preliminary version of CSOVO in Algorithm 4.

One thing to notice in Algorithm 4 is that each training example (xn, yn) may be split
to two examples

(
xn, i, w

(i)
n

)
and

(
xn, j, w

(j)
n

)
for each S(i,j)b . That is, the example is

ambiguously presented for each binary classification subtask. We can take a simple trick to
eliminate the ambiguity before training. In particular, we keep only the label (say, i) that
comes with a larger weight, and adjust its weight to

∣∣∣w(i)
n − w

(j)
n

∣∣∣. The trick follows from
the same principle as shifting the cost vectors to a similar one. Then, we can eliminate one
unnecessary example and remove the multi-labeling ambiguity in the binary classification
subtask.

9

Algorithm 4 TSEW-OVO
1. For each i, j that 1 ≤ i < j ≤ K,

(a) Transform each cost-sensitive example (xn, yn, cn) to (xn, q̃n) by (2).
(b) Use all the (xn, q̃n) to construct a binary classification training set

S(i,j)b =
{(

xn, i, w
(i)
n

)}
∪
{(

xn, j, w
(j)
n

)}
,

where w
(`)
n = q̃n[`].

(c) Use a weighted binary classification algorithmAb on S(i,j)b to get a binary classifier ĝ(i,j)b .

2. Return ĝ(x) = argmax
1≤`≤K

∑
i<j

r
ĝ
(i,j)
b (x) = `

z
.

Recall that (xn, i, w
(i)
n) would be of weight w(i)

n = q̃n[i] and (xn, j, w
(j)
n) would be of

weight w(j)
n = q̃n[j]. By the discussion above, the simplified S(i,j)b is{(

xn, argmax
`=i or j

q̃n[`] ,
∣∣∣q̃n[i]− q̃n[j]

∣∣∣)}

=

{(
xn, argmin

`=i or j
cn[`] ,

∣∣∣cn[i]− cn[j]
∣∣∣)} . (4)

Then, we get our proposed CSOVO algorithm.

Algorithm 5 Cost-sensitive One-versus-one

1. For each i, j that 1 ≤ i < j ≤ K,
(a) Take the original Sc = {(xn, yn, cn)}Nn=1 and construct S(i,j)b by (4).

(b) Use a weighted binary classification algorithmAb on S(i,j)b to get a binary classifier ĝ(i,j)b .

2. Return ĝ(x) = argmax
1≤`≤K

∑
i<j

r
ĝ
(i,j)
b (x) = `

z
.

An intuitive explanation is that CSOVO asks each binary classifier ĝ(i,j)b to answer the
question “is c[i] or c[j] smaller for this x?” We can easily see that CSOVO (Algorithm 5)
takes OVO (Algorithm 3) as a special case when using only the weighted classification cost
vectors (w · c(`)c).

4.3 Theoretical Guarantee

Next, we analyze the theoretical guarantee of Algorithm 5. Note that each created example(
xn, argmin

`=i or j
cn[`] ,

∣∣∣cn[i]− cn[j]
∣∣∣)

can be thought as if coming from a distribution

D(i,j)
CSOVO (x, k, u)

=

∫
y,c

r
k=argmin

`=i or j
c[`]

zr
u=
∣∣∣c[i]− c[j]

∣∣∣zDc (x, y, c) .

10

We then get the following theorem:

Theorem 5 Consider any family of binary classifiers{
g
(i,j)
b : X → {i, j}

}
1≤i<j≤K

.

Let g(x) = argmax
1≤`≤K

∑
i<j

r
g
(i,j)
b (x) = `

z
. Then,

E(g,Dc)− E
(x,y,c)∼Dc

cmin ≤ 2
∑
i<j

E
(
g
(i,j)
b ,D(i,j)

CSOVO

)
. (5)

Proof For each (x, y, c) generated from Dc, if c[g(x)] = c[y] = cmin, its contribution on
the left-hand side is 0, which is trivially less than its contribution on the right-hand side.

Without loss of generality (by sorting the elements of the cost vector c and shuffling the
labels y ∈ Y), consider an example (x, y, c) such that

cmin = c[1] ≤ c[2] ≤ . . . ≤ c[K] = cmax.

From the results of Beygelzimer et al (2005), suppose g(x) = k, then for each 1 ≤ ` ≤ k−1,
there are at least dk/2e pairs (i, j), where i ≤ k < j, and

g
(i,j)
b (x) 6= argmin

`=i or j
cn[`] .

Therefore, the contribution of (x, y, c) on the right-hand side is no less than

k−1∑
`=1

(c[`+ 1]− c[`])
⌈
`
/
2
⌉
≥ 1

2

k−1∑
`=1

` (c[`+ 1]− c[`])

=
1

2

k−1∑
`=1

(c[k]− c[`])

≥ 1

2
(c[k]− cmin) ,

and the left-hand-side contribution is (c[k]− cmin). The desired result can be proved by
integrating over all Dc. ut

Thus, similar to the original OVO algorithm, if E
(
ĝ
(i,j)
b ,D(i,j)

CSOVO

)
are all small, then the

resulting E(ĝ,Dc) should also be small.

4.4 A Sibling Algorithm: Weighted All-pairs

Note that a similar theoretical proof of Theorem 5 was made by Beygelzimer et al (2005) to
analyze another algorithm called weighted all-pairs (WAP). As illustrated in Algorithm 6,
the WAP algorithm shares many similar algorithmic structures with CSOVO. In particular,
we see that except the difference between equations (4) and (6), WAP is exactly the same as
CSOVO.

11

Algorithm 6 A Special Version of WAP (Beygelzimer et al, 2005)
Run CSOVO, while replacing (4) in step 1(a) with

S(i,j)b =

{(
xn, argmin

`=i or j
cn[`] ,

∣∣∣vn[i]− vn[j]
∣∣∣)} (6)

where vn[i] =

∫ cn[i]

cmin

1

|{k : cn[k] ≤ t}|
dt

Define

D(i,j)
WAP (x, k, u)

=

∫
y,c

r
k=argmin

`=i or j
c[`]

zr
u=
∣∣∣v[i]− v[j]

∣∣∣zDc (x, y, c) ,
where v is computed from c using a similar definition as the one in Algorithm 6. The cost
bound of WAP is then (Beygelzimer et al, 2005)

E(g,Dc)− E
(x,y,c)∼Dc

cmin ≤ 2
∑
i<j

E
(
g
(i,j)
b ,D(i,j)

WAP

)
. (7)

Note that we can let v′n[i] ≡ cn[i] − cmin =
∫ cn[i]
cmin

(1) dt. Then, CSOVO equivalently uses∣∣∣v′n[i] − v′n[j]
∣∣∣ as the underlying example weight. It is not hard to see that for any given

example (x, y, c), the associated∣∣∣v′n[i]− v′n[j]
∣∣∣ ≥ ∣∣∣vn[i]− vn[j]

∣∣∣.
Thus, the WAP cost bound (7) is tighter than the CSOVO one (5) when using the same
binary classifiers

{
ĝ
(i,j)
b

}
. In particular, while the right-hand-side of (5) and (7) look sim-

ilar, the total weight that CSOVO takes in D(i,j)
CSOVO is larger than the total weight that WAP

takes in D(i,j)
WAP . The difference allows WAP to have an O(K) regret transform (Beygelzimer

et al, 2005) instead of the O(K2) one of CSOVO (Theorem 5). Thus, for binary classifiers{
ĝ
(i,j)
b

}
with the same error rate, it appears that WAP is better than CSOVO because of the

tighter upper bound. However, CSOVO enjoys the advantage of efficiency and simplicity in
implementation, because equation (6) would require a complete sorting of each cost vector
(of size K) to compute while (4) only needs a simple subtraction. In the next section, we
shall study whether the tighter cost bound with the additional complexity (WAP) leads to
better empirical performance than the other way around (CSOVO).

4.5 Another Sibling Algorithm: All-pair Filter Tree

Another sibling algorithm of CSOVO is called the all-pair filter tree (APFT; Beygelzimer
et al, 2007). APFT designs a elimination-based tournament in order to find the label with
the lowest cost. During training, if an example (xn, yn) as well as the classifiers in the lower

12

levels of the tree allow labels {i, j} to meet in one game of the tournament, a weighted
example (

xn, argmin
`=i or j

cn[`] ,
∣∣∣cn[i]− cn[j]

∣∣∣)

is added to the training set S(i,j)b for learning a classifier ĝ(i,j)b . The goal of ĝ(i,j)b is to

achieve a small E
(
ĝ
(i,j)
b ,D(i,j)

APFT

)
, where

D(i,j)
APFT (x, k, u)

=

∫
y,c

r
i, j attends the tournament

zr
k=argmin

`=i or j
c[`]

zr
u=
∣∣∣c[i]− c[j]

∣∣∣zDc (x, y, c) .
Note that the condition

r
i, j attends the tournament

z
depends on lower-level classifiers that

“filter” the distribution for higher-level training. During prediction, the results from
{
ĝ
(i,j)
b

}
are decoded using the same tournament design rather than voting.

Let
{
g
(i,j)
b

}
be a set of binary classifiers and gAPFT be the resulting classifier after de-

coding the predictions of
{
g
(i,j)
b

}
from the tournament. It can be shown (Beygelzimer et al,

2007) that

E(gAPFT,Dc)− E
(x,y,c)∼Dc

cmin ≤
∑
i<j

E
(
g
(i,j)
b ,D(i,j)

APFT

)
. (8)

Comparing CSOVO with APFT, we see one similarity: the weighted examples included in
each S(i,j)b . Nevertheless, note that APFT uses fewer examples than CSOVO—the former
uses only pairs of labels that are met in the tournament and the latter uses all possible pairs
of labels. The difference allows for a tighter error bound for APFT by conditioning on the
tournament results. Thus, when using binary classifiers of the same error rate, it appears that
APFT is better than CSOVO because of the tighter upper bound. Furthermore, by restricting
to a specific tournament, APFT results in an O(K) predicting scheme instead of the O(K2)

one that CSOVO needs to take. Nevertheless, APFT essentially breaks the symmetry be-
tween classes by restricting to a specific tournament, and the reduced number of examples
in each S(i,j)b could degrade the practical learning performance. In the next section, we shall
also study whether the tighter cost bound with the tournament restriction (APFT) leads to
better empirical performance than the other way around (CSOVO).

5 Experiments

We will first compare CSOVO with the original OVO on various real-world data sets. Then,
we will compare CSOVO with WAP (Beygelzimer et al, 2005) and APFT (Beygelzimer et al,
2007). All four algorithms are of OVO-type. That is, they obtain a multiclass classifier ĝ by
calling a weighted binary classification algorithm Ab for K(K−1)

2 times. During prediction,
CSOVO, OVO and WAP requires gathering votes from K(K−1)

2 binary classifiers, while
APFT determines the label by using K − 1 of those classifiers in the tournament. In addi-
tion, we will compare CSOVO with other existing algorithms that also reduce cost-sensitive
classification to weighted binary classification.

13

Table 1 classification data sets

data set # examples # categories (K) # features
zoo 101 7 16

glass 214 6 9
vehicle 846 4 18
vowel 990 11 10
yeast 1484 10 8

segment 2310 7 19
dna 3186 3 180

pageblock 5473 5 10
satimage 6435 6 36

usps 9298 10 256

We take the support vector machine (SVM) with the perceptron kernel (Lin and Li,
2008) as Ab in all the experiments and use LIBSVM (Chang and Lin, 2001) as our SVM
solver. Note that SVM with the perceptron kernel is known as a strong classification algo-
rithm (Lin and Li, 2008) and can be naturally adopted to perform weighted binary classifi-
cation (Zadrozny et al, 2003). We will also take a weaker classifier, namely SVM with the
linear kernel, in Subsection 5.6.

We use ten classification data sets: zoo, glass, vehicle, vowel, yeast, segment, dna,
pageblock, satimage, usps (Table 1).3 The first nine come from the UCI machine learning
repository (Hettich et al, 1998) and the last one is from Hull (1994).

Note that the ten data sets were originally gathered as regular classification tasks. We
shall first adopt the randomized proportional (RP) cost-generation procedure that was used
by Beygelzimer et al (2005). In particular, we generate the cost vectors from a cost ma-
trix C(y, k) that does not depends on x. The diagonal entries C(y, y) are set as 0 and each of
the other entriesC(y, k) is a random variable sampled uniformly from

[
0, 2000

|{n : yn=k}|
|{n : yn=y}|

]
.

Then, for a cost-sensitive example (x, y, c), we simply take c[k] = C(y, k). We acknowl-
edge that the RP procedure may not fully reflect realistic application needs. Nevertheless,
we still take the procedure as it is a longstanding benchmark for comparing general-purpose
cost-sensitive classification algorithms. We will take another cost-generating procedure in
Subsection 5.4.

We randomly choose 75% of the examples in each data set for training and leave the
other 25% of the examples as the test set. Then, each feature in the training set is linearly
scaled to [−1, 1], and the feature in the test set is scaled accordingly. The results reported
are all averaged over 20 trials of different training/test splits, along with the standard error.
In the coming tables, those entries within one standard error of the lowest one are marked in
bold.

SVM with the perceptron kernel takes a regularization parameter (Lin and Li, 2008),
which is chosen within

{
2−17, 2−15, . . . , 23

}
with a 5-fold cross-validation (CV) procedure

on only the training set (Hsu et al, 2003). For the OVO algorithm, the CV procedure selects
the parameter that results in the smallest cross-validation classification error. For CSOVO
and other cost-sensitive classification algorithms, the CV procedure selects the parameter
that results in the smallest cross-validation cost. We then re-run each algorithm on the whole
training set with the chosen parameter to get the classifier ĝ. Finally, we evaluate the average
performance of ĝ with the test set.

3 All data sets except zoo, glass, yeast and pageblock are actually downloaded from http://www.
csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets

14

Table 2 test cost of CSOVO/OVO

data set CSOVO OVO
zoo 36.79±9.09 105.56±33.45

glass 210.06±15.88 492.99±40.77
vehicle 155.14±20.63 185.38±17.23
vowel 20.05±1.95 11.90±1.96
yeast 52.45±2.97 5823.21±1290.65

segment 25.27±2.25 25.15±2.11
dna 53.18±4.25 48.15±3.33

pageblock 24.98±4.94 501.57±74.98
satimage 66.57±4.77 94.07±5.49

usps 20.51±1.17 23.62±0.66

Table 3 test classification error of CSOVO/OVO

data set CSOVO OVO
zoo 0.131±0.015 0.060±0.010

glass 0.605±0.034 0.304±0.010
vehicle 0.283±0.020 0.185±0.005
vowel 0.059±0.010 0.011±0.002
yeast 0.767±0.007 0.398±0.006

segment 0.051±0.008 0.024±0.001
dna 0.115±0.017 0.043±0.002

pageblock 0.776±0.064 0.033±0.001
satimage 0.168±0.012 0.072±0.002

usps 0.077±0.030 0.023±0.000

5.1 CSOVO versus OVO

Table 2 compares the test cost of CSOVO and the original cost-insensitive OVO. We can see
that on 7 out of the 10 data sets, CSOVO is significantly better than OVO, which justifies that
it can be useful to include the cost information into the training process. The t-test results,
which will be shown in Table 8, suggest the same finding. The big difference on yeast and
pageblock is because they are highly unbalanced and hence the components in c can be
huge. Then, not using (or discarding) cost information (as OVO does) would intuitively lead
to worse performance.

The only data set on which CSOVO is much worse than OVO is vowel. One may wonder
why including the accurate cost information does not improve performance. The reason lies
in Table 3, in which we compare the test classification error rate of CSOVO and OVO. Not
surprisingly, OVO can always achieve lower test error than CSOVO. In fact, on yeast and
pageblock, in which some of the cost components are large, we clearly see that CSOVO is
willing to trade a significant amount of classification accuracy for a lower cost. For vowel,
note that OVO can achieve a very low test error (1.1%), which readily leads to a low test
cost. Then the caveat of using CSOVO, or more generally the cost-transformation technique,
arises. In particular, cost transformation reduces the original “easy” task for OVO to a more
difficult one. The change in hardness degrades the learning performance, and thus CSOVO
results in relatively higher test cost.

Recall that CSOVO comes from coupling the cost-transformation technique with OVO,
and we discussed in Section 3 that cost transformation inevitably introduces multi-labeling
ambiguity into the learning process. The ambiguity acts like noise, and generally makes the
learning tasks more difficult. On the vowel data set, OVO readily achieves low test error
and hence low test cost, while CSOVO suffers from the difficult learning tasks and hence

15

Table 4 test cost of CSOVO/WAP/APFT

data set CSOVO WAP APFT
zoo 36.79±9.09 49.09±16.67 56.92±15.41

glass 210.06±15.88 220.29±18.56 215.95±17.36
vehicle 155.14±20.63 148.63±19.74 158.60±20.35
vowel 20.05±1.95 19.36±1.81 27.59±2.94
yeast 52.45±2.97 52.71±3.58 63.53±8.11

segment 25.27±2.25 24.40±1.96 28.51±2.55
dna 53.18±4.25 51.13±4.37 53.37±5.49

pageblock 24.98±4.94 20.68±2.52 25.60±4.98
satimage 66.57±4.77 72.05±5.13 80.70±5.98

usps 20.51±1.17 21.04±1.19 29.75±1.75

Table 5 test cost bound of CSOVO/WAP/APFT

data set CSOVO with (5) WAP with (7) APFT with (8)
zoo 465.53±124.48 147.56±30.32 143.54±40.97

glass 2138.52±260.90 811.30±69.02 471.66±50.41
vehicle 499.53±55.49 295.87±30.25 245.15±27.54
vowel 475.25±35.18 126.60±9.51 111.26±10.87
yeast 4820.96±301.43 736.31±26.70 401.92±55.94

segment 245.86±21.83 94.37±7.50 77.65±7.04
dna 95.77±6.76 71.94±5.77 69.18±8.35

pageblock 533.36±89.50 260.73±43.80 112.51±28.93
satimage 477.45±22.52 193.25±10.88 183.24±12.73

usps 415.36±23.40 112.22±6.08 98.34±5.78

gets high test cost. Similar situations happen on segment, dna, usps, in which the test
cost of CSOVO and OVO are quite close. That is, it is worth trading the cost information
for easier learning tasks. On the other hand, when OVO cannot achieve low test error (like
on vehicle) or when the cost information is extremely important (like on pageblock), it is
worth trading the easy learning tasks for knowing the accurate cost information, and thus
CSOVO performs better.

5.2 CSOVO versus WAP and APFT

Next, we compare CSOVO with WAP and APFT in terms of the average test cost in Table 4.
We see that CSOVO and WAP are comparable in performance, with WAP being slightly
worse on satimage and CSOVO being slightly worse on pageblock. The similarity is nat-
ural because CSOVO and WAP are only different in the weights given to the underlying
binary examples. On the other hand, Table 4 shows that APFT usually performs slightly
worse than CSOVO and WAP. Thus, CSOVO and WAP should be better choices, unless the
O(K) prediction time (and the shorter O(K2) training time because of the conditioning on
the tournament) of APFT is needed. Again, the t-test results in Table 8 lead to the same
conclusion.

We mentioned in Subsections 4.4 and 4.5 that the cost bounds of WAP and APFT are
both tighter than the one of CSOVO. To understand whether the cost bounds can explain
the results in Table 4, we compute the bounds using the test set and list them in Table 5.
We see that both WAP and APFT can indeed reach lower cost bounds. Nevertheless, the
bounds are quite loose when compared to the actual test cost values in Table 4. Because of

16

Table 6 comparison of meta-algorithms that reduce cost-sensitive to binary classification

CSOVO WAP APFT FT/TREE SECOC CSOVA
of binary classifiers K(K−1)

2
K(K−1)

2
K − 1

K(K−1)
2

12 · 2dlog2 Ke K
prediction time O(K2) O(K2) O(K) O(log2 K) O(K) O(K)

theoretical guarantee yes yes yes yes yes partial

the looseness, using WAP for the tighter bound (or APFT for the tighter bound) does not
lead to much gain in performance.

In summary, CSOVO performs better than APFT; CSOVO performs similarly to WAP
but enjoys a simpler and more efficient implementation (see Subsection 4.4). Thus, CSOVO
should be preferred over both WAP and APFT in practice.

5.3 CSOVO versus Others

Next, we compare CSOVO with four other existing algorithms, namely TREE (Beygelz-
imer et al, 2005), Filter Tree (FT; Beygelzimer et al, 2007), Sensitive Error Correcting Out-
put Codes (SECOC; Langford and Beygelzimer, 2005), and Cost-sensitive One-versus-all
(CSOVA; Lin, 2008). The algorithms cover commonly-used decompositions from multi-
class classification to binary classification. Note that TREE, FT and SECOC, like CSOVO
and WAP, come with sound theoretical guarantee, which assures that a good binary classifier
can be cast as a good cost-sensitive one. CSOVA, on the other hand, follows a heuristic step
in its derivation and hence does not carry a strong theoretical guarantee. A quick comparison
about the properties of the four meta-algorithms (as well as CSOVO, WAP and APFT) are
shown in Table 6.

Table 7 compares the average test RP cost of CSOVO, TREE, FT, SECOC and CSOVA;
Table 8 lists the paired t-test results with significance level 0.05. SECOC is the worst of
the five, which is because it contains a thresholding (quantization) step that can lead to an
inaccurate representation of the cost information.

FT performs slightly worse than CSOVO, which demonstrates that a full pairwise com-
parison (CSOVO/WAP) can be more stable than an elimination-based tournament (FT).
TREE performs even worse than FT, which complies with the finding in the original FT
paper (Beygelzimer et al, 2007) that a regret-based reduction (FT) can be more robust than
an error-based reduction (TREE).

Interestingly, when comparing Table 7 with Table 4, we see that FT performs better
than APFT. Such a result suggests that decomposing the decision of each game to pairwise
classifiers (APFT) is not better than directly predicting the outcome of each game in the
tournament (FT). This is possibly because the reduced number of examples in each S(i,j)b
of APFT could degrade the practical learning performance (see Subsection 4.5), especially
when using a highly nonlinear model like SVM with the perceptron kernel. We will discuss
more about this issue in Subsection 5.6.

CSOVO and CSOVA are quite similar in performance on many data sets. Nevertheless,
recall that CSOVO comes with a stronger theoretical guarantee than CSOVA. Thus, whenK
is relatively small (like on our data sets) and training K(K−1)

2 binary classifiers is affordable,
CSOVO is the best meta-algorithm for reducing multiclass cost-sensitive classification to
binary classification in terms of both accuracy and efficiency.

17

Table 7 test cost of meta-algorithms that reduce cost-sensitive to binary classification

data set CSOVO FT TREE SECOC CSOVA
zoo 36.79±9.09 74.01±27.65 57.07±17.40 179.02±30.52 79.70±25.31

glass 210.06±15.88 212.76±19.38 264.02±24.49 347.77±37.87 231.77±18.51
vehicle 155.14±20.63 156.01±20.14 156.72±20.12 167.60±20.97 156.91±19.91
vowel 20.05±1.95 24.66±2.92 28.42±3.02 95.25±7.35 15.06±1.73
yeast 52.45±2.97 53.73±3.14 66.49±6.09 277.14±49.41 86.80±9.78

segment 25.27±2.25 27.06±2.32 27.76±2.26 68.08±4.02 25.50±2.23
dna 53.18±4.25 53.76±4.23 55.32±4.39 65.90±5.66 39.67±2.41

pageblock 24.98±4.94 29.93±6.16 23.00±3.28 249.28±67.31 42.99±8.17
satimage 66.57±4.77 74.01±4.57 78.13±4.31 102.81±5.41 77.26±4.73

usps 20.51±1.17 27.07±1.52 25.74±1.55 86.59±9.45 21.49±1.23

Table 8 t-test for comparing CSOVO with other meta-algorithms using RP cost

data set OVO WAP APFT FT TREE SECOC CSOVA
zoo ◦ ∼ ∼ ∼ ∼ ◦ ∼

glass ◦ ∼ ∼ ∼ ◦ ◦ ∼
vehicle ◦ ∼ ∼ ∼ ∼ ◦ ∼
vowel × ∼ ◦ ◦ ◦ ◦ ×
yeast ◦ ∼ ∼ ∼ ◦ ◦ ◦

segment ∼ ∼ ◦ ◦ ◦ ◦ ∼
dna ∼ ∼ ∼ ∼ ∼ ◦ ×

pageblock ◦ ∼ ∼ ∼ ∼ ◦ ◦
satimage ◦ ◦ ◦ ◦ ◦ ◦ ◦

usps ◦ ∼ ◦ ◦ ◦ ◦ ∼

◦: CSOVO significantly better; ×: CSOVO significantly worse; ∼: similar

5.4 Comparison with Emphasizing Cost

Next, we take another cost-generating procedure to compare cost-sensitive classification
algorithms. We consider a practical task in which one wishes to mark some of the classes
as “important.” Traditionally, the task is tackled with the weighted classification approach:
putting a larger weight w on those classes. That is, consider a cost matrix Cc(y, k) where
the y-th row of Cc is the classification cost vector c(y)c . The approach above corresponds to
scaling up some rows of Cc by w, indicating that examples that come from those classes are
more important.

Another way of saying that class ` is important is to prevent mis-classifying examples of
other classes as `. For instance, ` can be the “non-cancerous” class and it is certainly bad to
predict patients carrying any kind of cancer as non-cancerous. Thus, we need a cost matrix
that comes from scaling up some columns of Cc. Weighted classification cannot deal with
such a cost matrix, but cost-sensitive classification can.

In our experiments, we generate costs by first picking a random bK/2c of the columns,
and decide whether to scale each of them by 100 with a fair coin flip. Thus, in expectation,
bK/2c

2 columns of Cc are scaled to form a cost matrix C. Then, for a cost-sensitive example
(x, y, c), we take c[k] = C(y, k). The resulting cost C would be called emphasizing cost.

Table 9 compares the average test emphasizing cost of CSOVO with WAP, APFT, FT,
TREE, SECOC and CSOVA; Table 10 lists the paired t-test results with significance level
0.05. Similar to the findings when using the RP procedure, the leading algorithms in perfor-
mance are CSOVO, WAP and CSOVA. They are mostly able to achieve decent performance
under the emphasizing cost. In particular, the average cost is usually less than 1, indicat-

18

Table 9 test emphasizing cost of meta-algorithms that reduce cost-sensitive to binary classification

data set CSOVO WAP APFT FT TREE SECOC CSOVA
zoo 0.08±0.01 0.07±0.01 0.10±0.02 0.09±0.01 0.08±0.01 0.95±0.19 0.85±0.58

glass 0.57±0.09 0.59±0.09 0.75±0.19 0.83±0.27 0.98±0.28 1.16±0.20 1.15±0.32
vehicle 0.49±0.03 0.48±0.03 0.50±0.03 0.48±0.03 0.48±0.03 0.71±0.01 0.43±0.04
vowel 0.12±0.02 0.11±0.02 0.15±0.03 0.12±0.03 0.17±0.05 0.87±0.02 0.07±0.01
yeast 0.50±0.02 0.51±0.02 0.51±0.02 0.49±0.01 0.60±0.05 0.91±0.01 0.51±0.02

segment 0.19±0.04 0.16±0.03 0.17±0.03 0.17±0.03 0.23±0.06 0.83±0.03 0.14±0.02
dna 0.27±0.02 0.27±0.02 0.27±0.02 0.28±0.02 0.29±0.02 0.61±0.01 0.23±0.02

pageblock 0.23±0.04 0.27±0.06 0.24±0.04 0.24±0.04 0.28±0.06 0.83±0.04 0.58±0.15
satimage 0.24±0.02 0.29±0.02 0.25±0.02 0.37±0.12 0.35±0.08 0.81±0.01 0.28±0.03

usps 0.11±0.01 0.11±0.01 0.13±0.01 0.13±0.01 0.12±0.01 0.87±0.01 0.12±0.02

Table 10 t-test for comparing CSOVO with other meta-algorithms with emphasizing cost

data set WAP APFT FT TREE SECOC CSOVA
zoo ∼ ∼ ∼ ∼ ◦ ∼

glass ∼ ∼ ∼ ∼ ◦ ◦
vehicle ∼ ∼ ∼ ∼ ◦ ∼
vowel ∼ ◦ ∼ ∼ ◦ ×
yeast ∼ ◦ ∼ ◦ ◦ ∼

segment ∼ ∼ ∼ ∼ ◦ ∼
dna ∼ ∼ ◦ ◦ ◦ ×

pageblock ◦ ∼ ∼ ∼ ◦ ◦
satimage ◦ ∼ ∼ ∼ ◦ ◦

usps ∼ ◦ ◦ ◦ ◦ ∼

◦: CSOVO significantly better; ×: CSOVO significantly worse; ∼: similar

ing that the serious mis-classification costs (the emphasized ones with cost 100) have been
carefully prevented. On the other hand, SECOC often cannot reach the same level of perfor-
mance; APFT, FT and TREE are also sometimes worse. The results again verify that CSOVO
is a superior choice for reducing from cost-sensitive classification to binary classification.

5.5 Comparison on Ordinal Ranking Data Sets

We mentioned in Section 1 that cost-sensitive classification can express any finite-choice
and bounded-loss supervised learning setups (Beygelzimer et al, 2005). Next, we demon-
strate the usefulness of cost-sensitive classification with one such setup: ordinal ranking.
Ordinal ranking can be viewed as a special case of cost-sensitive classification (Lin, 2008)
that takes cost vectors of some specific forms. For instance, many existing works on ordi-
nal ranking (Chu and Keerthi, 2007; Li and Lin, 2007) focus on the absolute cost vectors
c
(y)
a [k] = |y − k|. We adopt these cost vectors in our experiments and assign c = c

(y)
a for

each cost-sensitive example (x, y, c). We then conduct experiments with eight benchmark
ordinal ranking data sets: pyrimdines, machineCPU, boston, abalone, bank, computer,
california, census, which were used by Chu and Keerthi (2007). Similar to their original
procedure, we kept the same training/test split ratios, and averaged the results over 20 trials.

Table 11 compares the test performance of all the cost-sensitive algorithms on the or-
dinal ranking data sets; Table 12 lists the t-test results. We see that CSOVO is usually sig-
nificantly better than the other cost-sensitive classification algorithms. In addition, CSOVO

19

Table 11 test absolute cost on ordinal ranking data sets (benchmark results from Chu and Keerthi, 2007)

data set CSOVO WAP APFT FT TREE SECOC CSOVA ben.
pyr. 1.34±0.05 1.40±0.06 1.52±0.07 1.47±0.05 1.51±0.05 1.62±0.06 1.61±0.07 1.29±0.05

mac. 0.86±0.02 0.88±0.02 0.96±0.03 0.95±0.03 0.97±0.03 1.21±0.02 0.97±0.02 0.99±0.03
bos. 0.80±0.01 0.81±0.01 0.87±0.01 0.90±0.02 0.93±0.02 1.14±0.02 0.95±0.02 0.75±0.01
aba. 1.42±0.00 1.48±0.01 1.51±0.01 1.54±0.01 1.57±0.02 1.70±0.00 1.68±0.01 1.36±0.00
ban. 1.41±0.00 1.45±0.00 1.55±0.01 1.67±0.02 1.65±0.03 1.74±0.00 1.81±0.00 1.39±0.00
com. 0.58±0.00 0.59±0.00 0.63±0.00 0.66±0.01 0.67±0.01 0.96±0.00 0.64±0.00 0.60±0.00
cal. 0.95±0.00 0.98±0.00 1.05±0.00 1.09±0.01 1.07±0.01 1.29±0.00 1.12±0.00 1.01±0.00
cen. 1.13±0.00 1.16±0.00 1.25±0.00 1.30±0.01 1.28±0.01 1.42±0.00 1.33±0.00 1.21±0.00

Table 12 t-test for comparing CSOVO with other meta-algorithms on ordinal ranking data sets

data set WAP APFT FT TREE SECOC CSOVA
pyr. ◦ ◦ ◦ ◦ ◦ ◦

mac. ∼ ◦ ◦ ◦ ◦ ◦
bos. ∼ ◦ ◦ ◦ ◦ ◦
aba. ◦ ◦ ◦ ◦ ◦ ◦
ban. ◦ ◦ ◦ ◦ ◦ ◦
com. ◦ ◦ ◦ ◦ ◦ ◦
cal. ◦ ◦ ◦ ◦ ◦ ◦
cen. ◦ ◦ ◦ ◦ ◦ ◦

◦: CSOVO significantly better; ×: CSOVO significantly worse; ∼: similar

performs similarly to the benchmark SVOR-IMC (Chu and Keerthi, 2007) algorithm. The
results further justify the validity and the usefulness of CSOVO.

5.6 Comparison with Linear SVM

Next, we take SVM with the linear kernel (linear SVM) asAb. Except for the change of ker-
nel, all the other experiment procedures (including parameter selection) are kept the same.
Because the dual problem solver in LIBSVM (Chang and Lin, 2001) can be slow when us-
ing the linear kernel, we only conduct the experiments with five smaller data sets for the
RP/emphasizing costs and four smaller data sets for the absolute cost (ordinal ranking).

Table 13 compares the test performance of all the cost-sensitive classifications algo-
rithms using the linear SVM; Table 14 lists the t-test results. We see that CSOVO remains
to be a leading choice across different data sets and different cost-generating procedures.
Nevertheless, unlike the results in the previous subsections, APFT becomes a tough com-
petitor in RP and emphasizing costs, better than FT and similar to CSOVO and WAP. The
results echo the finding in the original APFT paper (Beygelzimer et al, 2007) that APFT is
a promising choice when using linear classifiers. A possible explanation is that APFT uses
fewer examples per binary classifier, and thus may be able to sustain generalization when
using weaker classifiers like linear SVM; when using nonlinear SVM, however, APFT may
overfit the few examples and achieve worse performance.

When comparing the average test costs when using linear SVM (Table 13) with those
when using SVM with the perceptron kernel (Tables 7, 9 and 11), we see that the latter
usually leads to better performance. The results suggest that CSOVO plus SVM with the
perceptron kernel can be a preferred first-hand choice for solving cost-sensitive multiclass
classification tasks.

20

Table 13 test cost of meta-algorithms that reduce to linear SVM

data set CSOVO WAP APFT FT TREE SECOC CSOVA
RP cost

zoo 64.56±18.71 81.15±25.64 79.21±21.79 61.49±12.49 67.16±15.21 154.71±19.83 76.65±20.69
glass 221.96±19.96 218.95±20.48 236.29±22.18 216.16±21.32 246.07±21.28 315.07±28.03 271.44±28.44

vehicle 169.74±18.34 162.04±18.25 160.02±18.46 180.01±19.65 182.42±19.60 195.52±20.66 157.37±16.79
vowel 432.18±12.80 415.66±15.08 264.36±11.98 429.45±14.24 513.13±23.00 504.16±14.80 384.79±13.16
yeast 60.70±6.20 62.19±6.51 59.86±6.35 62.23±6.83 74.29±9.45 304.65±77.78 101.52±15.09

emphasizing cost

zoo 0.11±0.02 0.10±0.01 0.70±0.56 0.88±0.58 0.29±0.19 1.16±0.25 0.48±0.37
glass 0.64±0.09 0.64±0.09 0.63±0.11 0.65±0.09 0.82±0.13 0.90±0.08 0.96±0.29

vehicle 0.46±0.04 0.44±0.03 0.56±0.06 0.48±0.06 0.50±0.05 0.79±0.05 0.50±0.07
vowel 0.34±0.02 0.35±0.02 0.32±0.01 0.60±0.01 0.63±0.02 0.89±0.00 0.58±0.01
yeast 0.52±0.03 0.52±0.03 0.51±0.02 0.54±0.03 0.58±0.04 0.92±0.01 0.60±0.01

absolute cost

pyrimdines 1.44±0.04 1.49±0.07 1.58±0.09 1.56±0.06 1.66±0.07 1.75±0.07 1.88±0.08
machineCPU 0.91±0.02 0.98±0.02 0.94±0.02 1.10±0.03 1.24±0.03 1.38±0.03 1.34±0.03

boston 0.88±0.01 0.90±0.01 0.94±0.01 1.11±0.02 1.15±0.03 1.37±0.02 1.25±0.02
abalone 1.40±0.00 1.45±0.00 1.42±0.00 1.54±0.01 1.62±0.02 1.73±0.00 1.86±0.01

Table 14 t-test for comparing CSOVO with other meta-algorithms coupled with Linear SVM

data set WAP APFT FT TREE SECOC CSOVA
RP cost

zoo ∼ ∼ ∼ ∼ ◦ ∼
glass ∼ ∼ ∼ ∼ ◦ ◦

vehicle × × ◦ ◦ ◦ ∼
vowel × × ∼ ◦ ◦ ×
yeast ∼ ∼ ∼ ◦ ◦ ◦

emphasizing cost

zoo ∼ ∼ ∼ ∼ ◦ ∼
glass ∼ ∼ ∼ ◦ ◦ ∼

vehicle ∼ ∼ ∼ ∼ ◦ ∼
vowel ∼ × ◦ ◦ ◦ ◦
yeast ∼ ∼ ◦ ◦ ◦ ◦

absolute cost

pyrimdines ∼ ◦ ◦ ◦ ◦ ◦
machine ◦ ◦ ◦ ◦ ◦ ◦
housing ◦ ◦ ◦ ◦ ◦ ◦
abalone ◦ ◦ ◦ ◦ ◦ ◦

◦: CSOVO significantly better; ×: CSOVO significantly worse; ∼: similar

6 Conclusion

We presented the cost-transformation technique, which can transform any cost vector c to
a similar one that is decomposable to the classification cost Cc with the minimum entropy.
The technique allowed us to design the TSEW algorithm, which can be generally applied
to make any regular classification algorithm cost-sensitive. We coupled TSEW with the
popular OVO meta-algorithm, and obtained a novel CSOVO algorithm that can conquer
cost-sensitive classification by reducing it to several binary classification tasks. Experimen-
tal results demonstrated that CSOVO can be significantly better than the original OVO for
cost-sensitive classification, which justified the usefulness of CSOVO.

21

We also analyzed the theoretical guarantee of CSOVO, and discussed its similarity to
the existing WAP algorithm. We conducted a thorough experimental study that compared
CSOVO with not only WAP but also many major meta-algorithms that reduce cost-sensitive
classification to binary classification. We empirically found that CSOVO is similar to WAP
on general cost-sensitive classification data sets, and is usually better than WAP on ordi-
nal ranking data sets. These experimental results, along with the relative simplicity and
efficiency of CSOVO, make it the preferred OVO-type algorithm for cost-sensitive classi-
fication tasks. In addition, CSOVO performs better than other major meta-algorithms on
many cost-sensitive classification and ordinal ranking data sets. Thus, when the number of
classes is not too large, CSOVO is the best meta-algorithm from cost-sensitive to binary
classification.

While CSOVO can perform well for cost-sensitive classification, it does not scale well
with K, the number of classes. Applying the cost-transformation technique to design more
efficient cost-sensitive classification algorithms will be an important future research direc-
tion.

Acknowledgments

The author thanks Yaser Abu-Mostafa, Amrit Pratap, Ling Li, Shou-de Lin, John Langford
and Alina Beygelzimer for their valuable comments. The author is also grateful to the NTU
Computer and Information Networking Center for the support of high-performance comput-
ing facilities. This work was partially supported by the National Science Council of Taiwan
via NSC 98-2221-E-002-192.

References

Abe N, Zadrozny B, Langford J (2004) An iterative method for multi-class cost-sensitive
learning. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, ACM, pp 3–11

Beygelzimer A, Dani V, Hayes T, Langford J, Zadrozny B (2005) Error limiting reductions
between classification tasks. In: Machine Learning: Proceedings of the 22rd International
Conference, ACM, pp 49–56

Beygelzimer A, Langford J, Ravikumar P (2007) Multiclass classification with filter trees,
downloaded from http://hunch.net/˜jl

Chang CC, Lin CJ (2001) LIBSVM: A Library for Support Vector Machines. National Tai-
wan University, software available at http://www.csie.ntu.edu.tw/˜cjlin/
libsvm

Chu W, Keerthi SS (2007) Support vector ordinal regression. Neural Computation
19(3):792–815

Domingos P (1999) MetaCost: A general method for making classifiers cost-sensitive. In:
Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, pp 155–164

Hettich S, Blake CL, Merz CJ (1998) UCI repository of machine learning databases. Down-
loadable at http://www.ics.uci.edu/˜mlearn/MLRepository.html

Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines.
IEEE Transactions on Neural Networks 13(2):415–425

22

Hsu CW, Chang CC, Lin CJ (2003) A practical guide to support vector classification. Tech.
rep., National Taiwan University

Hull JJ (1994) A database for handwritten text recognition research. IEEE Transactions on
Pattern Analysis and Machine Intelligence 16(5):550–554

Langford J, Beygelzimer A (2005) Sensitive error correcting output codes. In: Learning
Theory: 18th Annual Conference on Learning Theory, Springer-Verlag, pp 158–172

Li L, Lin HT (2007) Ordinal regression by extended binary classification. In: Advances in
Neural Information Processing Systems: Proceedings of the 2006 Conference, MIT Press,
vol 19, pp 865–872

Lin HT (2008) From ordinal ranking to binary classification. PhD thesis, California Institute
of Technology

Lin HT, Li L (2008) Support vector machinery for infinite ensemble learning. Journal of
Machine Learning Research 9:285–312

Margineantu DD (2001) Methods for cost-sensitive learning. PhD thesis, Oregon State Uni-
versity

Xia F, Zhou L, Yang Y, Zhang W (2007) Ordinal regression as multiclass classification.
International Journal of Intelligent Control and Systems 12(3):230–236

Zadrozny B, Langford J, Abe N (2003) Cost sensitive learning by cost-proportionate exam-
ple weighting. In: Proceedings of the 3rd IEEE International Conference on Data Mining,
IEEE Computer Society, pp 435–442

Zhou ZH, Liu XY (2006) On multi-class cost-sensitive learning. In: Proceedings of the 21st
National Conference on Artificial Intelligence (AAAI ’06), pp 567–572

