
Noname manuscript No.
(will be inserted by the editor)

Dynamic Principal Projection for Cost-Sensitive Online
Multi-Label Classification

Hong-Min Chu · Kuan-Hao Huang · Hsuan-Tien
Lin

Received: date / Accepted: date

Abstract We study multi-label classification (MLC) with three important real-world issues:
online updating, label space dimension reduction (LSDR), and cost-sensitivity. Current MLC
algorithms have not been designed to address these three issues simultaneously. In this paper,
we propose a novel algorithm, cost-sensitive dynamic principal projection (CS-DPP) that
resolves all three issues. The foundation of CS-DPP is an online LSDR framework derived
from a leading LSDR algorithm. In particular, CS-DPP is equipped with an efficient online
dimension reducer motivated by matrix stochastic gradient, and establishes its theoretical
backbone when coupled with a carefully-designed online regression learner. In addition,
CS-DPP embeds the cost information into label weights to achieve cost-sensitivity along with
theoretical guarantees. Experimental results verify that CS-DPP achieves better practical per-
formance than current MLC algorithms across different evaluation criteria, and demonstrate
the importance of resolving the three issues simultaneously.

Keywords Multi-label classification · Cost-sensitive · Label space dimension reduction

1 Introduction

The multi-label classification (MLC) problem allows each instance to be associated with a
set of labels and reflects the nature of a wide spectrum of real-world applications [8,4,12].
Traditional MLC algorithms mainly tackle the batch MLC problem, where the input data
are presented in a batch [24,28]. Nevertheless, in many MLC applications such as e-mail
categorization [22], multi-label examples arrive as a stream. Online analysis is therefore
required as batch MLC algorithms may not meet the needs to make a prediction and update
the predictor on the fly. The needs of such applications can be formalized as the online MLC
(OMLC) problem.

The OMLC problem is generally more challenging than the batch one, and many mature
algorithms for the batch problem have not yet been carefully extended to OMLC. Label space
dimension reduction (LSDR) is a family of mature algorithms for the batch MLC problem [7,
13,17,26,14,25,33,6,2,5]. By viewing the label set of each instance as a high-dimensional

Hong-Min Chu, Kuan-Hao Huang, Hsuan-Tien Lin
CSIE Department, National Taiwan University, Taiwan
E-mail: {r04922031, r03922062, htlin}@csie.ntu.edu.tw

2 Hong-Min Chu et al.

label vector in a label space, LSDR encodes each label vector as a code vector in a lower-
dimensional code space, and learns a predictor within the code space. An unseen instance is
predicted by coupling the predictor with a decoder from the code space to the label space.
For example, compressed sensing (CS) [13] encodes using random projections, and decodes
with sparse vector reconstruction; principal label space transformation (PLST) [26] encodes
by projecting to the key eigenvectors of the known label vectors obtained from principal
component analysis (PCA), and decodes by reconstruction with the same eigenvectors.
This low-dimensional encoding allows LSDR algorithms to exploit the key joint information
between labels to be more robust to noise and be more effective on learning [26]. Nevertheless,
to the best of our knowledge, all the LSDR algorithms mentioned above are designed only
for the batch MLC problem.

Another family of MLC algorithms that have not been carefully extended for OMLC
contains the cost-sensitive MLC algorithms. In particular, different MLC applications usually
come with different evaluation criteria (costs) that reflect their realistic needs. It is important
to design MLC algorithms that are cost-sensitive to systematically cope with different costs,
because an MLC algorithm that targets one specific cost may not always perform well under
other costs [15]. Two representative cost-sensitive MLC algorithms are probabilistic classifier
chain (PCC) [10] and condensed filter tree (CFT) [15]. PCC estimates the conditional
probability with the classifier chain (CC) method [24] and makes Bayes-optimal predictions
with respect to the given cost; CFT decomposes the cost into instance weights when training
the classifiers in CC. Both algorithms, again, targets the batch MLC problem rather than the
OMLC one.

From the discussions above, there is currently no algorithm that considers the three
realistic needs of online updating, label space dimension reduction, and cost-sensitivity at the
same time. The goal of this work is to study such algorithms. We first formalize the OMLC
and cost-sensitive OMLC (CSOMLC) problems in Section 2 and discuss related work. We
then extend LSDR for the OMLC problem and propose a novel online LSDR algorithm,
dynamic principal projection (DPP), by connecting PLST with online PCA. In particular, we
derive the DPP algorithm in Section 3 along with its theoretical guarantees, and resolve the
issue of possible basis drifting caused by online PCA.

In Section 4, we further generalize DPP to cost-sensitive DPP (CS-DPP) to fully match
the needs of CSOMLC with a theoretically-backed label-weighting scheme inspired by CFT.
Extensive empirical studies demonstrate the strength of CS-DPP in addressing the three
realistic needs in Section 5. In particular, we justify the necessity to consider LSDR, basis
drifting and cost-sensitivity. The results show that CS-DPP significantly outperforms other
OMLC competitors across different CSOMLC problems, which validates the robustness and
effectiveness of CS-DPP, as concluded in Section 6.

2 Preliminaries and Related Work

For the MLC problem, we denote the feature vector of an instance as x ∈ Rd and its
corresponding label vector as y ∈ Y ≡ {+1,−1}K , where y[k] = +1 iff the instance is
associated with the k-th label out of a total of K possible labels. We let y[k] ∈ {+1,−1} to
conform with the common setting of online binary classification [9], which is equivalent to
another scheme, y[k] ∈ {1, 0}, used in other MLC works [15,24].

Traditional MLC methods consider the batch setting, where a training dataset D =
{(xn,yn)}Nn=1 is given at once, and the objective is to learn a classifier g : Rd → {+1,−1}K
fromD with the hope that ŷ = g(x) accurately predicts the ground truth y with respect to an

Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification 3

unseen x. In this work, we focus on the OMLC setting, which assumes that instance (xt,yt)
arrives in sequence from a data stream. Whenever an xt arrives at iteration t, the OMLC
algorithm is required to make a prediction ŷt = gt(xt) based on the current classifier gt and
feature vector xt. The ground truth yt with respect to xt is then revealed, and the penalty of
ŷt is evaluated against yt.

Many evaluation criteria for comparing y and ŷ have been considered in the literature to
satisfy different application needs. A simple criterion [28] is the Hamming loss cHAM(y, ŷ) =
1
K

∑K
k=1Jy[k] 6= ŷ[k]K. The Hamming loss separately considers each label during evalua-

tion. There are other criteria that jointly evaluate all labels, such as the F1 loss [28]

cF(y, ŷ) = 1− 2

∑K
k=1Jy[k]=+1 and ŷ[k]=+1K∑K
k=1 (Jy[k]=+1K + Jŷ[k]=+1K)

.

In this work, we follow existing cost-sensitive MLC approaches [15] to extend OMLC to
the cost-sensitive OMLC (CSOMLC) setting, which further takes the evaluation criterion
as an additional input to the learning algorithm. We call the criterion a cost function and
overload c : {+1,−1}K × {+1,−1}K → R as its notation. The cost function evaluates the
penalty of ŷ against y by c(y, ŷ).We naturally assume that c(·, ·) satisfies c(y,y) = 0 and
maxŷ c(y, ŷ) ≤ 1. The objective of a CSOMLC algorithm is to adaptively learn a classifier
gt : Rd → {+1,−1}K based on not only the data stream but also the input cost function c
such that the cumulative cost

∑T
t=1 c(yt, ŷt) with respect to the input c, where ŷt = gt(xt),

can be minimized.
Note that the cost function within the CSOMLC setting above corresponds to the example-

based evaluation criteria for MLC, named because the prediction ŷt of each example is
evaluated against the ground truth yt independently. More sophisticated evaluation criteria
such as micro-based and macro-based criteria [27,20] can also be found in the literature.
The following equations highlight the difference between example-F1 (what our CSOMLC
setting can handle), micro-F1 and macro-F1 when calculated on T predictions

example-F1 loss = 1− 2

T

T∑
t=1

∑K
k=1Jyt[k]=+1 and ŷt[k]=+1K∑K
k=1 (Jyt[k]=+1K + Jŷt[k]=+1K)

;

micro-F1 loss = 1− 2

K

K∑
k=1

∑T
t=1Jyt[k]=+1 and ŷt[k]=+1K∑T
t=1 (Jyt[k]=+1K + Jŷt[k]=+1K)

;

macro-F1 loss = 1− 2

∑T
t=1

∑K
k=1Jyt[k]=+1 and ŷt[k]=+1K∑T

t=1

∑K
k=1 (Jyt[k]=+1K + Jŷt[k]=+1K)

.

In particular, the three criteria differ by the averaging process. Average example-F1 computes
the geometric mean of precision and recall (F1) per example and then computes the arithmetic
mean over all examples; micro-F1 computes the geometic mean of precision and recall
per label and then computes the arithmetic mean over all labels; macro-F1 computes the
geometric mean of precision and recall over the set of all example-label predictions. The more
sophisticated ones are known to be more difficult to optimize. Thus, similar to many existing
cost-sensitive MLC algorithms for the batch setting [15], we consider only example-based
criteria in this work, and leave the investigation of achieving cost-sensitivity for micro- and
macro-based criteria to the future.

Several OMLC algorithms have been studied in the literature, including online binary
relevance [23], Bayesian OMLC framework [34], and the multi-window approach using k

4 Hong-Min Chu et al.

nearest neighbors [32]. However, none of them are cost-sensitive. That is, they cannot take
the cost function into account to improve learning performance.

Cost-sensitive MLC algorithms have also been studied in the literature. Cost-sensitive
RAkEL [19] and progressive RAkEL [31] are two algorithms that generalize a famous
batch MLC algorithm called RAkEL [29] to cost-sensitive learning. The former achieves
cost-sensitivity for any weighted Hamming loss, and the latter achieves this for any cost
function. Probabilistic classifier chain (PCC) [10] and condensed filter tree (CFT) [15] are
two other algorithms that generalizes another famous batch MLC algorithm called classifier
chain (CC) [24] to cost-sensitive learning. PCC estimates the conditional probability of the
label vector via CC, and makes a Bayes-optimal prediction with respect to the cost function
and the estimation. PCC in principal achieves cost-sensitivity for any cost function, but the
prediction can be time-consuming unless an efficient Bayes inference rule is designed for
the cost function (e.g. the F1 loss [11]). CFT embeds the cost information into CC by an
O(K2)-time step that re-weights the training instances for each classifier. All four algorithms
above are designed for the batch cost-sensitive MLC problem, and it is not clear how they
can be modified for the CSOMLC problem. CC-family algorithms typically suffer from
the problem of ordering the labels properly to achieve decent performance. Some works
start solving the ordering problem for the original CC algorithm, such as the easy-to-hard
paradigm [18], but whether those works can be well-coupled with CFT or PCC has yet to be
studied.

Label space dimension reduction (LSDR) is another family of MLC algorithms. LSDR
encodes each label vector as a code vector in the lower-dimensional code space, and learns
a predictor from the feature vectors to the corresponding code vectors. The prediction of
LSDR consists of the predictor followed by a decoder from the code space to the label
space. For example, compressed sensing (CS) [13] uses random projection for encoding,
takes a regressor as the predictor, and decodes by sparse vector reconstruction. Instead of
random projection, principal label space transformation (PLST) [26] encodes the label vectors
{yn}Nn=1 to their top principal components for the batch MLC problem. Some other LSDR
algorithms, including conditional principal label space transformation (CPLST) [7], feature-
aware implicit label space encoding (FaIE) [17], canonical-correlation-analysis method [25],
and low-rank empirical risk minimization for multi-label learning [33], jointly take the
feature and the label vectors into account during encoding [7,17,25,33] to further improve
the performance.

The physical intuition behind LSDR algorithms is to capture the key joint information
between labels before learning. By encoding to a more concise code space, LSDR algo-
rithms enjoy the advantage of learning the predictor more effectively to improve the MLC
performance. Moreover, compared with non-LSDR algorithms like RAkEL and CFT, LSDR
algorithms are generally more efficient, which in turn makes them favorable candidates to be
extended to online learning.

Motivated by the possible applications of online updating, the realistic needs of cost-
sensitivity, and the potential effectiveness of label space dimension reduction, we take an
initiative to study LSDR algorithms for the CSOMLC setting. In particular, we first adapt
PLST to the OMLC setting in Section 3, and further generalize it to the CSOMLC setting in
Section 4.

Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification 5

Table 1: Summary of common notations
notation meaning
d number of features
K number of labels
M dimension of the code space
x ∈ Rd feature vector
y ∈ {+1,−1}K ground truth label vector
ŷ ∈ {+1,−1}K predicted label vector
c(y, ŷ) cost for predicting y as ŷ
z ∈ RM code vector
P ∈ RM×K encoding matrix from the label space to the code space
W ∈ Rd×M linear predictor matrix from the input space to the code space
U ∈ RK×K (roughly) rank-M matrix within matrix stochastic gradient (MSG)
(Q ∈ R(M+1)×K , σ ∈ RM+1) decomposition of U such that U = Qdiag(σ)Q>

Γ ∈ [0, 1]M+1 discrete probability distribution for sampling the rows of Q to get P
δ(k) ∈ R weight of the k-th label for representing the cost in CS-DPP
C ∈ RK×K a diagonal matrix that stores {

√
δ(k)}Kk=1 in CS-DPP

3 Dynamic Principal Projection

In this section, we first propose an online LSDR algorithm, dynamic principal projection
(DPP), that optimizes the Hamming loss. DPP is motivated by the connection between PLST,
which encodes the label vectors to their top principal components, and the rich literature
of online PCA algorithms [1,21,16]. We shall first introduce the detail of PLST. Then, we
discuss the potential difficulties along with our solutions to advance PLST to our proposed
DPP. To facilitate reading, the common notations that will be used for the coming sections
are summarized in Table 1.

3.1 Principal Label Space Transformation

Given the dimensionM ≤ K of the code space and a batch training datasetD = {(xn,yn)}Nn=1,
PLST, as a batch LSDR algorithm, encodes each yn ∈ {+1,−1}K into a code vector
zn = P∗(yn − o), where o is a fixed reference point for shifting yn, and P∗ contains the
top M eigenvectors of

∑N
n=1(yn − o)(yn − o)>. While PLST works with any fixed o, it

is worth noting that when o is taken as 1
N

∑N
n=1 yn, the code vector zn contains the top M

principal components of yn. A multi-target regressor r is then learned on {(xn, zn)}Nn=1,
and the prediction of an unseen instance x is made by

ŷ = round
(

(P∗)>r(x) + o
)

(1)

where1 round(v) =
(
sign(v[1]), . . . , sign(v[K])

)>.
By projecting to the top principal components, PLST preserves the maximum amount of

information within the observed label vectors. In addition, PLST is backed by the following
theoretical guarantee:

1 The naming of the round(·) operator follows directly from the original paper of PLST [26], which
represents y ∈ {0, 1}K instead of {−1,+1}K . Our use of sign is thus equivalent to the rounding steps used
in the original PLST.

6 Hong-Min Chu et al.

Theorem 1 [26] When making a prediction ŷ from x by ŷ = round
(
P>r(x) + o

)
with

any left orthogonal matrix P, the Hamming loss

cHAM(y, ŷ) ≤ 1

K
(‖r(x)− z‖22︸ ︷︷ ︸

pred. error

+ ‖(I−P>P)(y′)‖22︸ ︷︷ ︸
reconstruction error

) (2)

where z ≡ Py′ and y′ ≡ y − o with respect to any fixed reference point o.

Theorem 1 bounds the Hamming loss by the prediction and reconstruction errors. Based
on the results of singular value decomposition, P∗ in PLST is the optimal solution for
minimizing the total reconstruction error of the observed label vectors with respect to any
fixed o, and the particular reference point 1

N

∑N
n=1 yn minimizes the reconstruction error

over all possible o. Then, by minimizing the prediction error with regressor r, PLST is able
to minimize the Hamming loss approximately.

3.2 General Online LSDR Framework for DPP

The upper bound in Theorem 1 works for any regressor r and any left orthogonal encoding
matrix P. Based on the bound, we propose an online LSDR framework that approximately
minimizes the Hamming loss with an online regressor rt and an online encoding matrix Pt
in each iteration t. Similar to PLST, the proposed framework works with any fixed referenced
point o. But for simplicity of illustration, we assume that o = 0 to remove o from the
derivations below. The steps of the framework are:

For t = 1, . . . , T
Receive xt and predict ŷt = round(P>t rt(xt))
Receive yt and incur error `(t)(rt,Pt)
Update Pt and rt

In each iteration t of the framework, an online prediction ŷt is made with the updated rt and
Pt. We take the online error function `(t)(r,P) to be ‖r(xt)−Pyt‖22 + ‖(I−P>P)yt‖22,
which upper bounds the Hamming loss cHAM(yt, ŷt) of the online prediction. Then, by
updating rt and Pt with online learning algorithms that minimize the cumulative online error∑T
t=1 `

(t)(rt,Pt), we can approximately minimize the cumulative Hamming loss.
The simple framework above transforms the OMLC problem to an online learning

problem with an error function composed of two terms. Ideally, the online learning algorithm
should update Pt and rt to jointly minimize the total error from both terms. Optimizing the
two terms jointly has been studied in batch LSDR algorithms like CPLST [7], which is a
successor of PLST [26] that also operates with the upper bound in Theorem 1. Nevertheless,
it is very challenging to extend CPLST to the online setting efficiently. In particular, a naıve
online extension would require computing the hat matrix of the ridge regression part (from x
to z) within CPLST in order to obtain Pt, and the hat matrix grows quadratically with the
number of examples. That is, in an online setting, computing and storing the hat matrix needs
at least Ω(T 2) complexity up to iteration T , which is practically infeasible.

Thus, we resort to PLST [26], the predecessor of CPLST, to make an initial attempt
towards tackling OMLC problems. PLST minimizes the two terms separately in the batch
setting, and our proposed extension of PLST similarly contains two online learning algorithms,
one for minimizing each term. That is, we further decompose the online learning problem to
two sub-problems, one for minimizing the cumulative reconstruction error (by updating Pt),

Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification 7

and one for minimizing the cumulative prediction error (by updating rt). Designing efficient
and effective algorithms for the two sub-problems turns out to be non-trivial, and will be
discussed in Sections 3.3 and 3.4.

3.3 Online Minimization of Reconstruction Error

Next, we discuss the design of our first online learning algorithm to tackle the sub-problem of
minimizing the cumulative reconstruction error

∑T
t=1 ‖(I−P

>
t Pt)yt‖22, which corresponds

to the second term in (2). The goal is to generate a left-orthogonal matrix Pt ∈ RM×K in
each iteration that guarantees to minimize the cumulative reconstruction error theoretically.

Our design is motivated by a simple but promising online PCA algorithm, matrix stochas-
tic gradient (MSG) [1]. MSG does not directly solve the sub-problem of our interest because
the problem is non-convex over Pt. Instead, MSG substitutes P>t Pt with a rank-M matrix
Ut ∈ RK×K and rewrites the cumulative reconstruction error as

∑T
t=1 y

>
t (I − Ut)yt.

By further assuming that ‖yt‖2 ≤ 1, MSG loosens the constraint of rank(Ut) = M to
tr(Ut) = M , and updates Ut with online projected gradient descent upon receiving a
new yt as

Ut+1 = Ptr(Ut + ηyty
>
t) (3)

where η is the learning rate and Ptr(·) is the projecting operator to a feasible U. The
less-constrained Ut in MSG carries the theoretical guarantee of minimizing the cumulative
reconstruction error (subject to Ut), but decomposing Ut to a left-orthogonal Pt ∈ RM×K
with theoretical guarantee on Pt is not only non-trivial but also time-consuming.

Capped MSG [1] is an extension of MSG with the hope of lightening the computational
burden of decomposing Ut. In particular, Capped MSG introduces an additional (non-convex)
constraint of rank(Ut) ≤ M + 1, and indirectly maintains the decomposition of Ut as
(Qt, σt), where the left-orthogonal matrix Qt ∈ R(M+1)×K and the vector of singular
values σt ∈ RM+1 such that Ut = Qtdiag(σt)Q

>
t . The decomposed (Qt, σt) in Capped

MSG enjoys the same theoretical guarantee of minimizing the reconstruction error as the
Ut in MSG, while the maintenance step of Capped MSG is more efficient than MSG.
Nevertheless, because we want Pt to be M by K while Qt is (M+1) by K, the generated
Qt in Capped MSG cannot be directly used to solve our sub-problem. A naı̈ve idea is to
generate Pt by truncating the least important row of Qt, but the naı̈ve idea is no longer
backed by the theoretical guarantee of Capped MSG.

Aiming to address the above difficulties, we propose an efficient and effective algorithm
to stochastically generate Pt from (Qt, σt) maintained by Capped MSG in each iteration. To
elaborate, let Q−it be Qt with its i-th row removed and σt[i] be the eigenvalue corresponding
to i-th row of Qt. We generate Pt by sampling from a discrete probability distribution Γt,
which consists of M + 1 events {Q−it }

M+1
i=1 with probability of Q−it being 1−σt[i]. As the

projecting operator Ptr(·) ensures 0 ≤ σt[i] ≤ 1 for each σt[i], one can easily verify Γt to
be a valid distribution with the additional fact that

∑
i σt[i] = tr(Ut) = M . The following

lemma shows that the online encoding matrix generated by our simple stochastic algorithm is
truly effective, and the proof can be found in the supplementary materials.

Lemma 2 Suppose (Qt, σt) is obtained after an updated of Capped MSG such that Ut =
Qtdiag(σt)Q

>
t . If Γt is a discrete probability distribution over events {Q−it }

M+1
i=1 with

probability of Q−it being 1− σt[i], we have for any y

EPt∼Γt
[y>(I−P>t Pt)y] = y>(I−Ut)y (4)

8 Hong-Min Chu et al.

The proof of the lemma can be found in Appendix A.1. Moreover, our sampling algorithm is
highly efficient regarding its O(M) time complexity. Note that there is an earlier work that
contains another algorithm of similar spirit [21]. Somehow the algorithm’s time complexity
is O(K2), which is less efficient than ours.

To sum up, our online learning algorithm that minimizes the cumulative reconstruction
error for DPP takes Capped MSG as its building block to maintain Ut by Qt and σt, and
then samples the online encoding matrix Pt from Γt derived by Qt in each iteration by our
proposed sampling algorithm. Note that to fulfill the assumption of ‖yt‖2 ≤ 1 required by
Capped MSG, we apply a simple trick to scale each yt ∈ {+1,−1}K with a factor of 1√

K
.

The predictions given by our online LSDR framework remain unchanged after the constant
scaling due to the use of round(·) operator.

3.4 Online Minimization of Prediction Error

Next, we discuss another proposed online learning algorithm to solve the second sub-problem
of minimizing the cumulative prediction error

∑T
t=1 ‖rt(xt)−Ptyt‖2, which corresponds

to the first term in (2). The proposed online learning algorithm is based on the well-known
online ridge regression, and incorporates two different carefully designed techniques to
remedy the negative effect caused by the variation of Pt in each iteration.

The naı̈ve online ridge regression parameterizes rt(x) to be an online linear regressor
W>

t x with Wt ∈ Rd×M , and update Wt by

Wt = arg min
W

λ

2
tr(WW>) +

t−1∑
i=1

‖W>xi − zi‖22 (5)

where zi = Piyi is the code vector of yi regarding Pi, and λ is the regularization parameter.
However, the naı̈ve online ridge regression suffers from the drifting of projection basis caused
by varying the online encoding matrix Pt as t advances. To elaborate, recall that the online
regressor Wt aims to predict zt = Ptyt from xt, where the code vector zt can essentially
be viewed as the set of combination coefficients with reference projection basis formed by Pt.
However, Wt is learned from {(xi, zi)}t−1

i=1 , where the learning target {zi}t−1
i=1 is mixed up

with coefficients zi induced from different projection basis Pi. As a consequence, expecting
W>

t xt to give accurate prediction of zt for any specific Pt is unrealistic. For a very extreme
case, if P1 = P3 = . . . = P2τ−1 = P and P2 = P4 = . . . = P2τ = −P, the zi’s in the
odd and even iterations are of totally opposite meanings although the projection matrices
P and −P are mathematically equivalent in quality. The totally opposite meanings make it
impossible for Wt to predict zt accurately.

To remedy the problem of basis drifting, we propose two different techniques, principal
basis correction (PBC) and principal basis transform (PBT), to improve online regressor Wt.
Each of them enjoys different advantages.

3.4.1 Principal Basis Correction

The ideal solution to handle basis drifting is to “correct” the reference basis of each zi to be
the latest Pt used for prediction. More specifically, we want Wt to be the ridge regression
solution obtained from {(xi,Ptyi)}t−1

i=1 instead of {(xi,Piyi)}t−1
i=1 . Such a correction step

ensures that the reference basis for generating the previous zi’s is the same as the basis

Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification 9

that will be used for the predicting zt and decoding ŷt from zt. Denote WPBC
t as the ridge

regression solution of {(xi,Ptyi)}t−1
i=1 . The closed-form solution of WPBC

t is

WPBC
t = (λI +

t−1∑
i=1

xix
>
i)−1

︸ ︷︷ ︸
A−1

t

(

t−1∑
i=1

xiy
>
i)︸ ︷︷ ︸

Bt

P>t . (6)

The part A−1
t Bt is independent of the projection matrix Pt. Thus, by maintaining another d

by K matrix

Ht = A−1
t Bt

throughout the iterations, WPBC
t can be easily obtained by HtP

>
t for any Pt. The update of

Ht to Ht+1, on the other hand, requires the calculation of Ht+1 = (At + xtx
>
t)−1(Bt +

xty
>
t), which at a first glance has a time complexity of O(d3 +Kd2). Fortunately, we can

speed up the calculation by applying the Sherman-Morrison formula, which states that

(At + xtx
>
t)−1 =

(
A−1
t −

A−1
t xtx

>
t A
−1
t

1 + γ

)
with γ = x>t A

−1
t xt. Then, the calculation can be rewritten as

Ht+1 =

(
A−1
t −

A−1
t xtx

>
t A
−1
t

1 + γ

)(
Bt + xty

>
t

)
= A−1

t Bt −
A−1
t xtx

>
t A
−1
t Bt

1 + γ
+ A−1

t xty
>
t −

A−1
t xtx

>
t A
−1
t xty

>
t

1 + γ

= Ht −
A−1
t xtỹ

>
t

1 + γ
+ A−1

t xty
>
t −

γA−1
t xty

>
t

1 + γ

= Ht −
A−1
t xt(ỹt − yt)

>

1 + γ
,

where ỹt = H>t xt. The third line follows from the fact that Ht = A−1
t Bt. Thus, the d

by K matrix Ht can be efficiently updated online by

Ht+1 = Ht −
A−1
t xt(ỹt − yt)

>

1 + x>t A
−1
t xt

(7)

which requires only a time complexity of O(d2 +Kd).
It is worth noting that Ht actually stores the online ridge regression solution from x to y.

Based on the definition of Ht, we can then theoretically analyze the performance of our
online ridge regression solution WPBC

t from x to z with respect to the error `(t)(·, ·) in our
proposed online LSDR framework. Following the convention of online learning, we analyze
the expected average regret RT , defined as

R
T

=
1

T

T∑
t=1

EPt∼Γt
[`(t)(WPBC

t ,Pt)− `(t)(W#,P
∗)], (8)

10 Hong-Min Chu et al.

for any given sequence of {(Pt, Γt)}Tt=1, where each Pt is sampled from the distribution Γt.
(W#,P

∗) here denotes the offline reference algorithm that is allowed to peek the whole
data stream {(xt,yt)}Tt=1. As our algorithm aims to minimize the online error function by a
similar decomposition of sub-problems as PLST , we particularly consider (W#,P

∗) to be
the solution of PLST when treating {(xt,yt)}Tt=1 as the input batch data. That is, P∗ is the
minimizer of

∑T
t=1 y

>
t (I−P>P)yt, which corresponds to the second term of `(t)(·, ·), and

W# is the minimizer of
∑T
t=1 ‖W

>xt −P∗yt‖22, which corresponds to the first term of
`(t)(·, ·) given P∗. It can be easily proved that W# = H∗(P∗)> where H∗ is the optimal
linear regression solution of {(xt,yt)}Tt=1. That is,

H∗ = arg min
H

T∑
t=1

‖H>xt − yt‖22 . (9)

With the expected average regret defined, we can prove its convergence by assuming the
convergence of the subspace spanned by Pt to the subspace spanned by P∗. The assumption
generally holds when the M -th and (M + 1)-th eigenvalues of

∑T
t=1(yt − o)(yt − o)>

are different, as the subspace spanned by P∗ to reach the minimum reconstruction error is
consequently unique. In particular, define the expected subspace difference

∆t = ‖EPt∼Γt
[P>t Pt]−

(
P∗
)>

P∗‖2 . (10)

Theorem 3 With the definitions of Ht in (7), H∗ in (9), RT in (8) and ∆t in (10), assume
that ‖xt‖ ≤ 1, ‖yt‖ ≤ 1 and ‖Htxt − yt‖22 ≤ ε.

1. For any given T , the expected cumulative regretR is upper-bounded by

(1 + ε)
T∑
t=1

∆t +
M

2
‖H∗‖2F + 2εMd log

(
1 +

T

d

)
.

2. If limT→∞∆T = 0 and ‖H∗‖F ≤ h∗ across all iterations,2 limT→∞
R
T = 0.

The third assumption requires the residual errors of online ridge regression without
projection to be bounded, which generally holds when there is some linear relationship
between xt and yt. The detailed of the proof of the theorem can be found in Appendix A.2.
Theorem 3 guarantees the performance of PBC to be competitive with a reasonable offline
baseline in the long run given the convergence of subspace spanned by Pt. Such a guarantee
makes online linear regressor with PBC a solid option for DPP to tackle the sub-problem of
minimizing cumulative prediction error.

3.4.2 Principal Basis Transform

While PBC always gives the WPBC
t learned on the correct code vectors with respect to

the basis formed by Pt, the time and space complexity of PBC depends on Ω(Kd) at the
cost of maintaining Ht ∈ Rd×K . The Ω(Kd) dependency can make PBC computationally
inefficient when both K and d are large.

2 The technicality of requiring ‖H∗‖F to be bounded is because we defined regret (up to the T -th iteration)
with respect to the optimal offline solution upon receiving T examples, and hence H∗ depends on T . Standard
regret proof in online learning alternatively defines regret with respect to any fixed H. Our proof could also go
through with the alternative definition, which changes ‖H∗‖F to a constant ‖H‖F (that is trivially bounded).

Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification 11

Table 2: Time and space complexity for two DPP variants
time complexity space complexity

DPP-PBC O(d2 +MK +Kd+M2K) O(d2 +MK +Kd)
DPP-PBT O(d2 +M2d+M2K) O(d2 +MK +Md)

To address the issue, we propose another technique, principal basis transform (PBT).
Different from PBC, when a new online encoding matrix Pt+1 is presented, PBT aims at a
direct basis transform of the online linear regressor from Pt to Pt+1. To be more specific,
PBT assumes the regressor WPBT

t to be the low-rank coefficients matrix of some unknown
H′t ∈ Rd×K with reference projection basis formed by Pt, which can equivalently be
described as WPBT

t = H′tP
>
t . The goal of PBT is to update WPBT

t to WPBT
t+1 with (xt,yt)

such that the reference projection basis of WPBT
t+1 is now induced from Pt+1. PBT achieves

the goal by a two-step procedure. The first step is to find the low-rank coefficients matrix
W′

t of H′t based on the new reference basis formed by Pt+1. However, as only the low rank
coefficients matrix WPBT

t rather than H′t itself is known, we approximate W′
t by

W′
t = arg min

W
‖WPt+1 −WPBT

t Pt‖2F . (11)

Solving (11) analytically gives

W′
t = WPBT

t PtP
>
t+1 . (12)

The second step is to update W′
t with (xt,yt) to obtain WPBT

t+1 by

WPBT
t+1 = W′

t −
A−1
t xt(z̃

′
t −Pt+1yt)

>

1 + x>t A
−1
t xt

(13)

where z̃′t =
(
W′

t

)>
xt. Equation (13) can be derived with a similar use of the Sherman-

Morrison formula as that for (7) by replacing (ỹt,yt) with (z̃′t,Ptyt) respectively. One can
easily verify that WPBT

t+1 obtained by (13) still keeps its reference basis as Pt+1.
Comparing to PBC, PBT only has Ω(M2(K + d)) dependency, which is particularly

useful when M2 � min(K, d). The appealing time complexity makes PBT a highly
practical option for DPP to minimize the cumulative prediction error with. The time and
space complexity of the two variants of DPP are listed in Table 2.

4 Generalization to Cost-Sensitive Learning

In this section, we generalize DPP to cost-sensitive DPP (CS-DPP), which meets the require-
ment of CSOMLC. The key ingredient to the generalization is a carefully designed label-
weighting scheme that transforms cost c(y, ŷ) into the corresponding weighted Hamming
loss. With the help of the label weighting scheme, we subsequently derive the optimization
objective similar to Theorem 1 for general cost functions, which allows us to derive CS-DPP
by reusing the building blocks of DPP.

We start from the detail of our label-weighting scheme based on the label-wise decompo-
sition of c(y, ŷ). To represent the cost with the label weights, we propose a label-weighting

12 Hong-Min Chu et al.

Algorithm 1 Cost-Sensitive Dynamic Principal Projection with Principal Basis Transform
Parameters: λ, η, M
1: P0 ← OM×K , U0 ← OK×K , A−1

0 ← 1
λ
Id×d, W0 ← Od×M (O is zero matrix)

2: while Receive (xt,yt) do
3: ŷt ← round(P>t−1W

>
t−1xt)

4: Obtain Ct by (15)
5: Update Ut−1 to Ut by Capped MSG (with Ctyt) and sample Pt from Γt as defined in Lemma 2
6: W′

t−1 ←Wt−1Pt−1P>t (PBT)
7: Update W′

t−1, A−1
t−1 to Wt, A−1

t by (13) (with Ctyt)
8: end while

scheme based on a label-wise and order-dependent decomposition of c(·, ·), which is moti-
vated by a similar concept in [15]. The label-weighting scheme works as follows. Defining
ŷ
(k)
real and ŷ

(k)
pred as

ŷ
(k)
real [i] =

y[i] if i < k

y[i] if i = k

ŷ[i] if i > k

and ŷ
(k)
pred[i] =

y[i] if i < k

−y[i] if i = k

ŷ[i] if i > k

we decompose c(y, ŷ) into δ(1), . . . , δ(K) such that

δ(k) = |c(y, ŷ(k)
pred)− c(y, ŷ(k)

real)| . (14)

Recall that y is the ground truth vector and ŷ is the prediction vector from the algorithm.
The two newly constructed vectors, ŷ(k)

real and ŷ
(k)
pred, can both be viewed as pseudo prediction

vectors that are “better” than ŷ, as they are both perfectly correct up to the (k − 1)-th label.
The two vectors only differ on the k-th prediction, which is correct for ŷ(k)

real and incorrect for
ŷ
(k)
pred. The difference allows the term δ(k) in (14) to quantify the price that the algorithm needs

to pay if the k-th prediction is wrong. Then, the price δ(k) can be viewed as an indicator of
importance for predicting the k-th label correctly. Our label-weighting scheme follows such
intuition by simply setting the weight of k-th label as δ(k). The label-weighting scheme with
(14) is not only intuitive, but also enjoys nice theoretical guarantee under a mild condition of
c(·, ·), as shown in the following lemma.

Lemma 4 If c(y,y(k)
pred) − c(y,y(k)

real) ≥ 0 holds for any k, y and ŷ, then for any given y
and ŷ, we have

c(y, ŷ) =
K∑
k=1

δ(k)Jy[k] 6= ŷ[k]K

The condition of the lemma, which generally holds for reasonable cost functions, simply says
that for any label, a correct prediction should enjoy a lower cost than an incorrect prediction.
The proof of the lemma can be found in Appendix A.3. Lemma 4 transforms c(y, ŷ) into the
corresponding weighted Hamming loss, and thus enables the optimization over general cost
functions. Note that condition implies that correcting a wrongly-predicted label leads to no
higher cost, and is considered mild as general cost functions for MLC satisfy the condition.

Next, we propose CS-DPP, which extends DPP based on our proposed label-weighting
scheme. Define C as

C = diag(
√
δ(1), ...,

√
δ(K)) (15)

With C, which carries the cost information, we establish a theorem similar to Theorem 1
to upper-bound c(y, ŷ).

Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification 13

Theorem 5 When making a prediction ŷ from x by ŷ = round
(
P>r(x) + o

)
with any

left orthogonal matrix P, if c(·, ·) satisfies the condition of Lemma 4, the prediction cost

c(y, ŷ) ≤ ‖r(x)− zC‖22 + ‖(I−P>P)(y′C)‖22

where zC = P(y′C) and y′C = Cy − o with respect to any fixed reference point o.

Theorem 5 generalizes Theorem 1 to upper-bound the general cost c(y, ŷ) instead of
the original Hamming loss cHAM(y, ŷ). With Theorem 5, extending DPP to CS-DPP is a
straightforward task by reusing the online updating algorithms of DPP with yt replaced by
Ctyt. The full details of CS-DPP using PBT is given in Algorithm 1, and we can easily
write down similar steps for CS-DPP using PBC. Note that we simplify WPBT

t to Wt in
Algorithm 1 to make a cleaner presentation.

5 Experiments

To empirically evaluate the performance, and also to study the effectiveness and necessity
of design components of CS-DPP, we conduct three sets of experiments: (1) necessity
justification of online LSDR, (2) experiments on basis drifting, and (3) experiments on
cost-sensitivity. Furthermore, recall that the label weighting scheme of CS-DPP depends on
the label order. We therefore conduct an additional set of experiments to study how different
label orders affect the performance of CS-DPP. To assist the readers in understanding the
experiments, we list the full names and acronyms of the algorithms to be compared along
with their key differences in Table 3. The details of the algorithms will be illustrated as
needed.

5.1 Experiments Setup

We conduct our experiments on eleven real-world datasets3 downloaded from Mulan [30].
Statistics of datasets can be found in Table 4. In particular, datasets eurlex-eurovec and
delicious are used only in the experiment to justify the necessity of online LSDR, and only
7500 sub-sampled instances are used on these two datasets to reduce the computational burden
of the competitors in the experiment. In addition, only 50000 sub-sampled instances are used
for nuswide because a competitor in the cost-sensitivity experiment is rather computationally
inefficient. Data streams are generated by permuting datasets into different random orders.
We perform sub-sampling on eurlex-eurovec, delicious and nuswide after computing the
permutation so that each stream contains a diferent set of original instances for the three
datasets.

All LSDR algorithms, except for competitors run on delicious and eurlex-eurovec, are
coupled with online ridge regression and three different code space dimensions, M = 10%,
25%, and 50% of K, are considered. For DPP we fix λ = 1 and follow [1] to use the time-
decreasing learning rate η = 2√

t
M
K , and parameters of other algorithms will be elaborated

along with their details in the corresponding section. For the two larger datasets delicious and
eurlex-eurovec, we implement both DPP and O-BR using gradient descent instead of online
ridge regression for calculating Wt, where O-BR is the competitor that will be elaborated

3 CAL500, emotions, scene, yeast, enron, Corel5k, mediamill, nuswide, medical, delicious
and eurlex− eurovec

14 Hong-Min Chu et al.

Table 3: Algorithms being compared in the experiments
acronym full name dimension re-

duction
encode basis trans-

form
decode cost-

sensitivity
O-BR Online

Binary
Relevance

- no - - no

O-CS Online Com-
pressed Sens-
ing

yes random
(static)

- compressed
sensing

no

O-RAND Online Ran-
dom Projec-
tion

yes random
(static)

- pseudo
inverse

no

DPP-PBC Dynamic
Principal Pro-
jection (DPP)
with Prin-
cipal Basis
Correction

yes online PCA
(dynamic)

exact PCA no

DPP-PBT Dynamic
Principal Pro-
jection (DPP)
with Prin-
cipal Basis
Transform
(PBT)

yes online PCA
(dynamic)

approximate PCA no

CS-DPP Cost-
Sensitive
DPP (with
PBT)

yes online PCA approximate PCA yes

Table 4: Statistics of datasets
of features # of labels # of instances cardinality

CAL500 68 174 502 26.044
Corel5k 499 374 5000 3.522
emotions 72 6 593 1.869

enron 1001 53 1702 3.378
mediamill 120 101 43907 4.376
medical 1449 45 978 1.245
scene 294 6 2407 1.074
yeast 103 14 2417 4.237

nuswide 128 81 50000* 1.869
delicious 500 983 7500* 19.020

eurlex-eurovec 5000 3993 7500* 5.310

in Section 5.2. In particular, for PBC of DPP we replace the update of the online ridge
regressor (6) with online gradient descent, while for PBT we replace (13), the update after
basis transform, with a gradient descent update as well. Note that even with online ridge
regression replaced with gradient descent, the ability of DPP with PBT or PBC to handle
the basis drifting problem remains unchanged. We use the time decreasing step-size 1√

t
for

gradient descent on delicious, and 0.001√
t

on eurlex-eurovec.

Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification 15

Dataset delicious eurlex-eurovec
Algorithms PBT PBC O-BR PBT PBC O-BR
cHAM 0.1136 0.1153 0.1245 0.4917 0.5011 0.4993
cNR 0.5636 0.5641 0.5756 0.7435 0.7467 0.7433
cF1 0.9143 0.9138 0.9076 0.9972 0.9928 0.9921
cACC 0.9512 0.9517 0.9494 0.9980 0.9964 0.9958
Avg. time (sec) 21.49 140.77 105.18 60.81 10522.25 4841.35

Table 5: DPP vs. O-BR on large datasets

We consider four different cost functions, Hamming loss, Normalized rank loss, F1 loss
and Accuracy loss.

cHAM(y, ŷ) =
1

K

(
K∑
k=1

Jy[k] 6= ŷ[k]K

)

cNR(y, ŷ) = average
y[i]>y[j]

(
Jŷ[i]< ŷ[j]K +

1

2
Jŷ[i]= ŷ[j]K

)

cF1(y, ŷ) = 1−2

(
K∑
k=1

Jy[k]=+1 and ŷ[k]=+1K

)
/

(
K∑
k=1

(Jy[k]=+1K + Jŷ[k]=+1K)

)

cACC(y, ŷ)=1−

(
K∑
k=1

Jy[k]=+1 and ŷ[k]=+1K

)
/

(
K∑
k=1

Jy[k]=+1 or ŷ[k]=+1K

)
The performances of different algorithms are compared using the average cumulative cost
1
t

∑t
i=1 c(yi, ŷi) at each iteration t. We remark that lower average cumulative cost imply

better performance. We report the average results of each experiment after 15 repetitions.

5.2 Necessity of Online LSDR

In this experiment, we aim to justify the necessity to address LSDR for OMLC problems. We
demonstrate that the ability of LSDR to preserve the key joint correlations between labels
can be helpful when facing (1) data with noisy labels or (2) data with a large possible set of
labels, which are often encountered in real-world OMLC problems. We compare DPP with
online Binary Relevance (O-BR), which is a naı̈ve extension from binary relevance [28] with
online ridge regressor. The only difference between DPP and O-BR is whether the algorithm
incorporates LSDR.

We first compare DPP and O-BR on data with noisy labels. We generate noisy data
stream by randomly flipping each positive label y[i] = 1 to negative with probability
p = {0.3, 0.5, 0.7}, which simulates the real-world scenario in which human annotators
fail to tag the existed labels. We plot the results of O-BR and DPP with M = 10%, 25%
and 50% of K on datasets emotions and enron with respect to Hamming loss and F1 loss in
Figure 1, which contains error bars that represent the standard error of the average results.
The standard errors are naturally larger when M is larger or when t (number of iterations) is
small, but in general for M ≥ 25% ·K and for t ≥ 400 the standard errors are small enough
to justify the difference. The complete results are listed in Appendix B.1.

The results from the first two rows of Figure 1 show that DPP with M = 10% of K
performs competitively and even better than O-BR as p increases on dataset emotions. The

16 Hong-Min Chu et al.

Fig. 1: DPP vs. O-BR on noisy labels

results from the last two rows of Figure 1 show that DPP always performs better on enron.
We can also observe from Figure 1 that DPP with smaller M tends to perform better as p
increases. The above results clearly demonstrate that DPP better resists the effect of noisy
labels with its incorporation of LSDR as the noise level (p) increases. The observation that
DPP with smaller M tends to perform better demonstrates that DPP is more robust to noise
by preserving the key of the key joint correlations between labels with LSDR.

Next, we demonstrate that LSDR is also helpful for handling data with a large label set.
We compare O-BR with DPP that is coupled with either PBC or PBT on datasets delicious
and eurlex-eurovec.4 DPP uses M = 10 for delicious and M = 25 for eurlex-eurovec. We
summarize the results and average run-time in Table 5. Table 5 indicates that DPP coupled

4 delicious: d=500, K=983, eurlex-eurovec: d=5000, K=3993.

Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification 17

Fig. 2: PBC vs. PBT vs. None, M = 10% of K

with either PBT or PBC performs competitively with O-BR, while DPP with PBT enjoys
significantly cheaper computational cost. The results demonstrate that DPP enjoys more
effective and efficient learning for data with a large label set than O-BR, and also justifies
the advantage of PBT over PBC in terms of efficiency when K and d are large while M is
relatively small, as previously highlighted in Section 3.

5.3 Experiments on Basis Drifting

To empirically justify the necessity of handling basis drifting, we compare variants of DPP
that (a) incorporates PBC by (6), (b) incorporates PBT by (13), and (c) neglects basis drifting
as (5). We plot the results for Hamming loss with M = 10% of K in Figure 2 on six datasets,
and report the complete results in Appendix B.2. The results on all datasets in Figure 2 show
that DPP with either PBC or PBT significantly improves the performance over its variant that
neglects the basis drifting, which clearly demonstrates the necessity to handle the drifting of
projection basis.

Further comparison of PBC and PBT based on Figure 2 reveals that PBC in general
performs slightly better than PBC, reflecting its advantage of exact projection basis correction.
Nevertheless, as discussed in Section 5.2, PBT enjoys a nice computational speedup when K
and d are large and M is relatively small, making PBT more suitable to handle data with a
large label set.

5.4 Experiments on Cost-Sensitivity

To empirically justify the necessity of cost-sensitivity, we compare CS-DPP using PBT with
DPP using PBT and other online LSDR algorithms. To the best of our knowledge, no online

18 Hong-Min Chu et al.

Fig. 3: CS-DPP vs. Others, M = 10% of K

LSDR algorithm has yet been proposed in the literature. We therefore design two simple
online LSDR algorithms, online compressed sensing (O-CS) and online random projection
(O-RAND), to compare with CS-DPP. O-CS is a straightforward extension of CS [13] with
an online ridge regressor, and we follow [13] to determine the parameter of O-CS. O-RAND
encodes using random matrix PR and simply decodes with the corresponding pseudo inverse
P†R.

We plot the results with respect to all evaluation criteria except for the Hamming loss with
M = 10% of K in Figure 3 on three datasets, and report the complete results in Appendix
B.3 Note that the results for CS-DPP here are obtained by using the original label order from
the dataset.

5.4.1 CS-DPP versus DPP.

The results of Figure 3 clearly indicate that CS-DPP performs significantly better than DPP
on all evaluation criteria other than the Hamming loss, while CS-DPP reduces to DPP when
cHAM(·, ·) is used as the cost function. These observations demonstrate that CS-DPP, by
optimizing the given cost function instead of Hamming loss, indeed achieves cost-sensitivity
and is superior to its cost-insensitive counterpart, DPP.

Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification 19

10% of K 25% of K 50 % of K
cHAM 0.1458± 0.00019 0.1489± 0.00012 0.1503± 0.00008
cNR 0.1247± 0.00224 0.1321± 0.00210 0.1371± 0.00222
cF1 0.5914± 0.00108 0.5956± 0.00110 0.5949± 0.00101
cACC 0.7388± 0.00105 0.7428± 0.00131 0.7426± 0.00126

Table 6: Results of CS-DPP on CAL500 with 50 random label orders

10% of K 25% of K 50 % of K
cHAM 0.2296± 0.00010 0.2162± 0.00009 0.2092± 0.00001
cNR 0.0064± 0.00081 0.0170± 0.00242 0.0232± 0.00158
cF1 0.4518± 0.00919 0.3841± 0.00199 0.3784± 0.00107
cACC 0.5448± 0.02252 0.4971± 0.00379 0.4901± 0.00124

Table 7: Results of CS-DPP on yeast with 50 random label orders

10% of K 25% of K 50 % of K
cHAM 0.0562± 0.00020 0.0600± 0.00011 0.0632± 0.00009
cNR 0.1432± 0.00333 0.1364± 0.00244 0.1305± 0.00216
cF1 0.5421± 0.00334 0.5392± 0.00291 0.5428± 0.00293
cACC 0.6573± 0.00360 0.6561± 0.00331 0.6627± 0.00315

Table 8: Results of CS-DPP on enron with 50 random label orders

5.4.2 CS-DPP versus Other Online LSDR Algorithms.

As shown in Figure 3, while DPP generally performs better than O-CS and O-RAND because
of the advantage to preserve key label correlations rather than random ones, it can nevertheless
be inferior on some datasets with respect to specific cost functions due to its cost-insensitivity.
For example, DPP loses to O-RAND on dataset Corel5k with respect to the Normalized rank
loss, as shown in the third row of Figure 3. CS-DPP conquers the weakness of DPP with
its cost-sensitivity, and significantly outperforms O-CS and O-RAND on all three datasets
with respect to all three evaluation criteria, as demonstrated in Figure 3. The superiority of
CS-DPP justifies the necessity to take cost-sensitivity into account.

5.5 Experiment on Effect of Label Order for CS-DPP

The goal of this experiment is to study how different label orders affect the performance
of CS-DPP as our proposed label weighting scheme with (14) is label-order-dependent. To
evaluate the impact of label orders, we run CS-DPP with 50 randomly generated label orders
and M = 10%, 25% and 50% of K on each dataset. The permutation of each dataset is
fixed to the original one given in Mulan [30], which allows the variance of the performance
to better indicate the effect of different orders.

We summarize the results of all four different cost functions with mean and standard
deviation on datasets CAL500, enron and yeast in Table 6, 7 and 8 respectively, and report
the complete results in Appendix B.4. Note that the results of Hamming loss are unaffected
by the order of labels, and the reported deviation is due to the randomness from Pt. From
the results of Table 6, 7 and 8, we see that standard deviation is generally in a relatively small
scale of 10−3, indicating that the performance of CS-DPP is not that sensitive to the order of
labels. Closer inspection of Table 7 reveals that the standard deviation of cACC on yeast with

20 Hong-Min Chu et al.

M = 10% of K (which is only 2 in this case) is somewhat larger, but for sufficiently large
M the label order does not seem to cause much variation.

6 Conclusion

We proposed a novel cost-sensitive online LSDR algorithm called cost-sensitive dynamic
principal projection (CS-DPP). We established the foundation of CS-DPP with an online
LSDR framework derived from PLST, and derived CS-DPP along with its theoretical guar-
antees on top of MSG. We successfully conquered the challenge of basis drifting using our
carefully designed PBC and PBT. CS-DPP further achieves cost-sensitivity with theoretical
guarantees based on our carefully designed label-weighting scheme. The empirical results
demonstrate that CS-DPP significantly outperforms other OMLC algorithms on all evaluation
criteria, which validates the robustness and superiority of CS-DPP. The necessity for CS-DPP
to address LSDR, basis drifting and cost-sensitivity was also empirically justified.

For possible future works, an interesting direction is to design an online LSDR algorithm
capable of capturing the key joint information between features and labels. As discussed,
the concept to capture such joint information has been investigated for batch MLC [7,17,
33], but it remains to be challenging for online MLC. Another direction is to apply OMLC
algorithms as a fast approximate solver for large-scale batch data, and see how they compete
with traditional batch algorithms. Another interesting direction, as mentioned in Section 2, is
to design online learning algorithms that achieve cost-sensitivity for the more sophisticated
micro- and macro-based criteria.

References

1. Arora, R., Cotter, A., Srebro, N.: Stochastic optimization of PCA with capped MSG. In: NIPS 2013, pp.
1815–1823 (2013)

2. Balasubramanian, K., Lebanon, G.: The landmark selection method for multiple output prediction. In:
ICML 2012 (2012)

3. Bartlett, P.: Online convex optimization: ridge regression, adaptivity (2008). URL https://people.
eecs.berkeley.edu/˜bartlett/courses/281b-sp08/24.pdf

4. Bello, J.P., Chew, E., Turnbull, D.: Multilabel classification of music into emotions. In: ICMIR 2008, pp.
325–330 (2008)

5. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label
classification. In: NIPS 2015, pp. 730–738 (2015)

6. Bi, W., Kwok, J.T.: Efficient multi-label classification with many labels. In: ICML 2013, pp. 405–413
(2013)

7. Chen, Y., Lin, H.: Feature-aware label space dimension reduction for multi-label classification. In: NIPS
2012, pp. 1538–1546 (2012)

8. Chua, T., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database
from national university of singapore. In: CIVR 2009 (2009)

9. Crammer, K., Dekel, O., Keshet, J., S.-S., S., Singer, Y.: Online passive-aggressive algorithms. Journal of
Machine Learning Research 7, 551–585 (2006)

10. Dembczynski, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classification via probabilistic
classifier chains. In: ICML 2010, pp. 279–286 (2010)

11. Dembczynski, K., Waegeman, W., Cheng, W., Hüllermeier, E.: An exact algorithm for F-measure maxi-
mization. In: NIPS 2011, pp. 1404–1412 (2011)

12. Elisseeff, A., Weston, J.: A kernel method for multilabelled classification. In: NIPS 2001 (2001)
13. Hsu, D., Kakade, S., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: NIPS

2009, pp. 772–780 (2009)
14. Kapoor, A., Viswanathan, R., Jain, P.: Multilabel classification using bayesian compressed sensing. In:

NIPS 2012, pp. 2654–2662 (2012)

Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification 21

15. Li, C., Lin, H.: Condensed filter tree for cost-sensitive multi-label classification. In: ICML 2014, pp.
423–431 (2014)

16. Li, C., Lin, H., Lu, C.: Rivalry of two families of algorithms for memory-restricted streaming pca. In:
AISTATS 2016 (2016)

17. Lin, Z., Ding, G., Hu, M., Wang, J.: Multi-label classification via feature-aware implicit label space
encoding. In: ICML 2014, pp. 325–333 (2014)

18. Liu, W., Tsang, I.W., Müller, K.R.: An easy-to-hard learning paradigm for multiple classes and multiple
labels. Journal of Machine Learning Research (2017)

19. Lo, H., Wang, J., Wang, H., Lin, S.: Cost-sensitive multi-label learning for audio tag annotation and
retrieval. IEEE Trans. Multimedia 13(3), 518–529 (2011)

20. Mao, Q., Tsang, I.W.H., Gao, S.: Objective-guided image annotation. IEEE Transactions on Image
Processing (2013)

21. Nie, J., Kotlowski, W., Warmuth, M.K.: Online PCA with optimal regrets. Journal of Machine Learning
Research 17, 194–200 (2016)

22. Osojnik, A., Panov, P., Deroski, S.: Multi-label classification via multi-target regression on data streams.
Machine Learning (2017)

23. Read, J., Bifet, A., Holmes, G., Pfahringer, B.: Streaming multi-label classification. In: Proceedings of
the Workshop on Applications of Pattern Analysis (WAPA) 2011, pp. 19–25 (2011)

24. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Machine
Learning 85(3), 333–359 (2011)

25. Sun, L., Ji, S., Ye, J.: Canonical correlation analysis for multilabel classification: A least-squares formula-
tion, extensions, and analysis. IEEE TPAMI 33(1), 194–200 (2011)

26. Tai, F., Lin, H.: Multilabel classification with principal label space transformation. Neural Computation
24(9), 2508–2542 (2012)

27. Tang, L., Rajan, S., Narayanan, V.K.: Large scale multi-label classification via metalabeler. In: WWW
2009, pp. 211–220 (2009)

28. Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Mining multi-label data. In: Data Mining and Knowledge
Discovery Handbook, 2nd ed., pp. 667–685 (2010)

29. Tsoumakas, G., Vlahavas, I.P.: Random k -labelsets: An ensemble method for multilabel classification. In:
ECML 2007, pp. 406–417 (2007)

30. Tsoumakas, G., Xioufis, E.S., Vilcek, J., Vlahavas, I.P.: MULAN: A java library for multi-label learning.
Journal of Machine Learning Research 12, 2411–2414 (2011)

31. Wu, Y., Lin, H.: Progressive k-labelsets for cost-sensitive multi-label classification. Machine Learning
(2016). Accepted for Special Issue of ACML 2016

32. Xioufis, E.S., Spiliopoulou, M., Tsoumakas, G., Vlahavas, I.P.: Dealing with concept drift and class
imbalance in multi-label stream classification. In: IJCAI 2011, pp. 1583–1588 (2011)

33. Yu, H., Jain, P., Kar, P., Dhillon, I.S.: Large-scale multi-label learning with missing labels. In: ICML
2014, pp. 593–601 (2014)

34. Zhang, X., Graepel, T., Herbrich, R.: Bayesian online learning for multi-label and multi-variate perfor-
mance measures. In: AISTATS 2010 (2010)

Appendix A. Proof of Lemmas and Theorems

Appendix A.1 Proof of Lemma 2

Lemma 2 Suppose (Qt, σt) is obtained after an updated of Capped MSG such that Ut =
Qtdiag(σt)Q

>
t . If Γt is a discrete probability distribution over events {Q−it }

M+1
i=1 with

probability of Q−it being 1− σt[i], we have for any y

EPt∼Γt
[y>(I−P>t Pt)y] = y>(I−Ut)y (16)

Proof We first formally show that Γt is a well-defined probability distribution. By the
definition of the projection operator of Capped MSG we have 0 ≤ σt[i] ≤ 1 for each σt[i]
and

∑M+1
i=1 1 − σt[i] = M + 1 −

∑M+1
i=1 σt[i] = 1 with tr(Ut) = M . Γt is therefore a

well-defined probability distribution.

22 Hong-Min Chu et al.

Then it suffices to show that EPt∼Γt
[P>t Pt] = Ut as

EPt∼Γt
[y>(I−P>t Pt)y] = ‖y‖22 − y>EPt∼Γt

[P>t Pt]y

To see that EPt∼Γt
[P>t Pt] = Ut, first notice that by orthogonality of rows of Qt we have

Ut =
∑M+1
j=1 σt(j)eje

>
j where ej is the j-th row of Qt. We then have

EPt∼Γt
[P>t Pt] =

M+1∑
i=1

(1− σt[i])
M+1∑
j=1

Ji 6= jKeje
>
j

=

M+1∑
j=1

(eje
>
j

M+1∑
i=1

Ji 6= jK(1− σt[i]))

=

M+1∑
j=1

(σt[j]eje
>
j) (a)

= Ut

where (a) is by
∑M+1
i=1 σt[i] = M

Appendix A.2 Proof of Theorem 3

Theorem 3 With the definitions of Ht in (7), H∗ in (9), RT in (8) and ∆t in (10), assume
that ‖xt‖ ≤ 1, ‖yt‖ ≤ 1 and ‖Htxt − yt‖22 ≤ ε.
1. For any given T , the expected cumulative regretR is upper-bounded by

(1 + ε)
T∑
t=1

∆t +
M

2
‖H∗‖2F + 2εMd log

(
1 +

T

d

)
.

2. If limT→∞∆T = 0 and ‖H∗‖F ≤ h∗ across all iterations, limT→∞
R
T = 0.

Proof We start by separating the definition of R to two terms: one for how Pt in MSG
converges to P∗, and the other for how WPBC

t for Pt in ridge regression differs to W#

for P∗. For simplicity, we will denote WPBC
t by Wt. Then,

R =
T∑
t=1

EPt∼Γt
[`(t)(Wt,Pt)− `(t)(W#,P

∗)]

= +
T∑
t=1

EPt∼Γt
[‖W>

t xt −Ptyt‖22 + ‖(I−P>t Pt)yt‖22]

−
T∑
t=1

EPt∼Γt
[‖W>

#xt −P∗yt‖22 + ‖(I− (P∗)>P∗)yt‖22]

= +
T∑
t=1

EPt∼Γt
[‖(I−P>t Pt)yt‖22]− ‖(I− (P∗)>P∗)yt‖22]︸ ︷︷ ︸

RMSG

+
T∑
t=1

EPt∼Γt
[‖W>

t xt −Ptyt‖22]− ‖W>
#xt −P∗yt‖22︸ ︷︷ ︸

Rridge

Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification 23

We can boundRMSG first. Let Ut = EPt∼Γt
[P>t Pt] and U∗ = (P∗)>P∗, by linearity of

expectation,

RMSG =
T∑
t=1

y>t (Ut −U∗)yt

≤
T∑
t=1

‖Ut −U∗‖2 (17)

≤
T∑
t=1

∆t

where (17) from the assumption of ‖yt‖2 ≤ 1 and the definition of the matrix 2-norm.
Next, we bound Rridge. With the definitions of Ht in (7) and H∗ in (9), Rridge can be

further decomposed to

Rridge = +
T∑
t=1

(
EPt∼Γt

[‖Pt(H>t xt − yt)‖22]− ‖P∗(H>t xt − yt)‖22
)

︸ ︷︷ ︸
R1

+
T∑
t=1

(
‖P∗(H>t xt − yt)‖22 − ‖P∗(

(
H∗
)>

xt − yt)‖22
)

︸ ︷︷ ︸
R2

.

BoundingR1 is very similar to boundingRMSG. In particular,

R1 =
T∑
t=1

(H>t xt − yt)
>(Ut −U∗)(H>t xt − yt)

≤
T∑
t=1

ε‖Ut −U∗‖2 (18)

≤
T∑
t=1

ε∆t

where (18) follows from the assumption of ‖H>t xt − yt‖22 ≤ ε.
The term R2 can be viewed as an online ridge regression process from x to P∗y,

because it can be easily proved that Ht(P
∗)> is the ridge regression solution after receiving

(x1,P
∗y1), (x2,P

∗y2), . . ., (xt−1,P
∗yt−1). Also, as discussed in Section 3.4, W# =

H∗(P∗)> is the optimal linear regression solution of {(xt,P∗yt)}Tt=1. The assumption of
‖Htxt − yt‖22 ≤ ε implies that

‖P∗H>t xt −P∗yt‖22 = (H>t xt − yt)
>U∗(H>t xt − yt) ≤ ε

as well. Similarly, he assumption of ‖yt‖2 ≤ 1 implies that ‖P∗yt‖2 ≤ 1. Then, a standard
ridge regression analysis (see, e.g. [3]) by provng that At = λI+

∑t−1
i=1 xix

>
i grows linearly

24 Hong-Min Chu et al.

with t leads to

R2 =
T∑
t=1

(
‖P∗(H>t xt − yt)‖22 − ‖P∗(

(
H∗
)>

xt − yt)‖22
)

≤ 1

2
‖P∗H∗‖2F + 2εMd log

(
1 +

T

d

)
≤ M

2
‖H∗‖2F + 2εMd log

(
1 +

T

d

)
(19)

where (19) is because ‖P∗‖2F = tr(U∗) = M .
SummingRMSG,R1 andR2 results in

R ≤ (1 + ε)
T∑
t=1

∆t +
M

2
‖H∗‖2F + 2εMd log(1 +

T

d
), (20)

which proves the first part of the theorem. The second part easily follows because the
convergence of a sequence implies the convergence of the mean.

Appendix A.3 Proof of Lemma 4

Lemma 4 If c(y,y(k)
pred) − c(y,y(k)

real) ≥ 0 holds for any k, y and ŷ, then for any given y
and ŷ we have

c(y, ŷ) =
K∑
k=1

δ(k)Jy[k] 6= ŷ[k]K (21)

Proof Recall the definition of y(k)
real and y(k)pred to be

ŷ
(k)
real [i] =

{
y[i] if i ≤ k
ŷ[i] if i > k

and ŷ
(k)
pred[i] =

{
y[i] if i < k

ŷ[i] if i ≥ k

and the definition of δ(k) to be

δ(k) = |c(y, ŷ(k)
pred)− c(y, ŷ(k)

real)|

Now define ki, i = 1, . . . , L be the sequence of indices such that y[ki] 6= ŷ[ki] for every ki
and ki < ki+1. If such ki does not exist than (21) holds trivially by c(y,y) = 0. Otherwise,
by the condition of c we have

K∑
k=1

δ(k)Jy[k] 6= ŷ[k]K (a)

=
K∑
k=1

(c(y, ŷ
(k)
pred)− c(y, ŷ(k)

real))Jy[k] 6= ŷ[k]K

=
L∑
i=1

c(y, ŷ
(ki)
pred)− c(y, ŷ(ki)

real)

= c(y, ŷ
(k1)
pred)− c(y, ŷ(kL)

real) (b)

= c(y, ŷ) (c)

Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification 25

where (a) uses the condition of c(·, ·) to remove the absolute value function; (b) is from
two possibilities of L: if L = 1 then the equation trivially holds; if L > 1 we use the
observation that ŷ(ki)

real = ŷ
(ki+1)
pred where the observation is by realizing y[j] = ŷ[j] for

any ki < j < ki+1; (c) follows from the observation that ŷ(k1)
pred = ŷ and ŷ

(kL)
real = y and

c(y,y) = 0.

Appendix A.4 Proof of Theorem 5

Theorem 5 When making a prediction ŷ from x by ŷ = round
(
P>r(x) + o

)
with any

left orthogonal matrix P, if c(·, ·) satisfies the condition of Lemma 4, the prediction cost

c(y, ŷ) ≤ ‖r(x)− zC‖22 + ‖(I−P>P)(y′C)‖22

where zC = P(y′C) and y′C = Cy − o with respect to any fixed reference point o.

Recall the definition of C in the main context is

C = diag(
√
δ(1), ...,

√
δ(K)) (22)

Next we show and prove the following lemma before we proceed to the complete proof.

Lemma 6 Given the ground truth y, if the binary-value prediction ŷ ∈ {+1,−1}K is made
by round(ỹ) where ỹ is the real-value prediction ỹ ∈ RK . Then for any y, ŷ, ỹ, if c satisfies
the condition in Lemma 4, we have

c(y, ŷ) ≤ ‖Cy − ỹ‖2 (23)

Proof From Lemma 4 we have c(y, ŷ) =
∑K
k=1 δ

(k)Jy[k] 6= ŷ[k]K. As ‖Cy − ỹ‖22 =∑K
k=1(
√
δ(K)y[k]− ỹ[k])2, it suffices to show that for all k we have

δ(k)Jy[k] 6= ŷ[k]K ≤ (
√
δ(k)y[k]− ỹ[k])2 (24)

When δ(k) = 0, (24) holds trivially. When δ(k) > 0, we have

δ(k)Jy[k] 6= ŷ[k]K

= δ(k)(Jỹ[k] ≥ 0KJy[k] = −1K + Jỹ[k] < 0KJy[k] = +1K)

= δ(k)(J
ỹ[k]√
δ(k)

≥ 0KJy[k] = −1K + J
ỹ[k]√
δ(k)

< 0KJy[k] = +1K)

≤ δ(k)((ỹ[k]√
δ(k)
− y[k])2Jy[k] = −1K + (

ỹ[k]√
δ(k)
− y[k])2Jy[k] = +1K)

= δ(k)(
ỹ[k]√
δ(k)
− y[k])2

= (
√
δ(k)y[k]− ỹ[k])2

where the second equality uses the fact that δ(k) > 0. As δ(k) ≥ 0 holds by its definition,
(24) holds for every k. Summing (24) with respect to all k then completes the proof.

With Lemma 6 established, we now prove Theorem 5.

26 Hong-Min Chu et al.

Proof (Proof of Theorem 5) If the given c satisfies the condition in Lemma (4), and let
ỹ = P>r(x) + o and ŷ = round(ỹ). Then for any (x,y) we have

c(y, ŷ)

≤ ‖Cy − ỹ‖22 (a)

= ‖((ỹ − o−P>Py′C)− (y′C −P>Py′C))‖22
= ‖(P>(r(x)− zC)− (I−P>P)y′C‖22
= ‖(P>(r(x)− zC)‖22 + ‖(I−P>P)y′C)‖22 (b)

= ‖r(x)− zC‖22 + ‖(I−P>P)y′C‖22 (c)

where we recall that ȳ′C = Cy− o and zC = P(y′c). (a) is from Lemma 24, while (b) and
(c) follow from the orthogonal rows of P.

We note that the proof above closely follows the proof of Theorem 1 in [26], while the
key difference comes from Lemma 6 to handle the weighted Hamming loss.

Appendix B. Complete Results of Experiments

Here we report the complete results of each experiment.

Appendix B.1 Necessity of Online LSDR

We report the complete results of comparison between O-BR and DPP with M = 10%, 25%
and 50% of K from Table 9 to Table 11 with respect to all four evaluation criteria, where the
best values (the lowest) are marked in bold.

The results show that DPP outperforms O-BR as the value of p increases with respect to
Hamming loss, F1 loss and Accuracy loss, demonstrating the robustness of DPP. On the otter
hand, the results related to Normalized rank loss from Table 9 to Table 11 show that, while
DPP cannot outperform O-BR regarding this specific criterion, DPP does start to perform
competitively as the value of p increases. The observation again demonstrates that DPP
indeed suffers less from noisy labels comparing to O-BR due to the incorporation with LSDR.

Appendix B.2 Experiments on Basis Drifting

The complete results of comparison between DPP using (1) PBC, (2) PBT, and (3) nothing
regarding Hamming loss can be found in Table 12, Table 13 and Table 14, where the best
values (the lowest) are marked in bold. To further understand the behavior of basis drifting
and the effectiveness of PBC and PBT for CS-DPP, we also compare CS-DPP coupled with
PBC/PBT/none on F1 loss, Accuracy loss and Normalized rank loss, and summarize the
results in the same tables. From these results we can again draw the same conclusion as that
in Section 5.3. That is, CS-DPP with either PBT or PBC greatly outperforms CS-DPP that
neglects the basis drifting, and CS-DPP with PBT performs competitively with CS-DPP with
PBC.

Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification 27

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500

O-BR 0.1130± 0.0003 0.823± 0.002 0.453± 0.001 0.898± 0.001
DPP-50 0.1143± 0.0001 0.823± 0.002 0.455± 0.001 0.897± 0.001
DPP-25 0.1133± 0.0002 0.830± 0.003 0.454± 0.001 0.900± 0.001
DPP-10 0.1113± 0.0002 0.837± 0.002 0.458± 0.001 0.911± 0.002

Corel5k

O-BR 0.0070± 0.0000 0.949± 0.001 0.496± 0.000 0.957± 0.001
DPP-50 0.0072± 0.0000 0.945± 0.001 0.496± 0.001 0.957± 0.001
DPP-25 0.0072± 0.0000 0.949± 0.001 0.497± 0.000 0.958± 0.000
DPP-10 0.0071± 0.0000 0.949± 0.001 0.498± 0.000 0.960± 0.001

emotions

O-BR 0.2213± 0.0011 0.697± 0.005 0.480± 0.004 0.719± 0.005
DPP-50 0.2214± 0.0013 0.740± 0.008 0.504± 0.005 0.764± 0.004
DPP-25 0.2226± 0.0013 0.767± 0.006 0.527± 0.003 0.783± 0.002
DPP-10 0.2238± 0.0026 0.857± 0.003 0.570± 0.002 0.858± 0.004

enron

O-BR 0.0584± 0.0002 0.694± 0.002 0.386± 0.001 0.766± 0.002
DPP-50 0.0572± 0.0002 0.697± 0.003 0.388± 0.001 0.770± 0.002
DPP-25 0.0534± 0.0002 0.696± 0.002 0.397± 0.001 0.767± 0.002
DPP-10 0.0489± 0.0001 0.716± 0.002 0.414± 0.001 0.784± 0.002

mediamill

O-BR 0.0271± 0.0000 0.640± 0.001 0.403± 0.000 0.721± 0.000
DPP-50 0.0272± 0.0000 0.640± 0.001 0.402± 0.000 0.721± 0.000
DPP-25 0.0272± 0.0000 0.639± 0.001 0.403± 0.000 0.721± 0.001
DPP-10 0.0272± 0.0000 0.639± 0.001 0.402± 0.000 0.720± 0.001

medical

O-BR 0.0168± 0.0001 0.550± 0.004 0.448± 0.004 0.563± 0.005
DPP-50 0.0177± 0.0001 0.544± 0.006 0.446± 0.002 0.556± 0.003
DPP-25 0.0183± 0.0001 0.577± 0.004 0.469± 0.005 0.589± 0.005
DPP-10 0.0190± 0.0001 0.645± 0.006 0.538± 0.003 0.651± 0.004

nuswide

O-BR 0.0151± 0.0000 0.627± 0.001 0.668± 0.000 0.632± 0.000
DPP-50 0.0151± 0.0000 0.627± 0.000 0.667± 0.000 0.633± 0.000
DPP-25 0.0151± 0.0000 0.627± 0.000 0.667± 0.000 0.632± 0.000
DPP-10 0.0151± 0.0000 0.626± 0.000 0.668± 0.000 0.632± 0.000

scene

O-BR 0.1197± 0.0005 0.626± 0.001 0.560± 0.002 0.628± 0.003
DPP-50 0.1282± 0.0008 0.695± 0.003 0.622± 0.002 0.698± 0.003
DPP-25 0.1273± 0.0005 0.706± 0.003 0.632± 0.002 0.710± 0.004
DPP-10 0.1258± 0.0004 0.717± 0.003 0.643± 0.001 0.715± 0.002

yeast

O-BR 0.2034± 0.0004 0.669± 0.002 0.406± 0.001 0.755± 0.002
DPP-50 0.2032± 0.0004 0.678± 0.004 0.413± 0.002 0.762± 0.003
DPP-25 0.2045± 0.0004 0.711± 0.004 0.427± 0.002 0.783± 0.003
DPP-10 0.2034± 0.0005 0.733± 0.005 0.443± 0.002 0.798± 0.009

Table 9: DPP vs. O-BR on Noisy Data, p = 0.3

Appendix B.3 Experiments on Cost-sensitivity

We report the complete results of on all datasets with respect to all four cost functions in
Table 15 to Table 17, where the best values (the lowest) are marked in bold. These complete
results validate the conclusion in Section 5.4.

Appendix B.4 Experiments on Effect of Label Orders

The complete average results and the corresponding standard deviations of CS-DPP run on 50
random label orders are reported in Table 18. The results indicate that the standard deviation
over the average results of 50 random orders are of 10−3 scale generally, indicating that our
CS-DPP is relatively not sensitive to the change of label order. On the other hand, the results
of CS-DPP have comparatively large deviation on several datasets for some cost functions,
such as the Normalized rank loss on dataset emotions with M = 10% of K. We attribute
the reason to the instability of interaction between the randomness of Pt and different label
orders based on the fact that larger deviations are observed only when M = 10% of K.

28 Hong-Min Chu et al.

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500

O-BR 0.0815± 0.0003 0.925± 0.002 0.483± 0.001 0.961± 0.001
DPP-50 0.0834± 0.0001 0.925± 0.002 0.480± 0.001 0.962± 0.001
DPP-25 0.0823± 0.0002 0.932± 0.002 0.483± 0.000 0.961± 0.001
DPP-10 0.0816± 0.0002 0.947± 0.002 0.485± 0.001 0.970± 0.001

Corel5k

O-BR 0.0049± 0.0000 0.898± 0.001 0.543± 0.000 0.902± 0.001
DPP-50 0.0051± 0.0000 0.899± 0.001 0.544± 0.001 0.900± 0.001
DPP-25 0.0051± 0.0000 0.897± 0.001 0.544± 0.000 0.900± 0.001
DPP-10 0.0051± 0.0000 0.898± 0.001 0.543± 0.001 0.902± 0.001

emotions

O-BR 0.1736± 0.0014 0.694± 0.004 0.633± 0.003 0.698± 0.004
DPP-50 0.1689± 0.0017 0.691± 0.003 0.640± 0.003 0.706± 0.004
DPP-25 0.1660± 0.0015 0.703± 0.006 0.646± 0.002 0.706± 0.004
DPP-10 0.1598± 0.0014 0.699± 0.004 0.650± 0.002 0.692± 0.004

enron

O-BR 0.0475± 0.0002 0.768± 0.001 0.491± 0.002 0.809± 0.002
DPP-50 0.0470± 0.0002 0.765± 0.003 0.488± 0.001 0.809± 0.001
DPP-25 0.0440± 0.0002 0.764± 0.003 0.491± 0.001 0.806± 0.002
DPP-10 0.0398± 0.0002 0.772± 0.002 0.510± 0.002 0.810± 0.002

mediamill

O-BR 0.0217± 0.0000 0.831± 0.001 0.548± 0.000 0.840± 0.001
DPP-50 0.0217± 0.0000 0.830± 0.001 0.550± 0.000 0.839± 0.001
DPP-25 0.0217± 0.0000 0.830± 0.001 0.550± 0.001 0.840± 0.001
DPP-10 0.0217± 0.0000 0.830± 0.001 0.549± 0.000 0.840± 0.001

medical

O-BR 0.0153± 0.0001 0.570± 0.002 0.655± 0.005 0.568± 0.004
DPP-50 0.0163± 0.0001 0.563± 0.005 0.661± 0.003 0.577± 0.004
DPP-25 0.0160± 0.0001 0.569± 0.004 0.664± 0.005 0.570± 0.004
DPP-10 0.0157± 0.0001 0.561± 0.003 0.690± 0.003 0.565± 0.003

nuswide

O-BR 0.0109± 0.0000 0.537± 0.000 0.730± 0.000 0.537± 0.000
DPP-50 0.0110± 0.0000 0.537± 0.000 0.730± 0.000 0.537± 0.000
DPP-25 0.0110± 0.0000 0.536± 0.000 0.730± 0.000 0.536± 0.000
DPP-10 0.0109± 0.0000 0.536± 0.000 0.730± 0.000 0.537± 0.000

scene

O-BR 0.0965± 0.0006 0.533± 0.003 0.718± 0.002 0.533± 0.003
DPP-50 0.0926± 0.0004 0.525± 0.002 0.731± 0.002 0.524± 0.002
DPP-25 0.0915± 0.0004 0.519± 0.003 0.739± 0.001 0.522± 0.003
DPP-10 0.0902± 0.0004 0.524± 0.003 0.740± 0.001 0.515± 0.004

yeast

O-BR 0.1581± 0.0005 0.853± 0.002 0.518± 0.001 0.875± 0.001
DPP-50 0.1586± 0.0005 0.850± 0.002 0.520± 0.001 0.873± 0.002
DPP-25 0.1573± 0.0004 0.860± 0.002 0.524± 0.001 0.878± 0.002
DPP-10 0.1543± 0.0004 0.876± 0.004 0.531± 0.002 0.890± 0.002

Table 10: DPP vs. O-BR on Noisy Data, p = 0.5

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500

O-BR 0.0483± 0.0003 0.985± 0.001 0.495± 0.000 0.990± 0.001
DPP-50 0.0499± 0.0002 0.983± 0.001 0.495± 0.000 0.991± 0.000
DPP-25 0.0502± 0.0002 0.984± 0.001 0.495± 0.000 0.991± 0.000
DPP-10 0.0490± 0.0002 0.987± 0.000 0.496± 0.000 0.992± 0.001

Corel5k

O-BR 0.0029± 0.0000 0.716± 0.002 0.647± 0.001 0.716± 0.002
DPP-50 0.0031± 0.0000 0.713± 0.001 0.646± 0.001 0.714± 0.002
DPP-25 0.0031± 0.0000 0.714± 0.001 0.647± 0.001 0.715± 0.002
DPP-10 0.0031± 0.0000 0.712± 0.002 0.646± 0.001 0.714± 0.002

emotions

O-BR 0.1007± 0.0013 0.493± 0.006 0.759± 0.002 0.490± 0.006
DPP-50 0.1017± 0.0011 0.486± 0.005 0.758± 0.002 0.493± 0.005
DPP-25 0.0993± 0.0015 0.489± 0.006 0.757± 0.002 0.491± 0.005
DPP-10 0.0951± 0.0013 0.477± 0.004 0.763± 0.002 0.474± 0.004

enron

O-BR 0.0311± 0.0002 0.734± 0.003 0.634± 0.002 0.753± 0.003
DPP-50 0.0311± 0.0002 0.729± 0.003 0.633± 0.002 0.745± 0.002
DPP-25 0.0298± 0.0002 0.731± 0.002 0.635± 0.002 0.742± 0.003
DPP-10 0.0266± 0.0002 0.711± 0.003 0.644± 0.001 0.726± 0.003

mediamill

O-BR 0.0130± 0.0000 0.714± 0.001 0.643± 0.000 0.715± 0.000
DPP-50 0.0130± 0.0000 0.715± 0.000 0.643± 0.000 0.714± 0.000
DPP-25 0.0130± 0.0000 0.714± 0.000 0.643± 0.000 0.714± 0.001
DPP-10 0.0130± 0.0000 0.715± 0.001 0.643± 0.000 0.715± 0.001

medical

O-BR 0.0099± 0.0002 0.398± 0.007 0.814± 0.003 0.404± 0.004
DPP-50 0.0106± 0.0002 0.401± 0.005 0.812± 0.003 0.398± 0.005
DPP-25 0.0105± 0.0001 0.391± 0.004 0.815± 0.002 0.399± 0.004
DPP-10 0.0097± 0.0001 0.377± 0.004 0.819± 0.003 0.377± 0.005

nuswide

O-BR 0.0066± 0.0000 0.386± 0.001 0.808± 0.000 0.386± 0.001
DPP-50 0.0066± 0.0000 0.386± 0.000 0.807± 0.000 0.385± 0.000
DPP-25 0.0066± 0.0000 0.386± 0.000 0.807± 0.000 0.386± 0.000
DPP-10 0.0066± 0.0000 0.386± 0.000 0.807± 0.000 0.385± 0.001

scene

O-BR 0.0562± 0.0004 0.328± 0.003 0.841± 0.001 0.328± 0.002
DPP-50 0.0544± 0.0003 0.323± 0.002 0.841± 0.001 0.321± 0.002
DPP-25 0.0542± 0.0005 0.316± 0.002 0.842± 0.001 0.317± 0.002
DPP-10 0.0538± 0.0005 0.313± 0.002 0.842± 0.001 0.318± 0.002

yeast

O-BR 0.0920± 0.0004 0.746± 0.002 0.625± 0.001 0.747± 0.002
DPP-50 0.0918± 0.0003 0.748± 0.002 0.627± 0.001 0.747± 0.002
DPP-25 0.0921± 0.0004 0.747± 0.002 0.627± 0.001 0.746± 0.002
DPP-10 0.0915± 0.0004 0.748± 0.002 0.626± 0.001 0.746± 0.002

Table 11: DPP vs. O-BR on Noisy Data, p = 0.7

Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification 29

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500
CS-DPP-None 0.4464± 0.0074 0.733± 0.001 0.393± 0.002 0.843± 0.001
CS-DPP-PBT 0.1443± 0.0001 0.601± 0.001 0.137± 0.001 0.749± 0.001
CS-DPP-PBC 0.1454± 0.0002 0.603± 0.001 0.144± 0.002 0.748± 0.001

Corel5k
CS-DPP-None 0.4814± 0.0063 0.957± 0.000 0.357± 0.001 0.980± 0.000
CS-DPP-PBT 0.0099± 0.0000 0.853± 0.001 0.248± 0.001 0.912± 0.001
CS-DPP-PBC 0.0100± 0.0000 0.850± 0.001 0.237± 0.001 0.910± 0.000

emotions
CS-DPP-None 0.4787± 0.0039 0.618± 0.004 0.376± 0.008 0.696± 0.005
CS-DPP-PBT 0.3419± 0.0033 0.445± 0.003 0.159± 0.021 0.563± 0.007
CS-DPP-PBC 0.3301± 0.0012 0.450± 0.007 0.133± 0.023 0.560± 0.009

enron
CS-DPP-None 0.4030± 0.0160 0.802± 0.002 0.385± 0.002 0.875± 0.001
CS-DPP-PBT 0.0560± 0.0001 0.534± 0.002 0.124± 0.003 0.642± 0.002
CS-DPP-PBC 0.0565± 0.0001 0.528± 0.002 0.132± 0.001 0.638± 0.001

mediamill
CS-DPP-None 0.4936± 0.0016 0.692± 0.016 0.416± 0.004 0.728± 0.001
CS-DPP-PBT 0.0309± 0.0000 0.460± 0.000 0.066± 0.002 0.583± 0.000
CS-DPP-PBC 0.0308± 0.0000 0.460± 0.000 0.072± 0.002 0.582± 0.000

medical
CS-DPP-None 0.1923± 0.0352 0.896± 0.002 0.346± 0.003 0.932± 0.003
CS-DPP-PBT 0.0242± 0.0001 0.554± 0.012 0.132± 0.005 0.583± 0.008
CS-DPP-PBC 0.0204± 0.0002 0.508± 0.006 0.096± 0.003 0.549± 0.007

nuswide
CS-DPP-None 0.4975± 0.0006 0.933± 0.001 0.520± 0.001 0.959± 0.001
CS-DPP-PBT 0.0201± 0.0000 0.649± 0.000 0.356± 0.001 0.675± 0.000
CS-DPP-PBC 0.0201± 0.0000 0.648± 0.000 0.358± 0.001 0.675± 0.000

scene
CS-DPP-None 0.4609± 0.0080 0.761± 0.003 0.362± 0.007 0.825± 0.002
CS-DPP-PBT 0.1796± 0.0001 0.723± 0.002 0.264± 0.012 0.798± 0.003
CS-DPP-PBC 0.1797± 0.0001 0.724± 0.002 0.231± 0.016 0.796± 0.002

yeast
CS-DPP-None 0.4979± 0.0015 0.616± 0.002 0.422± 0.003 0.727± 0.001
CS-DPP-PBT 0.2294± 0.0010 0.435± 0.004 0.003± 0.000 0.549± 0.003
CS-DPP-PBC 0.2307± 0.0011 0.433± 0.003 0.003± 0.000 0.541± 0.003

Table 12: CS-DPP with PBC vs. PBT vs. None, M = 10% of K

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500
CS-DPP-None 0.4374± 0.0100 0.732± 0.002 0.392± 0.002 0.846± 0.002
CS-DPP-PBT 0.1471± 0.0002 0.604± 0.001 0.151± 0.002 0.750± 0.001
CS-DPP-PBC 0.1476± 0.0001 0.602± 0.001 0.150± 0.002 0.751± 0.001

Corel5k
CS-DPP-None 0.4997± 0.0018 0.965± 0.000 0.366± 0.001 0.983± 0.000
CS-DPP-PBT 0.0100± 0.0000 0.845± 0.000 0.223± 0.001 0.905± 0.000
CS-DPP-PBC 0.0101± 0.0000 0.844± 0.000 0.220± 0.001 0.904± 0.000

emotions
CS-DPP-None 0.4988± 0.0022 0.631± 0.004 0.420± 0.005 0.722± 0.003
CS-DPP-PBT 0.2768± 0.0051 0.401± 0.003 0.078± 0.016 0.513± 0.003
CS-DPP-PBC 0.2819± 0.0036 0.398± 0.004 0.046± 0.015 0.509± 0.003

enron
CS-DPP-None 0.4844± 0.0050 0.812± 0.002 0.386± 0.002 0.884± 0.001
CS-DPP-PBT 0.0581± 0.0002 0.517± 0.001 0.136± 0.002 0.633± 0.001
CS-DPP-PBC 0.0601± 0.0002 0.519± 0.001 0.135± 0.001 0.633± 0.001

mediamill
CS-DPP-None 0.4917± 0.0015 0.842± 0.009 0.429± 0.001 0.759± 0.009
CS-DPP-PBT 0.0307± 0.0000 0.458± 0.000 0.070± 0.000 0.581± 0.000
CS-DPP-PBC 0.0307± 0.0000 0.457± 0.000 0.068± 0.000 0.580± 0.000

medical
CS-DPP-None 0.4493± 0.0161 0.902± 0.002 0.361± 0.004 0.931± 0.004
CS-DPP-PBT 0.0171± 0.0002 0.338± 0.005 0.043± 0.003 0.374± 0.004
CS-DPP-PBC 0.0152± 0.0001 0.316± 0.004 0.036± 0.002 0.360± 0.004

nuswide
CS-DPP-None 0.4978± 0.0007 0.930± 0.003 0.523± 0.000 0.964± 0.001
CS-DPP-PBT 0.0201± 0.0000 0.648± 0.000 0.334± 0.001 0.675± 0.000
CS-DPP-PBC 0.0201± 0.0000 0.648± 0.000 0.329± 0.001 0.675± 0.000

scene
CS-DPP-None 0.5002± 0.0012 0.747± 0.002 0.373± 0.004 0.830± 0.002
CS-DPP-PBT 0.1787± 0.0014 0.632± 0.003 0.185± 0.013 0.692± 0.003
CS-DPP-PBC 0.1797± 0.0014 0.631± 0.004 0.142± 0.011 0.697± 0.004

yeast
CS-DPP-None 0.4992± 0.0014 0.622± 0.001 0.424± 0.002 0.737± 0.001
CS-DPP-PBT 0.2139± 0.0006 0.389± 0.001 0.017± 0.001 0.495± 0.001
CS-DPP-PBC 0.2144± 0.0005 0.385± 0.001 0.016± 0.001 0.497± 0.001

Table 13: CS-DPP with PBC vs. PBT vs. None, M = 25% of K

30 Hong-Min Chu et al.

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500
CS-DPP-None 0.4141± 0.0176 0.735± 0.002 0.398± 0.002 0.844± 0.002
CS-DPP-PBT 0.1487± 0.0002 0.602± 0.001 0.154± 0.001 0.752± 0.001
CS-DPP-PBC 0.1490± 0.0002 0.602± 0.001 0.151± 0.001 0.751± 0.001

Corel5k
CS-DPP-None 0.5014± 0.0017 0.969± 0.000 0.369± 0.001 0.986± 0.000
CS-DPP-PBT 0.0101± 0.0000 0.843± 0.000 0.214± 0.001 0.901± 0.000
CS-DPP-PBC 0.0101± 0.0000 0.842± 0.001 0.213± 0.000 0.903± 0.001

emotions
CS-DPP-None 0.4941± 0.0029 0.631± 0.003 0.386± 0.004 0.729± 0.002
CS-DPP-PBT 0.2308± 0.0014 0.381± 0.002 0.034± 0.003 0.481± 0.002
CS-DPP-PBC 0.2306± 0.0012 0.377± 0.002 0.033± 0.003 0.481± 0.002

enron
CS-DPP-None 0.4953± 0.0016 0.821± 0.003 0.385± 0.002 0.889± 0.002
CS-DPP-PBT 0.0626± 0.0002 0.523± 0.001 0.130± 0.001 0.636± 0.001
CS-DPP-PBC 0.0643± 0.0001 0.522± 0.001 0.129± 0.001 0.636± 0.001

mediamill
CS-DPP-None 0.4907± 0.0018 0.895± 0.008 0.426± 0.001 0.838± 0.019
CS-DPP-PBT 0.0308± 0.0000 0.457± 0.000 0.062± 0.000 0.581± 0.000
CS-DPP-PBC 0.0307± 0.0000 0.457± 0.000 0.059± 0.000 0.581± 0.000

medical
CS-DPP-None 0.4177± 0.0370 0.907± 0.002 0.368± 0.002 0.944± 0.002
CS-DPP-PBT 0.0136± 0.0001 0.252± 0.002 0.021± 0.001 0.303± 0.002
CS-DPP-PBC 0.0130± 0.0001 0.250± 0.002 0.019± 0.001 0.299± 0.002

nuswide
CS-DPP-None 0.4972± 0.0007 0.940± 0.004 0.528± 0.001 0.964± 0.002
CS-DPP-PBT 0.0201± 0.0000 0.648± 0.000 0.307± 0.000 0.674± 0.000
CS-DPP-PBC 0.0201± 0.0000 0.648± 0.000 0.304± 0.000 0.675± 0.000

scene
CS-DPP-None 0.5015± 0.0012 0.745± 0.001 0.385± 0.002 0.832± 0.001
CS-DPP-PBT 0.1731± 0.0010 0.554± 0.003 0.125± 0.005 0.626± 0.004
CS-DPP-PBC 0.1720± 0.0015 0.558± 0.003 0.104± 0.009 0.623± 0.004

yeast
CS-DPP-None 0.4982± 0.0011 0.630± 0.001 0.413± 0.001 0.745± 0.001
CS-DPP-PBT 0.2077± 0.0003 0.382± 0.001 0.024± 0.001 0.493± 0.001
CS-DPP-PBC 0.2079± 0.0003 0.382± 0.001 0.026± 0.001 0.492± 0.001

Table 14: CS-DPP with PBC vs. PBT vs. None, M = 50% of K

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500

O-CS 0.1610± 0.0006 0.953± 0.003 0.497± 0.001 0.971± 0.002
O-RAND 0.4042± 0.0052 0.750± 0.004 0.397± 0.006 0.858± 0.004

DPP 0.1453± 0.0001 0.654± 0.002 0.399± 0.001 0.787± 0.001
CS-DPP 0.1454± 0.0002 0.603± 0.001 0.144± 0.002 0.748± 0.001

Corel5k

O-CS 0.0117± 0.0000 0.926± 0.002 0.470± 0.001 0.949± 0.001
O-RAND 0.3734± 0.0044 0.980± 0.001 0.393± 0.013 0.990± 0.000

DPP 0.0100± 0.0000 0.918± 0.001 0.470± 0.000 0.943± 0.000
CS-DPP 0.0100± 0.0000 0.850± 0.001 0.237± 0.001 0.910± 0.000

emotions

O-CS 0.3338± 0.0073 0.900± 0.014 0.508± 0.006 0.924± 0.009
O-RAND 0.3847± 0.0099 0.621± 0.033 0.363± 0.020 0.683± 0.021

DPP 0.3335± 0.0042 0.428± 0.003 0.223± 0.009 0.558± 0.004
CS-DPP 0.3301± 0.0012 0.450± 0.007 0.133± 0.023 0.560± 0.009

enron

O-CS 0.0739± 0.0006 0.885± 0.010 0.463± 0.004 0.927± 0.009
O-RAND 0.3907± 0.0090 0.867± 0.007 0.320± 0.015 0.923± 0.004

DPP 0.0563± 0.0001 0.552± 0.003 0.304± 0.001 0.646± 0.002
CS-DPP 0.0565± 0.0001 0.528± 0.002 0.132± 0.001 0.638± 0.001

mediamill

O-CS 0.0485± 0.0011 0.821± 0.025 0.454± 0.009 0.868± 0.014
O-RAND 0.3737± 0.0070 0.899± 0.007 0.391± 0.020 0.950± 0.003

DPP 0.0308± 0.0000 0.474± 0.000 0.307± 0.000 0.594± 0.000
CS-DPP 0.0308± 0.0000 0.460± 0.000 0.072± 0.002 0.582± 0.000

medical

O-CS 0.0272± 0.0006 0.819± 0.016 0.397± 0.004 0.840± 0.017
O-RAND 0.3674± 0.0093 0.924± 0.005 0.301± 0.019 0.959± 0.003

DPP 0.0204± 0.0002 0.602± 0.008 0.311± 0.005 0.628± 0.008
CS-DPP 0.0204± 0.0002 0.508± 0.006 0.096± 0.003 0.549± 0.007

nuswide

O-CS 0.0239± 0.0004 0.746± 0.005 0.600± 0.003 0.741± 0.003
O-RAND 0.3707± 0.0107 0.956± 0.002 0.532± 0.013 0.973± 0.002

DPP 0.0201± 0.0000 0.673± 0.000 0.580± 0.000 0.691± 0.000
CS-DPP 0.0201± 0.0000 0.648± 0.000 0.358± 0.001 0.675± 0.000

scene

O-CS 0.2168± 0.0047 0.920± 0.010 0.491± 0.003 0.902± 0.009
O-RAND 0.3711± 0.0172 0.743± 0.030 0.295± 0.029 0.782± 0.009

DPP 0.1797± 0.0001 0.999± 0.000 0.500± 0.000 0.999± 0.000
CS-DPP 0.1797± 0.0001 0.724± 0.002 0.231± 0.016 0.796± 0.002

yeast

O-CS 0.3077± 0.0021 0.885± 0.018 0.490± 0.002 0.926± 0.014
O-RAND 0.4162± 0.0096 0.596± 0.008 0.376± 0.018 0.702± 0.014

DPP 0.2314± 0.0014 0.463± 0.005 0.340± 0.003 0.597± 0.005
CS-DPP 0.2307± 0.0011 0.433± 0.003 0.003± 0.000 0.541± 0.003

Table 15: CS-DPP vs Others, M = 10% of K

Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification 31

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500

O-CS 0.1610± 0.0006 0.953± 0.003 0.497± 0.001 0.971± 0.002
O-RAND 0.4042± 0.0052 0.750± 0.004 0.397± 0.006 0.858± 0.004

DPP 0.1453± 0.0001 0.654± 0.002 0.399± 0.001 0.787± 0.001
CS-DPP 0.1454± 0.0002 0.603± 0.001 0.144± 0.002 0.748± 0.001

Corel5k

O-CS 0.0117± 0.0000 0.926± 0.002 0.470± 0.001 0.949± 0.001
O-RAND 0.3734± 0.0044 0.980± 0.001 0.393± 0.013 0.990± 0.000

DPP 0.0100± 0.0000 0.918± 0.001 0.470± 0.000 0.943± 0.000
CS-DPP 0.0100± 0.0000 0.850± 0.001 0.237± 0.001 0.910± 0.000

emotions

O-CS 0.3338± 0.0073 0.900± 0.014 0.508± 0.006 0.924± 0.009
O-RAND 0.3847± 0.0099 0.621± 0.033 0.363± 0.020 0.683± 0.021

DPP 0.3335± 0.0042 0.428± 0.003 0.223± 0.009 0.558± 0.004
CS-DPP 0.3301± 0.0012 0.450± 0.007 0.133± 0.023 0.560± 0.009

enron

O-CS 0.0739± 0.0006 0.885± 0.010 0.463± 0.004 0.927± 0.009
O-RAND 0.3907± 0.0090 0.867± 0.007 0.320± 0.015 0.923± 0.004

DPP 0.0563± 0.0001 0.552± 0.003 0.304± 0.001 0.646± 0.002
CS-DPP 0.0565± 0.0001 0.528± 0.002 0.132± 0.001 0.638± 0.001

mediamill

O-CS 0.0485± 0.0011 0.821± 0.025 0.454± 0.009 0.868± 0.014
O-RAND 0.3737± 0.0070 0.899± 0.007 0.391± 0.020 0.950± 0.003

DPP 0.0308± 0.0000 0.474± 0.000 0.307± 0.000 0.594± 0.000
CS-DPP 0.0308± 0.0000 0.460± 0.000 0.072± 0.002 0.582± 0.000

medical

O-CS 0.0272± 0.0006 0.819± 0.016 0.397± 0.004 0.840± 0.017
O-RAND 0.3674± 0.0093 0.924± 0.005 0.301± 0.019 0.959± 0.003

DPP 0.0204± 0.0002 0.602± 0.008 0.311± 0.005 0.628± 0.008
CS-DPP 0.0204± 0.0002 0.508± 0.006 0.096± 0.003 0.549± 0.007

nuswide

O-CS 0.0239± 0.0004 0.746± 0.005 0.600± 0.003 0.741± 0.003
O-RAND 0.3707± 0.0107 0.956± 0.002 0.532± 0.013 0.973± 0.002

DPP 0.0201± 0.0000 0.673± 0.000 0.580± 0.000 0.691± 0.000
CS-DPP 0.0201± 0.0000 0.648± 0.000 0.358± 0.001 0.675± 0.000

scene

O-CS 0.2168± 0.0047 0.920± 0.010 0.491± 0.003 0.902± 0.009
O-RAND 0.3711± 0.0172 0.743± 0.030 0.295± 0.029 0.782± 0.009

DPP 0.1797± 0.0001 0.999± 0.000 0.500± 0.000 0.999± 0.000
CS-DPP 0.1797± 0.0001 0.724± 0.002 0.231± 0.016 0.796± 0.002

yeast

O-CS 0.3077± 0.0021 0.885± 0.018 0.490± 0.002 0.926± 0.014
O-RAND 0.4162± 0.0096 0.596± 0.008 0.376± 0.018 0.702± 0.014

DPP 0.2314± 0.0014 0.463± 0.005 0.340± 0.003 0.597± 0.005
CS-DPP 0.2307± 0.0011 0.433± 0.003 0.003± 0.000 0.541± 0.003

Table 16: CS-DPP vs Others, M = 25% of K

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500

O-CS 0.1610± 0.0006 0.953± 0.003 0.497± 0.001 0.971± 0.002
O-RAND 0.4042± 0.0052 0.750± 0.004 0.397± 0.006 0.858± 0.004

DPP 0.1453± 0.0001 0.654± 0.002 0.399± 0.001 0.787± 0.001
CS-DPP 0.1454± 0.0002 0.603± 0.001 0.144± 0.002 0.748± 0.001

Corel5k

O-CS 0.0117± 0.0000 0.926± 0.002 0.470± 0.001 0.949± 0.001
O-RAND 0.3734± 0.0044 0.980± 0.001 0.393± 0.013 0.990± 0.000

DPP 0.0100± 0.0000 0.918± 0.001 0.470± 0.000 0.943± 0.000
CS-DPP 0.0100± 0.0000 0.850± 0.001 0.237± 0.001 0.910± 0.000

emotions

O-CS 0.3338± 0.0073 0.900± 0.014 0.508± 0.006 0.924± 0.009
O-RAND 0.3847± 0.0099 0.621± 0.033 0.363± 0.020 0.683± 0.021

DPP 0.3335± 0.0042 0.428± 0.003 0.223± 0.009 0.558± 0.004
CS-DPP 0.3301± 0.0012 0.450± 0.007 0.133± 0.023 0.560± 0.009

enron

O-CS 0.0739± 0.0006 0.885± 0.010 0.463± 0.004 0.927± 0.009
O-RAND 0.3907± 0.0090 0.867± 0.007 0.320± 0.015 0.923± 0.004

DPP 0.0563± 0.0001 0.552± 0.003 0.304± 0.001 0.646± 0.002
CS-DPP 0.0565± 0.0001 0.528± 0.002 0.132± 0.001 0.638± 0.001

mediamill

O-CS 0.0485± 0.0011 0.821± 0.025 0.454± 0.009 0.868± 0.014
O-RAND 0.3737± 0.0070 0.899± 0.007 0.391± 0.020 0.950± 0.003

DPP 0.0308± 0.0000 0.474± 0.000 0.307± 0.000 0.594± 0.000
CS-DPP 0.0308± 0.0000 0.460± 0.000 0.072± 0.002 0.582± 0.000

medical

O-CS 0.0272± 0.0006 0.819± 0.016 0.397± 0.004 0.840± 0.017
O-RAND 0.3674± 0.0093 0.924± 0.005 0.301± 0.019 0.959± 0.003

DPP 0.0204± 0.0002 0.602± 0.008 0.311± 0.005 0.628± 0.008
CS-DPP 0.0204± 0.0002 0.508± 0.006 0.096± 0.003 0.549± 0.007

nuswide

O-CS 0.0239± 0.0004 0.746± 0.005 0.600± 0.003 0.741± 0.003
O-RAND 0.3707± 0.0107 0.956± 0.002 0.532± 0.013 0.973± 0.002

DPP 0.0201± 0.0000 0.673± 0.000 0.580± 0.000 0.691± 0.000
CS-DPP 0.0201± 0.0000 0.648± 0.000 0.358± 0.001 0.675± 0.000

scene

O-CS 0.2168± 0.0047 0.920± 0.010 0.491± 0.003 0.902± 0.009
O-RAND 0.3711± 0.0172 0.743± 0.030 0.295± 0.029 0.782± 0.009

DPP 0.1797± 0.0001 0.999± 0.000 0.500± 0.000 0.999± 0.000
CS-DPP 0.1797± 0.0001 0.724± 0.002 0.231± 0.016 0.796± 0.002

yeast

O-CS 0.3077± 0.0021 0.885± 0.018 0.490± 0.002 0.926± 0.014
O-RAND 0.4162± 0.0096 0.596± 0.008 0.376± 0.018 0.702± 0.014

DPP 0.2314± 0.0014 0.463± 0.005 0.340± 0.003 0.597± 0.005
CS-DPP 0.2307± 0.0011 0.433± 0.003 0.003± 0.000 0.541± 0.003

Table 17: CS-DPP vs Others, M = 50% of K

32 Hong-Min Chu et al.

Dataset ReducedDim. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500
M = 10% of K 0.1458± 0.00019 0.5914± 0.00108 0.1247± 0.00224 0.7388± 0.00105
M = 25% of K 0.1489± 0.00012 0.5956± 0.00110 0.1321± 0.00210 0.7428± 0.00131
M = 50% of K 0.1503± 0.00009 0.5949± 0.00101 0.1371± 0.00222 0.7426± 0.00127

Corel5k
M = 10% of K 0.0102± 0.00000 0.8379± 0.00175 0.2382± 0.00193 0.9026± 0.00138
M = 25% of K 0.0103± 0.00000 0.8248± 0.00174 0.2102± 0.00102 0.8936± 0.00161
M = 50% of K 0.0102± 0.00000 0.8186± 0.00138 0.1991± 0.00123 0.8914± 0.00152

emotions
M = 10% of K 0.3421± 0.00167 0.4511± 0.00525 0.0745± 0.08548 0.5881± 0.02669
M = 25% of K 0.2743± 0.00000 0.3964± 0.00476 0.0235± 0.00597 0.5068± 0.00653
M = 50% of K 0.2324± 0.00000 0.3809± 0.00450 0.0237± 0.00244 0.4858± 0.00463

enron
M = 10% of K 0.0562± 0.00020 0.5421± 0.00335 0.1432± 0.00333 0.6573± 0.00360
M = 25% of K 0.0600± 0.00011 0.5392± 0.00291 0.1364± 0.00244 0.6561± 0.00332
M = 50% of K 0.0632± 0.00009 0.5428± 0.00293 0.1305± 0.00216 0.6627± 0.00316

mediamill
M = 10% of K 0.0309± 0.00001 0.4564± 0.00037 0.0617± 0.00108 0.5790± 0.00049
M = 25% of K 0.0308± 0.00000 0.4535± 0.00030 0.0597± 0.00062 0.5756± 0.00022
M = 50% of K 0.0308± 0.00000 0.4534± 0.00027 0.0565± 0.00026 0.5755± 0.00027

medical
M = 10% of K 0.0202± 0.00014 0.5246± 0.01649 0.0949± 0.00836 0.5764± 0.02145
M = 25% of K 0.0150± 0.00010 0.3416± 0.00815 0.0337± 0.00431 0.4026± 0.00942
M = 50% of K 0.0130± 0.00003 0.2783± 0.00618 0.0201± 0.00276 0.3361± 0.00979

nuswide
M = 10% of K 0.0201± 0.00000 0.6338± 0.00064 0.3394± 0.00294 0.6627± 0.00063
M = 25% of K 0.0201± 0.00000 0.6305± 0.00057 0.3124± 0.00189 0.6600± 0.00045
M = 50% of K 0.0201± 0.00000 0.6290± 0.00035 0.2945± 0.00076 0.6588± 0.00042

scene
M = 10% of K 0.2837± 0.00000 0.7433± 0.00184 0.1732± 0.00593 0.7917± 0.00111
M = 25% of K 0.1873± 0.00000 0.6387± 0.00199 0.2265± 0.02788 0.6882± 0.00196
M = 50% of K 0.1723± 0.00005 0.5571± 0.00206 0.1708± 0.02179 0.6138± 0.00221

yeast
M = 10% of K 0.2296± 0.00010 0.4518± 0.00920 0.0064± 0.00081 0.5448± 0.02253
M = 25% of K 0.2162± 0.00009 0.3841± 0.00200 0.0170± 0.00242 0.4971± 0.00379
M = 50% of K 0.2092± 0.00001 0.3784± 0.00107 0.0232± 0.00158 0.4901± 0.00124

Table 18: Results of CS-DPP on 50 random label orders

