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Abstract—Bridge is among the zero-sum games for which arti-
ficial intelligence has not yet outperformed expert human players.
The main difficulty lies in the bidding phase of bridge, which
requires cooperative decision making with partial information.
Existing artificial intelligence systems for bridge bidding rely on,
and are thus restricted by, human-designed bidding systems or
features. In this work, we propose a flexible and pioneering bridge
bidding system, which can learn either with or without the aid
of human domain knowledge. The system is based on a novel
deep reinforcement learning model, which extracts sophisticated
features and learns to bid automatically based on raw card data.
The model includes an upper-confidence-bound algorithm and
additional techniques to achieve a balance between exploration
and exploitation. We further study how different pieces of human
knowledge can be exploited to assist the model. Our experiments
demonstrate the promising performance of our proposed model.
In particular, the model can advance from having no knowledge
on bidding to achieving a superior performance compared with
a champion-winning computer bridge program that implements
a human-designed bidding system. In addition, further synergies
can be extracted by incorporating expert knowledge into the
proposed model.

Index Terms—Partial information games, bridge, deep rein-
forcement learning, Q-learning.

I. INTRODUCTION

GAMES have always provided a challenging testbed for
artificial intelligence (AI). Even for games with simple

and well-defined rulesets, AI often must follow highly com-
plex strategies to achieve victory. One line of research on
AI for games focuses on full information games, including
chess, Go, and Othello [1], whereas other research considers
incomplete information games such as poker and bridge [2],
[3], [4]. In both cases, traditional methods usually excel by
embedding the knowledge of the best human players as com-
putable strategies. However, researchers have recently shifted
their focus to machine learning, allowing AI players to develop
effective strategies automatically using data [1], [2], [4].

Bridge, which is a standard 52-card game that requires
players to act both cooperatively and competitively, is one of
the most appraised partial-information games for both humans
and AI. The four players of the bridge game are commonly
referred to as North, East, West, and South, and form two
opposing teams (North-South and East-West). Each team aims
to achieve the highest score in a zero-sum scenario.
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A single bridge game starts with a deal, followed by two
phases: bidding and playing. A deal distributes 13 random
cards to each player, and the cards are hidden from the other
players—each player only sees partial information about the
deal. In the bidding phase an auction is run to determine the
declarer of the contract, where the contract affects the score
that the declarer’s team can achieve in the playing phase.
The auction proceeds around the table in a clockwise manner,
where each player chooses from one of the following actions:
PASS, increasing the current value of the bid with respect to
an ordered set of calls {1♣, 1♦, 1♥, 1♠, 1NT, 2♣, ..., 7NT},
DOUBLING and REDOUBLING. The first two actions are
general for deciding the contract, while the latter two are
special, less-used actions, which modify the scoring function
in the playing phase. The bidding sequence ends when three
consecutive PASSes are placed, and the last bid becomes the
final contract. The number occurring in the final contract (such
as four in 4♠) plus six becomes the number of rounds that a
team aims to win in the playing phase in order to satisfy the
contract (commonly referred to as a “make”), and the symbol
(such as ♠) reflects the trump suit in the playing phase.

There are 13 rounds in the playing phase of a bridge
game, where each player shows one card from their hand
and compares the values of the cards based on some rulesets,
with the trump suit having some priority. The player with
the highest-valued card among the four is the winner of the
round. After the 13 rounds, the score of the declarer’s team is
calculated from a lookup table, based on the final contract and
the number of winning rounds of the declarer’s team, where
making the contract results in a positive score for the declarer’s
team, and not making (failing) the contract results in a positive
score for the opponent’s team.

Bidding is an understandably difficult task, because of the
incomplete-information setting. Given that each player can
only see 13 out of 52 cards, it is impossible for a single
player to infer the best contract for their team. Thus, each
bid in the bidding phase must serve as a suggestion towards
an optimal contract, an information exchange between team
members, or both. That is, a good bidding strategy should
strike a balance between exploration (exchanging information)
and exploitation (deciding an optimal contract). Nevertheless,
because the bid value must be monotonically increasing during
the auction, the exchange of information is constrained to the
extent that the bid cannot exceed the optimal contract. The
constraint reduces the amount of exchangeable information. It
is also possible that the two opposing teams may attempt to
exchange information during the bidding phase, called bidding
with competition, which blocks the other team’s information-
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exchanging opportunities.
In real human bridge games, the best human players are

often indistinguishable in terms of their professional com-
petence in the playing phase. Thus, their competence in
the bidding phase is the primary game-deciding factor. The
abovementioned facts indicate the relative difficulty of the
bidding phase over the playing phase for human players.
This difficulty also holds true in the case of designing AI
players. In the playing phase, it has been shown that AI
players are competitive against professional human players.
For example, in 1998 the GIB program finished in 12th place
among 35 professional human players in a no-bidding bridge
contest [5]. Nevertheless, in the bidding phase most existing
AI players are based on replicating human-designed rules of
bidding, commonly referred to as human bidding systems [6],
[7], [8], [9]. This replication generally makes AI players
less competitive than human players in the bidding phase, as
explained below.

One of the main difficulties in replicating a human bidding
system is the inevitable ambiguity of the bids. Human bidding
systems are designed to have rules that cover different situ-
ations, but these rules can overlap. Therefore, based on the
cards of one player and the other players’ bids, conflicting
suggestions could be arrived at from different rules, with
every suggestion being a legitimate bid in the system. Human
players are expected to resolve this ambiguity intelligently, and
select an appropriate choice from the conflicting suggestions.
In addition, professional human players devote a considerable
amount of time to practicing together with team members, to
reduce the ambiguity through mutual understanding. When AI
players try to replicate human bidding systems, it is extremely
challenging to reach the same level of mutual understanding
that human players can achieve to resolve ambiguities, making
AI players inferior in the bidding phase.

The ambiguity of bids arises primarily because human
bidding systems need to be simple enough to be memorizable
by human players. Thus, the rules within such systems are
often also simple. On the other hand, if there were a bidding
system for AI players rather than human players, the rules
may not need to be so simple, and the ambiguity issue could
be resolved to improve the performance of AI players in the
bidding phase.

The aforementioned ideas have motivated some existing
studies on enhancing AI for bridge bidding. Some studies
begin by considering a human bidding system, and then
resolve the ambiguity using various techniques. For instance,
the combination of lookahead search with a human bidding
system was studied by Gambäck et al. [10] and Ginsberg [5].
Amit and Markovitch [11] constructed a decision tree model
with Monte Carlo sampling on top of a human bidding system
to resolve the ambiguity of bids. DeLooze and Downey [12]
generated examples from a human bidding system, and then
used these examples as input for a self-organizing map for
ambiguity resolution. In those approaches, human bidding
systems play a central role in AI players’ bidding strategies.

A more aggressive route to achieving bridge-bidding AI is
to teach an AI about bidding without reference to a human
bidding system. This was considered by Ho and Lin [2], who

proposed a decision tree model along with a contextual bandit
algorithm. The model exhibits the possibility to learn to bid
directly, in a data-driven manner [2]. Nevertheless, the study
is somewhat constrained by the decision tree model, which
comes with a restriction of having at most five choices per
bid (decision-tree branch). Moreover, because of the simple
linear nodes in the decision tree, the model requires a more
sophisticated feature representation of the cards. Ho and Lin
[2] thus borrowed human knowledge on bidding by encoding
the cards as human-designed features, such as the number of
cards for each suit. The restrictions on bidding choices and
feature representation limit the potential for building a data-
driven bidding system for AI.

In all approaches discussed thus far, human-designed fea-
tures are important, whether for the human bidding systems
within the AI players [12], or for the AI bidding system being
learned [2]. In [2], it was reported that raw-card features
resulted in a considerably worse performance than human-
designed features. Inspired by the recent success of deep
learning in automatically constructing useful features from
raw and abstract ones [1], we propose a novel framework
that applies deep reinforcement learning for automatic bridge
bidding, which contributes to the advancement of bridge-
bidding AI in two aspects:

• learning data representation: Using deep neural networks
for feature extraction, our proposed deep reinforcement
learning model is the first that automatically learns the
bidding system directly from raw data. Learning from
raw data, without relying on human-designed bidding
systems or human-designed features, unleashes the full
power of machines for using all possible information. The
promising performance of our proposed model showcases
that learning a bidding system automatically with no
human knowledge is possible.

• resolving bid ambiguity: As discussed previously, the
main difficulty of bridge bidding is the ambiguity of bids.
Using the proposed reinforcement learning framework,
sophisticated bidding rules can be learned automatically
to alleviate the ambiguity problem. The reinforcement
learning framework arguably mimics the process of hu-
man players in establishing a mutual understanding by
practicing together. However, in this case the frame-
work does so “together” with itself. To the best of our
knowledge, this is the first framework that achieves a
promising mutual understanding in bridge bidding using
only machines.

Moreover, we also demonstrate the flexibility of the pro-
posed deep reinforcement learning framework by designing
some add-ons that incorporate human knowledge into the
learning process. Experiments demonstrate that the resulting
human-knowledge-aware deep reinforcement model is able to
not only enhance existing human bidding systems, but also
achieve a better performance, indicating that synergies can be
created by embedding domain knowledge into the proposed
framework.

In summary, our proposed deep reinforcement learning
framework enables the learning of complex rules of bidding
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using nonlinear functions on raw data, to avoid ambiguity of
the bids and improve the bidding performance. In Section II,
we formally establish the problem of bridge bidding as a
learning problem. In Section III, we first introduce reinforce-
ment learning and analyze the key issues in solving the bid-
ding problem. Then, we propose a novel deep reinforcement
learning framework based on a modification of the classic
Q-learning algorithm, along with upper-confidence-bound al-
gorithms for balancing between exploration and exploitation.
We also introduce a modification of the Bellman’s Equation,
named the penetrative Bellman’s Equation, to improve Q-
learning. In addition, we present several add-ons for the
proposed framework to incorporate human knowledge during
training. Finally, in Section IV, we discuss our experiments,
which demonstrate the promising performance of our proposed
AI player based on the deep reinforcement learning frame-
work. We demonstrate that the player’s bidding performance
compares favorably against state-of-the-art AI bidding sys-
tems [2] and a contemporary champion-winning bridge soft-
ware, Wbridge5, which implements a human bidding system.
Comparisons between models trained with and without expert
knowledge are also studied, to verify the flexibility of our
proposed framework.

A short version of the paper appeared in the 2016 European
Conference on Artificial Intelligence [13]. The paper has since
been enriched by a thorough round of polishing, a smoother
introduction of the connection between deep reinforcement
learning and the bridge bidding task in Section II, a broader
discussion of the possible add-ons for the proposed model for
incorporating human knowledge in Section III, and a careful
comparison of the models with and without human knowledge
in Section IV.

II. PROBLEM SETUP

We shall first illustrate the bridge bidding problem, and then
connect it to reinforcement learning.

A. Bidding Problem

The general bidding problem can be divided into two
subproblems, namely bidding without competition, and bid-
ding with competition [2], both of which contain significant
numbers of deals in actual bridge games. Bidding without
competition assumes that the opponent’s team always calls
PASS during bidding, and hence information exchange is
not blocked. Bidding with competition means that both teams
want to bid. In this study, we focus on the subproblem of
bidding without competition, as in existing studies [2], [11],
[12].

Most human bidding systems are designed from “general
cases” of bidding without competition, and treat the possible
competitions as “special cases” to be handled. The design
is because it is readily challenging to achieve a sufficient
level of mutual understanding between partners to play against
PASS-only opponents under the situation of bidding without
competition, and the situation happens rather frequently in
real-world games. Thus, the subproblem of bidding without
competition is an important one on its own, and allows us to

evaluate the basic bidding level between partners. In fact, the
subproblem has been a longstanding benchmark, called the
bidding challenge, for testing computerized bidding systems
[7], [8], [9] as well as evaluating the performance of human
bridge players during practice sessions.

For simplicity, we assume that the bidding team is com-
posed of two players, Player 1 and Player 2, who sit at the
North-South positions, and their opponents always bid PASS.
The two players are generally called partners in the bidding
process. Without loss of generality, Player 1 is assumed to
take the first and the other odd turns to bid, while Player 2 is
assumed to bid in the even turns.

We use x1 and x2 to denote the cards of Player 1
and Player 2, respectively, and b to denote the bidding
history. The element xi[k] of the boolean array xi indi-
cates whether Player i holds the kth card in the ordered
set {♠2,♠3, ...♠A,♥2, . . . ,♥A,♦2, . . . ,♦A,♣2, . . . ,♣A}.
Notice that the bidding history b updates as the bidding
process proceeds. Thus, we explicitly denote by b(t) the
bidding history up to the first t turns. The element b(t)[j]
of the boolean array b(t) indicates whether Player 1 or
Player 2 has made the jth bid in the ordered set β =
{PASS, 1♣, 1♦, . . . , 7NT}. As stated in bridge rules, a new
bid must be higher than all previous bids. Henceforth, it is
sufficient to infer who made which bid given b(t). For ex-
ample, if b(5) contains {PASS, 1♠, 1NT, 3♠}, then Player 1
must have bid {PASS, 1NT} and Player 2 must have bid
{1♠, 3♠}.1

To incorporate the partially observable nature of bridge
bidding, we define s(t), the state at turn t, as containing two
components:
• x(t): the hand of the corresponding player in turn t, where
x(t) = x1 for odd t and x(t) = x2 for even t.

• b(t): the bidding history up to turn t.
By the definition, each player is restricted to accessing their
own hand when deciding the next bid. The goal is to find a
strategy G(s(t)) = a(t), where the action (bid) a(t) is among
the ordered set β = {PASS, 1♣, 1♦, . . . , 7NT}. Except for
the case of PASS, G must satisfy the constraint a(t) > a(t−1)

to satisfy the rules of bridge. We relax this constraint slightly
and allow G to use a(t) = a(t−1) to represent agreement with
the previous action, which is effectively the same as calling
PASS in an actual bridge game, but technically gives the
machine a slightly bigger action space to express the intent of
terminating the bidding procedure. For any given strategy G,
the array b(t) will be updated by the bid a(t) of the strategy
in each bidding turn.

The data used to learn a good bidding strategy G are
generated as follows. Each instance within the data is of
the form (x1,x2, c), where (x1,x2) represents a particular
deal to the North-South players, and c carries the information
regarding the goodness (more specifically the relative penalty,
as we shall explain next) of each possible contract with respect
to (x1,x2). It would be extremely time consuming for humans

1 The use of b to represent the bidding history was specially designed for
bidding without competition out of simplicity. More sophisticated representa-
tion is needed for future studies of bidding with competition.
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or machines to actually play out each possible contract to
learn the goodness score. Thus, we calculate the score of
each contract without actually carrying out the playing phase.
In particular, we use double dummy analysis, as in previous
studies [2], to estimate the score for each possible contract.

Double dummy analysis is a technique that attempts to
compute the number of winning rounds of each team in the
playing phase with perfect information and an optimal playing
strategy, and is generally considered to be a solved problem in
the field of bridge AI. Although the analysis is performed with
the optimistic assumption of perfect information, it is adopted
here for two reasons. First, the results are independent from the
bidding stage, making it possible to generate a large amount
of data efficiently. Second, double dummy analysis is known
to achieve a considerable accuracy when compared with actual
games played by professional human players.

Double dummy analysis allows the goodness of each possi-
ble contract to be calculated with respect to one particular deal
of hands. Nevertheless, even with the North-South hands fixed,
the distribution of East-West hands may affect the goodness
of each contract. Human players generally bid to maximize
the expected score with respect to the opposing team’s hands.
We approximate the expected score by dealing the remaining
cards to the East and West players five times for any given
North-South hands (x1,x2), performing a double dummy
analysis for each deal, and averaging over the five analysis
results to obtain the final score of each possible contract.
This averaging reduces the “noise” resulting from luckiness
within the data, and provides the learning algorithm with
more accurate information to learn from. After obtaining the
final score for each possible contract, we store the absolute
difference between the final score and the highest final score
in a cost vector c, where c[j] indicates the penalty of reaching
a final contract j.

We now formally define our learning problem as follows.
Given a data set D = {(x1n,x2n, cn)}Nn=1, where N is the
number of instances, we aim to learn a bidding strategy G.
For each (x1,x2), the strategy G is iteratively fed the current
state s(t) = (x(t), b(t)) until it calls PASS or the same bid.
We denote the state for which G calls the final bid (contract)
by ŝ. The cost of the contract, namely c[G(ŝ)], is then used
to evaluate G. Our goal is to minimize the expected test cost
of G.

B. Reinforcement Learning
Next, we shall explain how the goal of learning the bidding

strategy G is similar to the goal of reinforcement learning. A
reinforcement learning problem is generally represented by a
set of possible environment states, and a set of actions that can
be taken on each state. In each iteration t, the learner takes an
action a in a state s. The action makes the environment state
change from s to some s′, and results in some reward rt+1 for
the learner as feedback. The goal of reinforcement learning
is to obtain the maximum (discounted) cumulative reward∑∞

t=0 γ
trt+1, where the discount 0 < γ ≤ 1 represents the

intent of obtaining the reward as early as possible.
Q-learning [14] is a technique of reinforcement learning that

evaluates the goodness, denoted as Q(s, a), of taking each

action a in some state s. The optimal action-value function
Q∗(s, a) is defined as the maximum expected return that is
achievable for any strategy after performing an action a in a
state s. Similarly, Q∗(s,a) is the vector in which each value
is obtained as the maximum expected return that is achievable
with any strategy after performing the corresponding action in
the vector a and state s.

The optimal action-value function obeys an important equa-
tion, known as the Bellman equation. The Bellman equation
assumes that given the current state s, the resulting state s′

after taking action a, and all possible actions a′ in s′, the
optimal value of Q∗(s, a) is the expected sum of the instant
reward r and the total rewards after the best action among a′

is executed. Formally, we have that

Q∗(s, a) = Es′ [r + γmax
a′

Q∗(s′, a′)|s, a] (1)

The general idea behind reinforcement learning is to obtain
an estimate of the optimal Q-function by continuously mod-
ifying it based on feedback from actions. In particular, when
taking an action a in the state s to move to the state s′ and
obtain a reward r, a fixed-point style update can be performed
on the entry (s, a) of the Q-function table as follows:

Q(s, a)← αQ(s, a) + (1− α)[r+ γmax
a′

Q(s′, a′)|s, a] (2)

where α is the learning rate. The updating algorithm, which
is called the value iteration algorithm, provably converges to
the optimal Q-value after exploring the space of (s, a) [15].
Nevertheless, Q-learning itself does not specify how to actually
choose the actions and explore the space, as it is used only to
construct a value function.

The value iteration algorithm works when the state-action
space (s, a) is of finite size. For more complicated problems,
a model-based Q-function can be employed, such as a deep
neural network [16], [17]. In this case, a loss function is often
introduced to measure the difference between the current and
newly experienced Q-values. When taking an action a in the
state s to move to the state s′ and obtain a reward r, a Q-
network can be trained by minimizing a squared-error loss
function with respect to the network parameter θ:

L(θ) =
(
Q(s, a; θ)− [r + γmax

a′
Q(s′, a′; θ)|s, a]

)2
. (3)

One typical method of minimizing the above loss function
is to apply stochastic gradient descent on each new example
of (s, a, s′, r) obtained during the reinforcement learning
process.

Using the above technique of (deep) Q-learning, we tackle
the bridge bidding problem by reducing the task of choosing a
bid a under the state s to the task of choosing an action a under
the state s (hence our overloading of the same notations). Two
challenges remain to be solved. First, how can we connect the
cost of the final bid c to the rewards r obtained during the
choice of each bid? Second, how can we properly explore the
state-action space (s, a) to improve the reinforcement learning
performance? We will tackle these challenges in the next
section.
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Fig. 1: The structure of our bridge-bidding deep reinforcement
learning framework.

III. MODEL

We begin the introduction of our proposed framework by
connecting the intermediate rewards with the final costs. Then,
we discuss the design of our exploration technique. Finally,
we illustrate the possibility of incorporating human knowledge
into the framework.

A. Proposed Framework

The problem of learning a new bidding system can be
complicated. It is considerably difficult to infer the full state
from the bidding sequence alone, because each call can
either suggest an optional contract or serve as an information
exchange between partners. A different intention would lead
to different inferences in the same situation, and thus partners
often maintain a list of agreements regarding the meanings of
their bids, widely known as a bidding system. Interestingly, the
same exact bid may be considered to be good in one bidding
system and bad in another. Therefore, while learning a new
bidding system, players need to modify their interpretations
of bids alongside with partners.

The bidding problem without competition can be viewed
as a multi-agent game such that each bidder is seen as a
different player at different stages of bidding. In this case,
each player has a unique sequence number: players with an
odd sequence number can share the same 13-card information,
while players with even sequence number share another set of
13-card information. Each player knows the bidding result of
all the players before her/him. The game stops when PASS
is bid by a player with a sequence number greater than one, or
when an indication of PASS (two consecutive identical bids) is
presented. Thus, we are able to separate the decision process
of each layer by “training” a different Q-function for each
layer of bidding. The algorithm is defined and illustrated in
Algorithm 1.

In traditional Q-learning, the cost of each bid is updated
using the Bellman equation, as in Equation 1. Moreover, the
exploration behavior is often demonstrated by an ε-greedy
strategy, which follows the greedy strategy with probability

Algorithm 1: Proposed Learning Algorithm
Input: Data = {(x1n,x2n,cn)} for n = 1, . . . , N
Algorithm P to determine the cost of action a
Algorithm E to determine exploration and exploitation
strategy
Output: A bidding strategy G based on the learned θi.
Initialize the action-value function Qj with random

weights for j = 1, . . . , l
repeat

Randomly select a data instance (x1n,x2n,cn)
for turn t = 1 to l do

Initialize cost array c(a(t))
for all possible action a(t) do

Determine the cost of action a(t) by P
Record resulting cost in c(a(t))

Save (S(t), c(a(t))) in Database D
Select action a(t)by the highest estimated reward
with exploration by E

if a(t) == PASS then
Break

Update b(t+1) by action a(t)

Set s(t+1) = (x(t+1), b(t+1))

for turn t = 1 to l do
Sample random mini-batch of (S(t), c(a(t)))

from D
Perform a gradient descent step on
[(1− c(a(t)))−Q(s(t),a(t); θ)]2

until enough training iterations by early stopping

1 − ε and selects a random action with probability ε. This
forms the baseline algorithm.

While Bellman’s equation is a necessary condition for
optimality, the convergence time for each Q-function is rather
long. Moreover, it has been shown that Q-learning performs
considerably poorly in some stochastic environments, because
of the overestimation of action values. In the problem of bridge
bidding, this being a partial-information cooperative game, the
overestimation of action values becomes a significant problem.
Overestimation during the bridge bidding happens because of
the fact that s(t) and s(t+1) observe the hands of different
players (they observe the hands of Player 1 and Player 2,
respectively), making the optimal Q-value for s(t+1) almost
impossible to estimate from s(t). The partial information
nature of the game thus raises a convergence issue for Q-
learning based on the conventional Bellman equation.

To overcome this challenge, we propose the penetrative
Bellman equation, which involves a one-step Monte Carlo
sampling to obtain an estimate for the final score as the Q-
learning target. By simulating the game, we can update the
Q-value by the final score of the game outcome, instead of
the intermediate Q-value estimated by observing the partner’s
hand. The mathematical formulation of the penetrative Bell-
man’s equation is as follows. Starting from the Bellman’s
equation, we define the instant reward as zero and γ = 1,
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to obtain

Q(i)∗(s, a) = max
a(1)

[Q(i+1)∗(s(1), a(1))|s, a]

= Q(i+1)∗(s(1), a∗(1)|s, a), (4)

where a∗(1) is the best possible action from s(t). We similarly
define a∗(t) to be the best possible action determined by the
Q-value at state s(t), where s(t) is translated from s(t−1)

following the action a(t−1), and (s(0), a(0)) = (s, a). We could
then further apply Bellman’s equation to Q(i+1)∗(s(1), a∗(1))
as:

Q(i+1)∗(s(1), a∗(1)) = max
a(2)

[Q(i+2)∗(s(2), a(2))|s(1), a∗(1)] (5)

while

max
a(2)

[Q(i+2)∗(s(2), a(2))|s(1), a∗(1)] = Q(i+2)∗(s(2), a∗(2)|s(1), a∗(1))

(6)
By combining equation 4, equation 5, and equation 6, we have

Q(i)∗(s, a) = Q(i+2)∗(s(2), a∗(2)|s, a) (7)

where s(2), a∗(2), s(1), a∗(1), s, and a satisfy equation 4 and
equation 5. By recursively applying Bellman’s equation, the
process stops when a∗(t) is the final bid of the game, and
thus the cost of the game can be decided by the precalculated
c(a∗(t)). That is, the target Q-value for (s, a) is computed as

Q(i)∗(s, a) = Q(i+t)∗(s(t), a∗(t)|s, a) = c(a∗(t)) (8)

Typically, there are fewer than six bids in a game of
bridge bidding between the two teammates, and therefore the
penetrative Bellman’s equation is fairly efficient compared
with the original variant, while the cost of each action can
be more reliably estimated by resolving the different states
observed by consecutive time steps. As discussed later in the
experimental section, this leads to better performances.

Because bridge bidding is a multi-agent cooperative game,
the traditional ε-greedy algorithm would be detrimental to
communication between partners. Note that the main objective
in bridge bidding, other than to find the best possible contract,
is to convey some information to one’s partner. However,
randomly bidding any contract in lieu of a certain possibility
would make it difficult for the partner of the bidder to under-
stand the current bid. This will result in poor communication
and a slower convergence, which has more disadvantages than
advantages.

Further, exploration is one of the key elements for reaching
the optimum in reinforcement learning. Without exploration,
reinforcement learning will likely be confined to some local
optimum because the value of some actions will never be
explored. Various studies have investigated the problem of
balancing exploration with exploitation. Previous research on
exploration in reinforcement learning proposes the use of a
sampling technique such as “Thompson sampling” to enhance
the exploration performance [18], [19].

However, most related approaches cannot deal with one of
the key differences between bridge bidding and traditional
reinforcement learning: communication with the partner. One
of the difficulties of learning a good bidding strategy is the
complexity in exploring the value of an action. In games such

as chess or Go, one may learn that a move is recommended
by evaluating the state through playing afterwards. However,
in the game of bridge, a bid is only good if one’s partner
understands the bid and is able to react accordingly. Even
in the exploration phase, bids need to be consistent with
the partner’s knowledge. The standard ε-greedy exploration
scheme in deep Q-network (DQN) which samples all bids with
equal probability, will deteriorate the communication under-
standing between partners. The uniform randomness arguably
introduces too much noise in the communication process,
imposing more harm than good (exploration) for the learning
algorithm, as we shall demonstrate in the experimental section.

Moreover, considering information theory, the exchange of
information works best when the use of each bid is distributed
equally. Therefore, we design an exploration scheme using
a bandit algorithm. The bandit problem has been a popular
research topic in the field of machine learning [20], [21],
[22], [23]. In the contextual bandit problem, we would like
to earn the maximum total rewards within finite attempts
by pulling a bandit machine from M given machines in a
dynamic environment with context. The key is to balance
exploration and exploitation. Upper-confidence-bound (UCB)
algorithms [21] are some of the most popular contextual
bandit algorithms. These algorithms use the uncertainty term to
achieve a balance. For the bridge-bidding problem, we choose
to use UCB1 [20], for its simplicity in connecting with deep
neural networks and its good performance in previous studies.

We now relate the bridge bidding problem to the contextual
bandit problem. We assume that each possible bid is a bandit
machine, with the context being the cards in one’s hand and
previous bids. The reward for each bid is calculated using
the penetrative Bellman’s equation, which relates to the final
cost vector and future strategy. Nevertheless, there may be
uncertainty in the terms of the action-value, especially for
bids that are rarely used. Contextual bandit can be applied
to achieve a balance between using the best action inferred by
the Q-function and exploring bids that occur less frequently.
The neural network of the Q-function serves as a non-linear
version of the reward, the WTX term in UCB1. Therefore,
we formally define algorithm E using UCB1 by selecting
a(t) = maxa(t) [Q(s(t), a(t); θ) + α

√
2 lnT
Ta

], where T is the
total number of examples used to learn the entirety of Q, and
Ta is the number of examples such that the action a (bid a)
has been selected. The benefit of using UCB1 for sampling is
that the algorithm is effectively balanced between exploration
and exploitation, exploring the less used bids while choosing
the bid with lower estimated costs in general. Therefore, the
exploration algorithm is able to explore without seriously
hindering the communication between partners, which is es-
pecially critical in the case of cooperative multi-agent games.
The final algorithm is presented in Algorithm 1.

B. Preprocessing and Model Architecture
The features of training bridge-bidding AIs in previous

studies include bridge-specific features invented by humans,
such as high-card points2. Somehow the best form of high-

2High-card points - total points for the picture cards: A=4, K=3, Q=2, J=1.
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card points is debatable since 10s and 9s may well play an
important role in certain hands. Because our proposed deep
reinforcement learning model is able to conduct automatic
feature extraction, we propose using 52-dimension raw hand
data as our features. The potential advantage of the feature
representation is to not limit the machines by human heuris-
tics; the potential disadvantage is to risk of overfitting to
raw features. We shall demonstrate that the representation is
promising—a well-performing bridge-bidding system can be
designed without human bridge knowledge.

There are several possible approaches to designing a Q-
function using a neural network. One approach uses the
bidding history and actions as inputs to the neural network,
while another involves listing the costs of all possible outputs,
only with the state as input. The drawback of the former is that
the computational cost will increase linearly with the number
of possible actions. Thus, we choose the latter approach, and
therefore it can be stated that the output of the Q-function
corresponds to a predicted cost vector of all possible bids.
We denote the action vector by a and the true cost vector of
all possible bids by c(a). The gradient descent update of the
Q-function can be performed on (c(a(t)) − Q(s(t),a; θ))2.
Notably, there may be actions that are illegal in certain states
because they violate the rule of bridge. We set the cost of such
actions to an extremely high value, so that the rules of bridge
can be learned by the Q-function explicitly.

We now describe the architecture of the Q-function of the
bridge-bidding problem. We initialize l separate Q-functions,
where l is the total number of bids. For the first Q-
function, the input is the 52-dimension raw data of Player
1’s hand using one-hot encoding, followed by three layers
of fully-connected layers with 128 neurons each. We obtain
a 36-dimension output for the cost of each bid. Compared
with the first Q-function, for the other Q-functions, there
are an extra 36 dimensions describing the bidding histo-
ries of the both players, where the 36 dimensions repre-
sent {PASS, 1♣, 1♦, . . . , 7NT}. Specifically, in the bridge-
bidding scenario, a PASS may lead to different final contracts
depending on the bidding history, making the Q-value of
PASS difficult to learn. To facilitate the learning process,
we encode a PASS bid as repeating the previous bid by the
partner, as an alternative representation of the action. In the
modified representation, if the same bids occurs twice, this is
equivalent to the latter bid being a PASS. This alternative
representation is one of the key elements in the success of Q-
learning for bridge bidding. The bids that have been placed by
any of the two players have a value of one, while others have
the value zero. The final structure of our learning framework
is illustrated in Figure 1.

C. Incorporating the Opening Bid of Human Bidding Systems
Thus far, this paper has focused on learning the bidding

system from scratch, without the aid of any human bridge
knowledge. In the following subsections, we demonstrate the
flexibility of the proposed model by studying different possi-
bilities for incorporating human knowledge into the learning
process. As an initial attempt to combine the deep reinforce-
ment learning algorithm with human knowledge, we hope that

synergies can be extracted to benefit both existing human
bidding systems and our learning algorithm.

In every human-designed bidding system, there is a specific
set of rules to follow at every stage in the bidding phase.
Among these rules, the opening table, which defines what
to bid for the opener, serves as an important signature for a
human bidding system to distinguish it from others. Given the
unique roles that opening bids play, we seek ways to combine
human-designed opening bids with our deep reinforcement
learning algorithm as a first step towards embedding human
knowledge into our learning algorithm.

1) Hard opening with human bidding systems: Under the
proposed framework in Algorithm 1, a natural approach to
combining human-designed opening bids with our deep re-
inforcement learning algorithm is to fix the first bid using a
written open table of the human bidding system of interest.
That is, we force the learning algorithm to learn all the bids
after the fixed opening bid. Nevertheless, it is known from [13]
that such a strong condition on the opening bid may result
in limiting the potential power of computer bridge bidding.
Therefore, we propose a soft alternative to this approach
below.

2) Soft opening with human bidding systems: As an alterna-
tive to strongly forcing the first bid to exactly follow the open
table of some human bidding system, a more gentle manner of
leveraging human knowledge is to assign a certain probability
for our learning algorithm to select the opening bid according
to the prescribed rules of human bidding systems. In other
words, at the first bid, the learning algorithm has a probability
of εh to directly choose an action suggested by some human
bidding system, and a probability of 1 − εh to follow the
Q-learning strategy learned on its own. By introducing εh,
the reinforcement learning model can perform exploration
based on some prior human knowledge. Thus, we refer to this
approach as ε-human. Using this soft version, we are able to
control how strictly we want to enforce human knowledge on
our algorithm through εh. We note that this is equivalent to the
above mentioned hard version when εh = 1, and equivalent
to not considering any human-designed bidding system when
εh = 0.

D. Training with Human-Crafted Hand Features

We now explore an alternative possibility for our learning
algorithm to take advantage of existing human knowledge
in bridge. To declare an optimal contract, it is undoubtedly
important for the partners to be able to exchange information
and learn each other’s hands during the bidding phase. As a
result, [13] proposed to add a representation of the partner’s
hand in the output layer while training the deep reinforcement
algorithm, with the hope that these extra features can guide
the bidding algorithm to gain a better understanding of the
partner’s bid.

However, there is a huge variety of features that could be
used to represent the hand, ranging from lower-level features
such as the presence or absence of specific cards to higher-
level human-crafted features such as the point-count system,
suit distribution, or even more complex quality assessment
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features. Henceforth, we further generalize the original idea
in [13] and attempt to utilize different levels of hand features
to aid the learning algorithm. That is, we start by adding
lower-level hand features to the more sophisticated features,
and see how the learning algorithm reacts to different types of
auxiliary features. In fact, this idea is aligned with the recently
introduced concept of the auxiliary task [24], where the goal
of the agent is to predict not only what action to perform, but
also how the action affects the future state. As an analogy,
predicting the partner’s hand in bridge bidding can then be
viewed as an auxiliary task. We validate the benefits of such
auxiliary tasks in the following section.

IV. EXPERIMENT

To validate the proposed method, we compare our model
with a baseline model, a state-of-the-art model, and a well-
known computer bridge software, Wbridge5 [25], which has
won the computer bridge championship for the last several
years. We randomly generate a dataset of 140,000 instances
(pairs of hand distributions) to be used in our experiments. We
use 100,000 instances for training, and split the other 40,000
instances evenly for validation and testing. We also compare
the sparse binary features for representing the existence of
each card to the condensed features using a second-order
extension employed in previous studies [2].

Note that Wbridge5 is originally designed for the problem
of bidding with competition. To obtain its experimental results
for bidding without competition, we follow an earlier bench-
mark [2] to set PASS as the opponents’ bids. Admittedly, the
comparison is not fully fair to Wbridge5, as its bidding system
readily contains rooms for potential competition. We intend
to view Wbridge5 as a (strong) baseline to evaluate whether
our proposed model is promising in the constrained setting of
bidding without competition, with the hope that the positive
results can inspire future studies and comparisons under the
full setting of bidding with competition.

We set the cost vectors c(a) using International Match
Points, which consists of an integer between 0 and 24 that is
commonly used to compare the relative performances of two
teams in most bridge games. The cost vector is obtained by
subtracting the cost of action array from the best possible bid,
followed by a normalization step; namely, c(a) = [c(a)′ −
minac(a)

′]/25. The division by 25 ensures that the cost is
scaled to between 0 and 1 to facilitate training stability, while
we report the non-scaled values in the table to reflect the
original difference of International Match Points. Here, c(a)′

denotes the origin cost of each action calculated by the double
dummy analysis3. The cost can be transformed to the reward
using R(a) = 1−c(a). We set the cost of a rule-violating bid
to 1.2, thus letting the bidding system learn the bidding rules
implicitly. Moreover, the bids in the testing phase are chosen
from legal bids.

For deep neural networks, RMSprop is used to speed up
the convergence time. In the following experiments, we fix

3One technical detail is that c is generated by assuming that the player
who can win more tricks in the contract is the declarer.

the parameters related to the deep neural network. The fol-
lowing parameters were used in the experiments for the fully-
connected deep neural network: decay = 0.98, momentum
= 0.82, step rate = 0.83, batch size = 50, and η = 0.05.
These parameters remain unchanged during our experiments,
because the focus of our study is not on deep neural network
parameters. We use early-stopping from the validation result
to determine the number of epochs after which to end the
training.

A. Exploration Method

We compare the two exploration methods ε-greedy explo-
ration and UCB1 for the exploration algorithm E in Algorithm
1. The parameter in ε-greedy exploration specifies choosing a
random action with probability ε and following the best action
given the Q-function otherwise. The parameter in UCB1 ex-
ploration specifies selecting a(t) = maxa(t) [Q(s(t), a(t); θ) +

α
√

2 lnT
Ta

], where T is the number of total examples used
to learn the complete Q-function, and Ta is the number of
examples in which action a (bid a) is selected. We per-
form experiments on ε ∈ {0.001, 0.005, 0.01, 0.05, 0.1} and
α ∈ {0.05, 0.1, 0.2}. The results are listed in Table I, where
no exploration represents the outcome in which no exploring
methods are used.

We can see from Table I that UCB1 exploration generally
outperforms that using the ε-greedy approach, showing that
UCB1 exploration fits the model well. The ε-greedy explo-
ration method performs even worse than in the case of no
exploration for ε ≥ 0.05, which is arguably because of the
enhanced ambiguity of random exploration. It is worth noting
that the no-exploration method does include some sense of
exploration in the deep neural network structure itself, because
all the possible actions are updated in certain Q-functions,
and thus they also contain the actions that are not likely to
be chosen. However, deep exploration, such as in the case of
UCB1, can further improve the result, as shown in Table I. The
best parameter for UCB1 exploration is α = 0.1 for layers ≥
3 and α = 0.05 for layers = 2. We have conducted a Student’s
t-test at 95% confidence level between the best parameter and
the second best parameter for each method/layer combination,
and the results confirmed that the differences are statistically
significant. These parameter values will be adopted in the
experiments discussed in the remainder of the paper.

B. Penetrative Bellman’s Equation

For the baseline model, we use Bellman’s equation and
UCB1 exploration as Algorithm P and Algorithm E, respec-
tively, in Algorithm 1. We compare the results of Bellman’s
equation and the penetrative Bellman equation as candidates
for Algorithm P.

In Table II, the average test cost is presented with the total
number of bids as a variable. UCB1 is used as the exploration
method, with the exploration parameter α set to 0.1. We can
see that when the total number of bids is greater than two, the
penetrative Bellman equation outperforms the baseline method
by a considerable margin. We note that the baseline model
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TABLE I: Comparisons between the average cost of two exploration methods
where different values of parameter in each exploration method is tested

layer 2 3 4 5
ε-Greedy, ε = 0.001 2.9628 ±0.0257 2.7748 ±0.0328 2.7648 ±0.0290 2.7650 ±0.0031
ε-Greedy, ε = 0.005 2.9582 ±0.0036 2.8201 ±0.0282 2.7773 ±0.0419 2.7510 ±0.0457
ε-Greedy, ε = 0.01 2.9857 ±0.0227 2.8080 ±0.0113 2.7696 ±0.0179 2.7716 ±0.0305
ε-Greedy, ε = 0.05 3.0125 ±0.0689 2.8331 ±0.0413 2.8408 ±0.0367 2.8328 ±0.0079
ε-Greedy, ε = 0.1 3.0575 ±0.0092 2.8758 ±0.0240 2.8679 ±0.0228 3.0035 ±0.1720
no exploration 2.9600 ±0.0372 2.7914 ±0.0080 2.7559 ±0.0616 2.7949 ±0.0358
UCB1, α = 0.05 2.9329 ±0.0069 2.7776 ±0.0128 2.7451 ±0.0055 2.7695 ±0.0143
UCB1, α = 0.1 2.9391 ±0.0279 2.7289 ±0.0595 2.6984 ±0.0207 2.7397 ±0.0187
UCB1, α = 0.2 2.9542 ±0.0052 2.8042 ±0.0358 2.7183 ±0.0171 2.7465 ±0.0221

TABLE II: Comparison of the average cost for different
methods of updating the Q-functions

Total bids 2 3 4 5
Baseline 2.9308 2.8585 2.8795 2.9225
Penetrative Bellman’s Equation 2.9329 2.7289 2.6984 2.7397

TABLE III: Comparison of the average cost for
our models, those in [2], and Wbridge5

Model training validation testing
layer = 2 2.8013 ± 0.0368 2.9150 ±0.0049 2.9329 ± 0.0069
layer = 3 2.6725 ± 0.0392 2.7363 ±0.0465 2.7289 ± 0.0595
layer = 4 2.5992 ± 0.0474 2.6700 ±0.0245 2.6984 ± 0.0207
layer = 5 2.6442 ± 0.0261 2.7150 ±0.0123 2.7397 ± 0.0187
[2] layer = 4 2.9730 ± 0.0315 3.0697 ±0.0388 3.0886 ± 0.0479
[2] layer = 6 2.9136 ± 0.0384 3.1267 ±0.0092 3.1657 ± 0.0199
Wbridge5 N/A N/A 3.0039

has little variance in the performance for varying total bids.
This can be attributed to the estimation errors of the Q-value
raised by the ordinary Bellman’s equation, as stated in Section
III. Because the estimation error further accumulates as the
total number of bids increases, this cancels out the expected
performance improvement that should be gained by increasing
the model complexity. We can infer that the primary reason
that the penetrative Bellman equation is effective is that it
enables the possibility of learning a deep Q-learning model
with more bids by providing a more accurate estimate of
the cost. The experimental results validate the benefits of the
proposed penetrative Bellman equation.

C. Comparison with the State-of-the-Art

We now discuss the experiment with different model struc-
tures. We consider the Q-learning model with total bids
∈ {2, 3, 4, 5}. For each model structures, we use the val-
idation result to determine the parameter α, where α ∈
{0.05, 0.1, 0.2}. We compare the bridge-bidding results with
those of that proposed in [2], and the well-known computer
bridge software, Wbridge5 [25], which has won the computer
bridge championship for the last several years. We run the
same 140,000 data instances on our model and that proposed
in [2], while running the 20,000 instances of testing data on
Wbridge5, using the code provided by the author of [2].

The results in Table III show that the deep reinforcement
learning model with layers = 4 achieves the best performance
among all models. Moreover, each deep reinforcement learning
model outperforms the result achieved by Wbridge5. This

TABLE IV: Approximate computation time for each model

layer 2 3 4 5
running time per epoch (sec) 121 278 492 713
running time until converge (hrs) 0.5 2.3 6.8 17.9

TABLE V: The average costs of our algorithm coupled with
different bidding systems using different εh

the coupling bidding system
Layer ε-human Wbridge5 SAYC Natural-5542 CPC
layer = 4 εh = 0 3.0039 2.6984 2.6984 2.6984

εh = 0.1 – 2.7495 2.7074 2.7474
εh = 1 – 2.7839 2.7425 2.7776

layer = 5 εh = 0 – 2.7397 2.7397 2.7397
εh = 0.1 – 2.7432 2.7192 2.7425
εh = 1 – 2.7850 2.7433 2.7925

showcases that deep reinforcement learning achieves a good
result, even with a simple model structure. The result verifies
that there is indeed considerable potential for improving the
traditional approach to bridge-bidding AI.

D. Computational Time

In this section, we discuss the computing time for training
our models. The code is written in MATLAB, and executed on
a system with Ubuntu Linux 12.04 LTS AMD64, using Intel
Xeon X5560 CPU with 60 GB RAM. We list the training
times for one epoch and the total training times for models
with different numbers of layers in Table IV. Note that the
training time can be further shortened if GPU is utilized.

In Table IV, we can observe that the training for models
with two and three layers is quite efficient, whereas the training
time becomes considerably long for larger models. The total
convergence time is approximately to the order of l3, where
l is the total number of layers (or bids) in the model. This is
because the complexity of the penetrative Bellman equation
has an extra order of l compared with the complexity of
Bellman’s equation.

E. Comparisons Between Models with and without a Human
Opening Bid Incorporated

To couple our learning algorithm with a human-designed
opening bid, we consider three different bidding systems that
are widely used by both amateur and professional players:
Standard American Yellow Card (SAYC), Natural-5542, and
Chinese Precision Club (CPC). In each of the three bidding
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TABLE VI: Opening tables of different learned models.
The abbreviation ”bal” refers to a balanced distribution of cards in each suits.

Bid [2] ours ours + CPC ours + SAYC ours + Natural-5542
PASS 0-12 HCP 0-10 HCP 0-10 HCP 0-12 HCP 0-12 HCP
1♣ 9-19 HCP, 4-6 ♥ 11+ HCP 11+ HCP 10+ HCP, 3+♣ 10+ HCP, 2+♣
1♦ 8-18 HCP, short♠ and 4-6♣ 10+ HCP, 5+♥ 7-16 HCP, 4+♦ 9+ HCP, 4+♦ 8+ HCP, 4+♦
1♥ 12-23 HCP, w/o long suit 12+ HCP, 5+♠ 7-16 HCP, 5+♥ 8+ HCP, 5+♥ 7+ HCP, 5+♥
1♠ 10-19 HCP, 4-6 ♠ 16+HCP, bal 7-16 HCP, 5+♠ 8+ HCP, 5+♠ 7+ HCP, 5+♠
1NT Not used 12+ HCP, 6+♦ 14-18 HCP, bal 15-22 HCP, bal 15-21 HCP, bal
2♣ 0-17 HCP, long ♣ Not used 10-15 HCP, 6+♣ 13+ HCP, long ♥, long ♠ 16+ HCP, long ♥
2♦ 0-17 HCP, long ♦ Not used 14-22 HCP, long ♠ Not used 7-13 HCP, 6+♦
2♥ 0-13 HCP, long ♥ 18+ HCP, 5-6♠ Not used Not used 7-13 HCP, 6+♥
2♠ 0-13 HCP, long ♠ Not used 20+ HCP, bal 13+ HCP, 6+♥ Not used
2NT Not used 15-17 HCP, 6+♠ 16-20 HCP, long ♥ 19+ HCP, short ♠, 3-4 ♥ 16+ HCP, long ♠

(a) No human opening bid considered, i.e., εh = 0

(b) SAYC with εh = 0.1 (c) Natural-5542 with εh = 0.1 (d) Chinese Precision Club with εh = 0.1

(e) SAYC with εh = 1 (f) Natural-5542 with εh = 1 (g) Chinese Precision Club with εh = 1

Fig. 2: Learning curves of our model with four layers coupled with different human-designed opening bids using different εh.
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systems, there is a bid called a weak bid, which serves the
purpose of interfering with opponents. Because there is no
need for a weak bid in the subproblem of bidding with no
competitions, we perform experiments on openings without
weak bidding for each system. The experiments are conducted
on models with four and five layers respectively, with α = 0.1
for UCB1. The results are shown in Table V with Wbridge5
as a comparison baseline. To gain further insight into how
our learning algorithm reacts to different εh values as well
as different human bidding systems, we further visualize the
learning curves of the models coupled with different opening
bid rules in Figure 2. In addition, we highlight the differences
between the resulting learned models through the qualitative
results listed in Table VI, where the opening tables of different
models are compared.

From Table V, it can be seen that whether coupling with
human-designed opening bids or not, our model outperforms
Wbridge5 by a considerable margin. This verifies that our
bidding model is not only able to learn effectively, but it
also improves existing human bidding systems. Table V also
shows that smaller εh values generally achieves better results
under different human bidding systems, indicating that softer
combinations do provide more flexibility for our learning
model to choose whether or not to leverage the human-
designed systems.

In Figure 2, it is shown that different human-designed
opening bids that our model is coupled with have very different
effects on the learning curve. There is a particularly notable
contrast between natural bidding systems and precision bid-
ding systems. For natural bidding systems, such as SAYC and
Natural 5-5-4-2, the models usually take longer to converge.
On the other hand, we can see that the models combined
with the precision club opening converge a lot faster than the
others, although they achieve slightly inferior performances.
Interestingly, the results are in line with the philosophies that
are used to develop these human bidding systems. For exam-
ple, precision club systems are designed to be more efficient
and precise, so as to let the partner immediately knows the
potential hand of the opener. This advantage of the precision
club enables our model to learn faster, which is reflected in
the short learning curves. While being more precise, precision
club enforces a stronger limitation on the choices of opening
bids. This may explain the limited performances of the models
combined with the precision club opening.

Moreover, from the qualitative results shown in Table VI, it
can be seen that when coupled with different human bidding
systems our algorithm indeed converges to different models
and exhibits different opening strategies. In addition, the re-
sulting models somewhat resemble their corresponding human
bidding systems. For example, the model coupled with CPC
has tighter constraints on the high-card points compared to
the others, matching the characteristics of the precision club
opening, and the models coupled with SAYC and Natural-5542
have similar rules (the suit length) for the one-level opening
bids as their original counterparts.

As the learning curves and the resulting opening tables be-
have in line with the characteristics of different human bidding
systems, this finding reveals that human knowledge can indeed

TABLE VII: The average costs with different levels of hand
features used as the extra dimensions in the training objective

feature
Layer w/o feature lowest median highest
layer = 4 2.6984 2.7225 2.6910 2.6850
layer = 5 2.7397 2.7450 2.7175 2.6950

be incorporated into our learning algorithm, regardless of the
benefits in terms of the final performance.

F. Comparisons between Models Trained with and without
Human-Crafted Hand Features

In these experiments, we consider three levels, namely the
lowest, median, and highest, of hand features to be added to the
output layers of the model. For the lowest-level features, there
are 20 dimensions, where four of these represent the length
of each suit, and the other 16 are binary values representing
the presence of the honors in each suit. For the median-
level features, we leverage the point-count system (4-3-2-1
count for the honors) used in a human bidding system to
compress the 16-dimensional raw high-card features into a
single dimension HCP representing the strength of the whole
hand. Finally, for the highest-level features we extend the
median-level features with four extra dimensions representing
the quality score for each suit. The experiments are conducted
with models consisting of four and five layers respectively,
where α = 0.1. The corresponding results are shown in Table
VII.

From Table VII, we see that a better performance can be
obtained by adding more sophisticated hand features to the
output layer while training the bidding system. Specifically,
from the lowest-level features to the median-level features, we
introduce the use of the human-designed point-count system,
aiding the algorithm with the concept of high-card strength.
From the median-level features to the highest-level features,
we further provide the algorithm with quality scores, which
measure the strength of each suit. The results hint that these
human-crafted hand features can indeed improve the learning
algorithm, and demonstrate yet another way to incorporate
human knowledge into the learned bidding system.

In order to give a more concrete idea of the result, we
randomly choose five examples in the testing data, where the
bidding continues for at least four turns, and demonstrate their
resulting predictions for median-level hand features. After
Player 2 received the third bid (which was bid by Player 1), we
compared the estimation of the feature of Player 1 by Player
2 with the actual feature of Player 1. The result is shown in
Table VIII, and demonstrates that Player 2 is able to precisely
estimate the hand of Player 1, even when Player 1 has only
made two bids.

V. CONCLUSION AND FUTURE WORKS

We have proposed a novel model that automatically learns
to bid from raw hand data by coupling deep reinforcement
learning with improved exploration and update techniques. To
the best of our knowledge, our proposed model is the first to
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TABLE VIII: Five examples, where features of Player 1 are listed in the actual column, and the estimations of Player 2
are listed in the estimate column. The bidding history, along with the best bid and cost, is also listed in the table.

actual estimate actual estimate actual estimate actual estimate actual estimate
number of spades 5 5.1024 2 2.2202 3 3.1463 4 4.5931 3 2.7333
number of hearts 2 2.2983 4 4.9368 4 3.5169 3 2.5334 1 1.0620
number of diamonds 3 2.3366 5 2.9966 4 3.8936 2 3.0599 6 5.9515
number of clubs 3 3.2061 2 2.9111 2 3.3676 4 2.8925 3 3.2824
HCP 5 4.9745 21 19.5970 9 9.7680 19 18.5185 5 5.7930
bidding history P -1NT -2♠-4♥ 1♠-1NT -3♠-4♥ P -1♣-1NT -1NT 1♠-2♣-5♥-6♥ P -1♥-2♦-2♦
best contract 4♥ 4♥ or 3NT 2♦ 7NT or 7♥ 2♦ or 3♦
cost(IMP) 0 0 4 11 0

tackle automatic bridge bidding using raw data without addi-
tional human knowledge. We demonstrated that our proposed
model outperforms champion-winning programs and state-of-
the-art models by a considerable margin. This superior perfor-
mance validates the potential of deep learning for achieving a
competitive bidding system on its own.

In addition to learning entirely from data, we further
demonstrated how human knowledge can be leveraged by
the proposed framework. Experimental results show that our
model can successfully take advantage of existing human
knowledge to obtain a better performance, shedding light on
the potential of the combination of human knowledge and a
self-learning AI. We also believe that the qualitative results can
facilitate interesting comparisons between the self-learning AI
and human players.

One important future direction is to extend our model for the
other subproblem of bidding with competition. In particular,
the flexibility of the proposed model allows it to improve
its bidding strategy, with or without competition, by self-
playing as its own opposing team, or by playing with other
human or AI teams. One immediate difficulty for self-playing
is to identify a good exploration strategy for bidding with
competition.
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