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Abstract—We propose a pathogen-classification system using
the Surface-Enhanced Raman Scattering (SERS) platform. The
system differentiates the pathogens based on their SERS spec-
tra, which are believed to be related to the surface chemical
components. The specialty of the system is to not only consider
the usual classification accuracy, but also pay attention to the
different types of costs during misclassification. For instance,
due to the effectiveness of treatments, the cost of classifying a
Gram-positive bacterium as another Gram-positive one should
be lower than the cost of classifying a Gram-positive bacterium
as a Gram-negative one. We express the task as the cost-sensitive
classification problem, and take state-of-the-art cost-sensitive
classification algorithms from the machine learning community to
conquer the task. Our experimental study validates the usefulness
of those algorithms on building the system.

Index Terms—SVM; Cost-sensitive Classification; SERS;

I. INTRODUCTION

Bacterial meningitis is a serious and often life-threatening
form of meningitis infection. Delay in treatment increases
patients morbidity and mortality rate. The proper treatment for
bacterial meningitis relies on rapid diagnosis, early identifica-
tion, and effective antibiotics therapy [1]. Surface Enhanced
Raman Scattering (SERS) platform can perform a fast and
accurate detection of molecules vibration signal from a single
bacterium [2] and is potentially useful for prompt and reliable
identification of bacterial pathogens [3].

Machine learning algorithms have been applied on SERS
spectra to learn a good model to perform automatic classifi-
cation for future SERS spectra. Previous studies [3]–[6] have
shown that over 90% accuracy can be achieved using neural
networks to classify with the intensity and peak features.

Nevertheless, the promising results are viewed solely by the
accuracy, which does not always match the realistic needs of
the clinical practice, where miscellaneous misdiagnosis will be
charged with pre-determined cost according to the type of ac-
tual pathogen species. For example, misidentifying the Gram-
positive Staphylococcus aureus as a Gram-negative bacterium
(such as Pseudomonas aeruginosa) should be associated with

a high cost because the antimicrobial agents for Pseudomonas
aeruginosa are totally ineffective for Staphylococcus. On the
other hand, if the Staphylococcus is misidentified as another
Gram-positive bacterium, such as Streptococcus pneumonia,
the cost is much lower because the antimicrobial agents
may still be appropriate. Such a classification problem is
called cost-sensitive classification. There are ongoing works in
machine learning for developing algorithms to handle this type
of classification with promising results [7]–[12]. However, to
the best of our knowledge so far, no one has yet applied the
cost-sensitive classification tools on the SERS data set.

In this work, we study the task of building a reliable
identification system with SERS and cost-sensitive classifi-
cation. First, we collect and analyze SERS spectra of ten
species of meningitis-causing bacteria from National Taiwan
University Hospital (NTUH). These pathogens are Strepto-
coccus pneumoniae (Spn), Streptococcus agalactiae (group
B streptococcus, GBS), Staphy-lococcus aureus (Sa), Pseu-
domonas aeruginosae (Psa), Acineto-bacter baumannii (Ab),
Klebsiella pneumoniae (Kp), Neisseria meningitidis (Nm),
Listeria monocytogenes (Lm), Haemophilus inuenzae (Hi),
and Escherichia coli (E.coli). Second, we assign a cost to
each misclassification and feed the cost to state-of-the-art cost-
sensitive classification algorithms on the SERS data set. These
cost-sensitive algorithms include cost-sensitive one-versus-one
(CSOVO) [13], cost-sensitive one-sided regression (CSOSR)
[14] and cost-sensitive filter tree (CSFT) [15]. We couple
these algorithms with support vector machine (SVM) [16]
framework because it has been frequently used for menin-
gitis infection studies [3] with promising results. Third, we
carefully study how one can obtain a suitable cost-sensitive
model by tuning the parameters in the cost-sensitive algorithms
accordingly. Our experiment shows that CSOSR algorithms
with a particular kernel in SVM can achieve the lowest cost
on the SERS.

We present a brief description of our SERS platform in
the next section. Thus, in section III, we briefly discuss the



four algorithms. In Section IV, we summarize the experiment
results. Finally, we discuss relevant issues and future work in
Section V.

II. MATERIALS

In this section we describe the method we used to acquire
Meningitis SERS spectra. Our dataset contains 79 clinical
samples of ten meningitis-causing bacteria species collected
in NTUH. In addition, 17 standard bacteria samples from
American Type Culture Collection (ATCC) are used for es-
tablishing the baseline. Raw spectra are collected with Raman
spectromicroscope, (HR800, Jobin-Yvon) equipped with a
HeNe laser at 632.8nm and NA 0.95 100x water-immersion
objective lens. The Laser power intensity used was about
105W/cm2. A task is a batched experiment of scanning and
collecting Raman spectra from a single specimen, and we often
take 30 to 50 spectra in a single task. Raman signals in the
bandwidth between 400 and 1600 cm−1, the information-rich
portion, was collected. The integration time was set from 1 to
3 seconds. Median filtering with noise estimation was used to
reduce the cosmic ray signals, wavelet de-noising was used to
filter out the thermal noise, and peak-clipping algorithm was
used to remove background fluorescence. Finally, the spectra
intensity was normalized to [0, 1] to address multiplicative
factors in the spectra. The details of the process can be found
in our previous reports [17]. The number of collected tasks
and spectra for each species are listed in Table 1.

TABLE 1
SAMPLES USED IN THIS STUDY

species Ab Ecol HI Kp Lm Nm Psa Spm Sa GBS

#Task ATCC 1 1 3 1 1 5 1 6 1 1
NTUH 11 11 2 10 8 0 8 11 8 10

#Spectra ATCC 50 50 91 27 34 0 60 141 17 50
NTUH 326 400 100 349 283 135 298 313 350 439

In addition to the sample spectra obtained from SERS
platform, we develop a cost matrix according to average
weights provided by two physicians specializing in infectious
diseases. A misidentification was assigned a cost of 10 when
it is possible that the misidentification will lead to ineffective
antimicrobial therapy, treatment failure or mortality of the
patient, while a cost of 1 was given when the therapy are not
supposed to be very different in antimicrobial spectrum despite
misidentification of the causative microbes. We organize the
resulting costs as a matrix, as shown in Table 2.

TABLE 2
COST MATRIX ON SERS

`````````real class
classify to Ab Ecoli HI KP LM Nm Psa Spn Sa GBS

Ab 0 1 10 7 9 9 5 8 9 1
Ecoli 3 0 10 8 10 10 5 10 10 2

HI 10 10 0 3 2 2 10 1 2 10
KP 7 7 3 0 4 4 6 3 3 8
LM 8 8 2 4 0 5 8 2 1 8
Nm 3 10 9 8 6 0 8 3 6 7
Psa 7 8 10 9 9 7 0 8 9 5
Spn 6 10 7 7 4 4 9 0 4 7
Sa 7 10 6 5 1 3 9 2 0 7

Gbs 2 5 10 9 8 6 5 6 8 0

III. METHODS

In this section, we introduce the core method and the
algorithms used in this study, and then describe the validation
and partition methods.

A. Core method

SVM is a widely used binary classifier which aims at
producing a hyperplane that separates the two classes of
examples with the maximal margin in a space introduced by a
kernel function K(x,x′) that measures the similarity between
input vectors x and x′. Given a training set {(xn, yn)}Nn=1

with yn ∈ {+1,−1}, the classifier is obtained by solving the
following optimization problem

min
α1,α2,...,αN

1

2

N∑
i=1

N∑
j=1

αiyiαjyjK(xi,xj)−
N∑
i=1

αi

subject to
N∑
i=1

yiαi = 0;

0 ≤ αi ≤ C, for i = 1, . . . , N.

Here C is the parameter that controls the power of SVM. A
proper use of SVM includes choosing K and C appropriately
[18]. In this study, we adopt the linear kernel K(x,x′) =
xTx′, which is one of the simplest choices, and the RBF kernel
K(x,x′) = eγ∥x−x′∥2

, the most popular one.

B. Algorithms

OVOSVM: One-versus-one is a method for extending SVM
for multi-class problems. One-versus-one SVM (OVOSVM)
considers different pairs of classes and each pair is handled
by one binary SVM classifier. Each classifier is assigned
to learn which of the two classes is more likely. Let M
represents the number of classes (M = 10 in our system),
OVOSVM involves

(
M
2

)
SVM classifiers. The prediction

of OVOSVM is based on letting each SVM classifier vote,
and the final decision is the class that gets the most votes.
OVOSVM is designed to achieve decent accuracy and does
not consider costs in its learning process. Next, we introduce
several approaches that do consider costs during learning.

CSOVOSVM: CSOVOSVM [14] extends OVOSVM to
cost-sensitive classification. CSOVOSVM also involves

(
M
2

)
binary classifiers, each of which also working on a pair of
classes. During training, the cost is embedded as the weights
of training examples that can be learned by weighted SVM
[19], a simple extension of binary SVM. The prediction
procedure is the same as OVOSVM.

CSFTSVM: CSFTSVM [15] is another cost-sensitive
classification algorithm based on SVM. Unlike CSOVOSVM,
which takes

(
M
2

)
comparisons in predicting the best class,

CSFTSVM uses a single-elimination tournament, which can
be represented as a binary tree of M leaves, for its prediction.
The tree structure allows a prediction time of O(logM),
faster than the O(M2) of CSOVOSVM. During training, the



cost is also embedded as the weights of training examples
and each internal node of the tree is trained with a weighted
SVM. There are M − 1 internal nodes in the binary tree and
thus training CSFTSVM takes O(M) SVM classifiers.

CSOSRSVM: CSOSRSVM [14] is a state-of-the-art cost-
sensitive learning algorithm. Unlike CSOVOSVM and CS-
FTSVM, CSOSRSVM embeds the cost in the real-valued
labels instead of the weights. Learning the real-valued labels in
CSOSRSVM is usually referred to as an one-sided-regression
problem. CSOSRSVM trains and predicts with M one-sided-
regression SVM models, both taking O(M) in times.

C. Validation Method
To validate each algorithm and kernel combination, we

adopt 20 random runs and present their average as the result.
The results, mean cost and accuracy, will be shown in the
following tables. The number after ± is the standard error
of 20 runs. In all the experiments, for the RBF kernel, we
select the parameter C within {2−5, 2−3, ..., 213} and the
γ parameter within {2−8, 2−7, ..., 20} with a 5-fold cross-
validation on the training set. For the linear kernel, we select
C within {2−5, 2−3, ..., 213} with a 5-fold cross-validation on
the training set.

D. Partition Strategy
We experiment with two partition strategies and conclude

that the partition strategy affects the performance notably on
the SERS data set. With the traditional partition strategy, we
mix samples from all tasks, and then randomly selects 80% of
all samples for training and the rest for testing. With the task-
based partition strategy, we use 80% of the tasks for training
and the other 20% for testing. The accuracy of task-based
partition is 75.4%, which is lower than the traditional partition
strategy 89.75%. In our data set, traditional partition strategy
causes machine learning algorithms prone to identify rules
from coincident thermal noise or background pollutants of the
same task. Thus, the observed performance results are overly
optimistic and misleading. Therefore, we choose to adopt the
task-based partition strategy

E. Re-balance Data
Our SERS data set is inherently imbalanced. If we train

classifiers with these original data set, classifiers will be biased
toward classes with plentiful samples. The training strategy of
SVM tends to ignore classes with fewer samples, which causes
SVM to misclassify the minor classes often.

Furthermore, the common pathogens of bacterial meningitis
vary over time and space [20]. Considering biased pathogens
species from a single region, NTUH for example, is not an
ideal strategy to prepare a model with appropriate generaliza-
tion. In order to build a classifier which can generalize over
unseen samples of any class with equal prior probability, we
applied random undersampling to equalize species probabil-
ity [21].

This process balances class distribution by randomly remov-
ing majority class samples until the number of majority class

samples equal to the number of minority class samples. In
this study, we have selected 5 tasks for each species, and 10
spectra for each task.

IV. RESULTS

The mean cost and accuracy over 20 runs are summarized
in Table 3 and Table 4. The p-value is calculated from a single
tailed t-test over 20 runs.

First, we take a look at the performance of the linear
kernel in Table 3, the cost of CSOSRSVM is 1.177, which is
obviously better than OVOSVM, 1.251. The results indicate
that it is promising to use cost-sensitive algorithms. As for
CSOVOSVM and CSFTSVM, they can not lower the test costs
because their accuracy rates are too low.

Next, we move on to the RBF kernel. Table 5 shows
that RBF kernel results in lower cost than linear kernel
generally, which indicates that the SERS data set needs more
sophisticated classifiers than SVM with the linear kernel. This
also shows the relationship between our label and the features
is non-linear. Again, CSOSRSVM has lowest mean cost 1.071
among the four algorithms in our SERS dataset. The t-test
shows cost of CSOSRSVM with RBF kernel is significantly
lower than our baseline, OVOSVM.

It’s worth mentioning that CSOSRSVM achieves similar
accuracy with a lower cost compared to OVOSVM. The
reason may be that some of our spectra are very difficult to
be properly classified. We examine the misclassified spectra
from both algorithms and find that 73% of the misclassified
spectra of OVOSVM overlap with the misclassified spectra of
CSOSRSVM. In Figure 1, for each species, we plot a blue line
to indicate the average spectra, and red lines for each spectra
misclassified by both OVOSVM and CSOSRSVM. Although
these samples are mostly noises. CSOSRSVM only predicts
cost 4.66, which is lower than OVOSVM, 4.98.
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Fig. 1. SERS spectra of meningitis bacterial pathogen. For each species,
blue line is the mean spectrum and the red thin lines are the overlapping
misclassified spectra by both OVOSVM and CSOSRSVM algorithms.



In summary, the results suggest that CSOSRSVM with
RBF kernel is better than the other algorithm and kernel
combinations and is suitable for the SERS data set.

TABLE 3
EXPERIMENT RESULTS IN LINEAR KERNEL

Accuracy Cost p-value
OVOSVM 75.35± 1.49 1.251± 0.087 N/A
CSOSRSVM 73.3± 1.87 1.177± 0.093 0.128
CSOVOSVM** 57.3± 2.03 1.477± 0.111 0.9779
CSFTSVM** 54.65± 2.32 1.831± 0.099 1

** OVOSVM significantly better
(single-tailed pairwise t-test on cost with α = 0.05)

TABLE 4
EXPERIMENT RESULTS IN RBF KERNEL

Accuracy Cost p-value
OVOSVM 75.45± 1.58 1.232± 0.087 N/A
CSOSRSVM* 75.6± 1.63 1.071± 0.081 0.004
CSOVOSVM 68.10± 2.03 1.209± 0.089 0.3538
CSFTSVM** 64.55± 1.83 1.489± 0.095 0.9987

*OVOSVM significantly worse ** OVOSVM significantly better
(single-tailed pairwise t-test on cost with α = 0.05)

TABLE 5
THE DIFFERENCE BETWEEN TWO KERNELS

Cost(linear kernel) Cost(RBF kernel) p-value
OVOSVM 1.251± 0.087 1.232± 0.087 0.441
CSOSRSVM 1.177± 0.093 1.071± 0.081 0.204
CSOVOSVM* 1.477± 0.111 1.209± 0.089 0.038
CSFTSVM* 1.831± 0.099 1.489± 0.095 0.010

* RBF kernel significantly better
(single-tailed pairwise t-test on cost with α = 0.05)

V. CONCLUSION AND FUTURE WORK

We use empirical data and domain knowledge to design the
cost matrix and the platform for comparing cost-sensitive clas-
sification algorithms. We demonstrate traditional algorithms is
insufficient for clinical bacterial meningitis pathogen identifi-
cation practice when considering the cost of misclassification,
since they only uses the accuracy to validate the model and
do not deal with the difference of assorted error types. We
compared three cost-sensitive algorithms in order to find a
proper cost-sensitive algorithm that reflects the unequal misdi-
agnosis cost in clinical practice. The result shows CSOSRSVM
with RBF kernel achieve the lowest cost among OVOSVM,
CSOVOSVM and CSFTSVM.

In the future, we will incorporate species distribution into
our experiments. We will also consider time-varying and
region-varying solutions using transfer learning and on-line
learning techniques to extend the capability of our cost-
sensitive models.
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