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Abstract

Recent research has shown that although Reinforcement Learning (RL)
can benefit from expert demonstration, it usually takes considerable ef-
forts to obtain enough demonstration. The efforts prevent training decent
RL agents with expert demonstration in practice. In this work, we pro-
pose Active Reinforcement Learning with Demonstration (ARLD), a new
framework to streamline RL in terms of demonstration efforts by allowing
the RL agent to query for demonstration actively during training. Un-
der the framework, we propose Active Deep Q-Network, a novel query
strategy which adapts to the dynamically-changing distributions during
the RL training process by estimating the uncertainty of recent states.
The expert demonstration data within Active DQN are then utilized by
optimizing supervised max-margin loss in addition to temporal difference
loss within usual DQN training. We propose two methods of estimating
the uncertainty based on two state-of-the-art DQN models, namely the
divergence of bootstrapped DQN and the variance of noisy DQN. The em-
pirical results validate that both methods not only learn faster than other
passive expert demonstration methods with the same amount of demon-
stration and but also reach super-expert level of performance across four
different tasks.

1 Introduction

Sequential decision making is a common and important problem in the real
world. For instance, to achieve its goal, a robot should produce a sequence of
decisions or movements according to its observations over time. A recommender
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system should decide when and which item or advertisement to display to a
customer in a sequential manner. For sequential decision making, reinforcement
learning (Sutton and Barto, 1998) (RL) has been recognized as an effective
framework which learns from interaction with the environment. Thanks to
advances in deep learning and computational hardware, deep RL has achieved a
number of successes in various fields such as end-to-end policy search for motor
control (Watter et al., 2015), deep Q-networks for playing Atari games (Mnih
et al., 2015), and combining RL and tree search to defeat the top human Go
expert (Silver et al., 2016). These successes show the power of RL to solve
various kinds of sequential decision making and control problems.

In contrast with these successes, deep RL algorithms are notorious for their
substantial demands on simulation during training. Typically, these algorithms
start from scratch and require millions of data samples to learn a locally op-
timal policy, which is not a problem if unlimited simulation is available but is
infeasible for many real-world applications such as robotic systems. To address
this problem, several methods have been proposed to improve learning efficiency
by leveraging prior knowledge from human experts. Imitation learning (Schaal,
1996), also known as learning from demonstration (LfD), is an attempt to learn
the policy of an expert by observing the expert’s demonstrations. However,
the performance of imitation learning is limited by the expert, since the agent
only learns from the expert without regard to rewards given by the environ-
ment. Another way is to improve RL by leveraging demonstrations given by the
expert and rewards simultaneously. Recently, Deep Q-learning from Demonstra-
tion (DQfD) (Hester et al., 2018) and Policy Optimization with Demonstrations
(POfD) (Kang et al., 2018) have shown state-of-the-art results on several Atari
games by training the agent with an objective that combines the rewards and
the expert demonstrations.

Although expert demonstrations improve RL, the efforts made by the expert
are not negligible. For instance, it takes a human expert thousands of steps to
finish a mere 5 episodes for most Atari games (Hester et al., 2018). The huge
efforts make it hard to collect a large number of demonstrations for DqFD in
practice. In this paper, we introduce the concept of active learning to make
more efficient use of the expert’s efforts. In supervised learning, the goal of
active learning is to achieve better performance with less labeling effort by
interactively querying for new labels from unlabeled data (Settles, 2009). In RL,
we can also actively ask the expert for a recommended action given the current
observed state. Videos of bootstrapped DQN (Osband et al., 2016) have shown
that the behavior of different well-performing policies agree at critical points but
diverge at other less important states. This suggests that we could save much
expert effort by querying only at critical states in contrast to previous methods
in which the expert’s demonstration is collected for several entire episodes. In
other words, we can achieve further improvement in RL with the same number
of demonstrations.

In this work, we consider reinforcement learning problems that allow selec-
tive human demonstration during the learning process. We first propose a new
framework called Active Reinforcement Learning with Demonstration (ARLD)
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for such learning problems. Then we propose Active DQN, which proactively
asks for demonstration and leverages the demonstration data. The query crite-
rion should decide when to query—i.e., identifying states where the agent can
indeed learn and improve by obtaining the demonstration. We propose two
query methods based on uncertainty of Q-value estimation, named divergence
and variance, which are derived from two state-of-the-art DQN methods, boot-
strapped DQN and noisy DQN, respectively. The uncertainty terms are then
thresholded dynamically to form querying decisions.

The dynamic nature allows the two methods to adapt to recent states ob-
served by the agent and can be applied in various kinds of environments without
exhaustive parameter tuning. Experimental results show that our method with
both uncertainty measurements is effective in four different tasks. In this paper
we thus offer three main contributions:

1. We propose a new framework, Active Reinforcement Learning with Demon-
stration, which is the first work to reduce human effort in RL with demon-
stration to the best of our knowledge;

2. We propose a novel uncertainty-based query strategy which can be applied
toward different tasks and less sensitive to additional parameters;

3. We verify the effectiveness of two DQN uncertainty estimations with promis-
ing experiment results.

2 Related Work

Imitation learning (Schaal, 1996) is a classic technique for learning from human
demonstration. Typically, imitation learning uses a supervised approach to im-
itate an expert’s behaviors. DAGGER (Ross et al., 2011), a popular imitation
algorithm, requests an action from the expert at each step, and takes an action
sampled from a mixed distribution of the agent and the expert. It then aggre-
gates the observed states and demonstrated actions to train the agent iteratively.
Deeply AggreVaTeD (Sun et al., 2017) is an extended version of DAGGER which
works with deep neural networks and continuous action spaces. However, both
require an expert to provide demonstration during the whole training phase.
To reduce the demand for human effort, the agent learns actively in active
imitation learning (Shon et al., 2007; Judah et al., 2014) by requesting fewer
expert demonstrations. The supervised setting of imitation learning make it
easier to apply techniques from traditional supervised active learning. However,
although imitation learning can lead to no-regret performance in online learn-
ing settings, its performance is still limited by the expert given the use of only
expert demonstration data for learning.

On the contrary, it is possible for Reinforcement Learning (RL) to achieve
better performance than the human expert by learning to interact with the
environment and maximize the cumulative rewards. In RL, there exist a vari-
ety of methods that leverage demonstration to obtain improved performance.
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For instance, some use expert advice or demonstration to shape rewards in
the RL problem (Brys et al., 2015; Suay et al., 2016). Another approach is
to ask for demonstration from a given state to another state to improve the
exploration (Subramanian et al., 2016). In contrast, the HAT algorithm sum-
marizes the demonstrated knowledge via a decision tree and bootstraps the task
with the learned policy to transfer it to the target agent (Taylor et al., 2011).
CHAT, an extension of HAT, measures the source policy’s confidence to decide
whether to take its advice (Wang and Taylor, 2017). The main difference be-
tween CHAT and our work is CHAT’s use of another model to learn a source
policy from demonstration offline and estimate the confidence of the source pol-
icy; in contrast we estimate the uncertainty of the target learner and ask the
expert directly.

Reinforcement Learning with Expert Demonstrations (RLED) (Piot et al.,
2014) concerns a scenario in which the expert also receives rewards from the
environment. In this case, DQfD (Hester et al., 2018), DDPGfD (Vecerik et al.,
2017), and POfD (Kang et al., 2018) have shown state-of-the-art results on a
variety of tasks by combining the original RL loss with a supervised loss on
the expert’s demonstrations. Then, the agent simultaneously learns its original
objective and the behavior of the expert. In comparison to similar work such
as Human Experience Replay Hosu and Rebedea (2016) and Replay Buffer
Spiking Lipton et al. (2016), RLED methods yield massive acceleration with
a relatively small amount of demonstration data. Moreover, experiments show
that these methods can also outperform the expert they learn from. In contrast
to our work, these works collect demonstration data before training, and the
expert must interact with environment by completing the whole episode several
times, whereas the proposed method requires the expert to demonstrate only at
critical states given the learning progress of the agent.

Most previous works focus on how to improve RL from “passive” demon-
stration data. To the best of our knowledge, this is the first work to introduce
the concept of active learning to leverage demonstration data. The most similar
work is active imitation learning; however, as the mechanisms for supervised
learning and reinforcement learning differ greatly, we cannot directly apply the
same methods. Table 1 compares different settings mentioned above.

no expert offline/passive learning online/active learning
Imitation
Learning

DAGGER Active Imitation
LearningDeeply AggreVaTeD

Reinforcement
Learning

DQN DQfD
ARLD
(our work)

DDPG DDPGfD
A3C POfD

HAT, CHAT

Table 1: Comparison between different settings
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3 Background

3.1 Reinforcement Learning and Deep Q Network

The standard reinforcement learning framework consists of an agent interact-
ing with an environment which can be modeled as a Markov decision process
(MDP). An MDP is defined by a tuple M = 〈S,A,R, P, γ〉, where S is the
state space, A the action space, R : S × A→ R the reward function, P (s′|s, a)
the transition probability function, and γ ∈ [0, 1) the discount factor. At each
step, the agent observes a state s ∈ S and takes an action a ∈ A accord-
ing to a policy π. The policy π can be either deterministic, π : S → A, or
stochastic, π : S → P (A). On taking an action, the agent receives a reward
R(s, a) and reaches a new state s′ according to P (s′|s, a). The goal of the agent
is to find the policy π which maximizes the discounted accumulative reward
Eτ [

∑∞
t=0 γ

tR(st, at)], where τ denotes the trajectory obtained with π and P .
For problems with discrete actions, the most popular approach nowadays is

the Deep Q-network (DQN (Mnih et al., 2015)). The key idea of DQN is to
learn an approximation of the optimal value function Q∗, which conforms to the
Bellman optimality equation

Q∗(s, a) = R(s, a) + γ E
s′∼P (s′|s,a)

[
max
a′∈A

Q∗(s′, a′)

]
.

The optimal policy is then defined by Q∗ as π(s) = argmaxa′∈AQ
∗(s, a′). The

value-function is approximated by a neural network Q(s, a; θ) with parameter θ
where the parameter is learned by minimizing the temporal difference loss:

Qtarget = r + γmax
a′∈A

Q(s′, a′; θ−)

LTD(θ) = E
(s,a,r,s′)∼D

[
(Qtarget −Q(s, a; θ))2

]
,

where D is a distribution of transitions (s, a, r = R(s, a), s′ ∼ P (s′|s, a)) drawn
from a replay buffer of previously observed transitions, and θ− is the parameter
of a separate target network which is copied from θ regularly to stabilize the
target Q-values. Double Q-learning (van Hasselt et al., 2016) is an enhancement
of DQN where the target value is calculated by replacing maxa′∈AQ(s′, a′; θ−)
with Q(s′, argmaxa′∈AQ(s′, a′; θ); θ−). This modification reduces the overesti-
mation of target value created with the original update rule.

3.2 Deep Q-learning from Demonstration

Deep Q-learning from Demonstration (DQfD (Hester et al., 2018)) is a state-of-
the-art method to leverage demonstration data to accelerate the learning process
of DQN. The agent is pre-trained on demonstration data to obtain better initial
parameters before any interaction with the environment. It keeps demonstration
data in a prioritized replay buffer (Schaul et al., 2016) permanently, and give
additional priority to demonstration data to increase the probability that they
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are sampled. DQfD applies a combination of four losses: the typical one-step
double Q-learning loss (LTD), N-step double Q-learning loss (LN ), supervised
large margin classification loss (LE), and L2 regularization loss. The overall
loss is thus

L(θ) = LTD(θ) + λ1LN (θ) + λ2LE(θ) + λ3||θ||22.

The typical one-step temporal difference loss and N-step temporal difference
loss are used to obtain the optimal Q-value conforming to the Bellman equation,
where the N-step loss is

LN (θ) = E
(s,a,r,s′)∼D

[
(QN −Q(s, a; θ))2

]
,

QN = rt + γrt+1 + γ2rt+2 + ...+ γN−1rt+N−1 + max
a

γNQ(st+N , a).

The large margin classification loss (Piot et al., 2014) is defined as

LE(θ) = max
a∈A

[Q(s, a; θ) +M 1 [a 6= aE ]]−Q(s, aE),

where aE represents the action that the expert took in state s, M is a pos-
itive constant value which means margin and 1[·] is indicator function. L2
regularization loss is applied to parameters of the network to prevent overfit-
ting on demonstration data. All losses are applied in both pre-training and
reinforcement learning phases, whereas the supervised loss is only applied with
demonstration data.

3.3 Deep Exploration via Bootstrapped DQN

Exploration is an important issue in RL. E.g., epsilon-greedy is commonly used
but it does not exploit any information. Bootstrapped DQN (Osband et al.,
2016) is a modification of DQN to improve exploration during training. In
practice, the network is built with K ∈ N outputs, each representing a Q-value
function estimation Qk(s, a; θ). Each output head is trained against its own tar-
get network Qk(s, a; θ−) and is updated with its own bootstrapped data from
the replay buffer. The parameters of each head are initialized independently,
while the gradient of each update is normalized with 1/K. During training, a
single head is sampled at the beginning of each epoch, and the agent takes the
optimal policy corresponding to the sampled Q-value approximation function
for the duration of the episode. This allows the agent to conduct a more con-
sistent exploration as compared to other common dithering strategies such as
ε-greedy. To keep track of the bootstrapped data for each head, we attach to
each transition data in the replay buffer a boolean mask m ∈ {0, 1}K indicating
which heads are privy to this data. The masks are drawn from an identical
Bernoulli distribution independently (mi ∼ Ber(p),∀i ∈ 1 . . .K). However,
their experiments show that the performance of bootstrapped DQN is not in-
fluenced by difference choices of p, and that all outperform the original DQN.
Hence in practice, to increase computational efficiency, we simply share all the
data between each head (p = 1).
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3.4 Noisy Networks for Exploration

NoisyNet (Fortunato et al., 2017) is an alternative approach to improve the
efficiency of exploration in RL, where the parameters in the output layer of a
network are perturbed by noise. The noisy parameter θ of Q(s, a; θ) is rep-
resented by θ = µ + Σ � ε, where ζ = (µ,Σ) is a set of vectors of learnable
parameters, ε is a vector of zero-mean noise sampled from the standard normal
distribution, and � stands for element-wise multiplication. A noisy linear layer
with p inputs and q outputs is then represented by

y = (µw + σw � εw)x+ µb + σb � εb,

where µw+σw�εw and µb+σb�εb replace the weight matrix and bias vector of
typical linear regression. The parameters µw ∈ Rq×p, µb ∈ Rq, σw inRq×p, σb ∈
Rq are learnable parameters and εw ∈ Rq×p, εb ∈ Rq are noise variables. The
agent samples a new set of variables after each update step and follows the
optimal policy corresponding to the sampled Q-value function. The noise of the
online network, target network, and online network in double DQN are sampled
independently. The loss function for noisy double DQN is defined as

L̄(ζ) =

E
ε,ε′,ε′′

[
E

(s,a,r,s′)∼D
[r + γQ(s′, a∗, ε′; ζ−)−Q(s, a, ε; ζ)]2

]
a∗ = argmax

a∈A
Q(s′, a, ε′′; ζ).

4 Active Deep Q-learning with Demonstration

In this section, we first describe a new problem setting, then propose an uncertainty-
based query strategy to address the problem, after which we introduce two ways
to estimate the uncertainty of a deep Q-network given an observed state with
bootstrapped DQN and noisy DQN, separately.

4.1 Problem Setup

We proposed a new framework named Active Reinforcement Learning with
Demonstration (ARLD) to improve the demonstration efficiency, which is not
considered in previous RLED works. In ARLD, we consider the standard RL
framework introduced in 3.1. In addition, we assume there is an expert π+

which performs well on the task we seek to learn. Notice that π+ does not need
to be optimal or deterministic, which is common for human experts. The agent
interacts with the expert by asking what action to take only when it is not sure
what to do given the observed state at each step. The algorithm then decides
whether to take the action given by the expert, or to just take the action given
by the agent’s policy. The main challenge of ARLD is to decide when to query
from the expert so that the agent can indeed benefit from the obtained demon-
stration. As with active learning, our goal is to improve RL by making as few

7



queries as possible. More precisely, given a limited query budget, we seek to
enable the agent to learn to solve the task in as few steps as possible. Below, we
discuss uncertainty sampling (Lewis and Gale, 1994), which one of the simplest
and most commonly used query frameworks in active supervised learning.

4.2 Query Strategy with Adaptive Uncertainty Threshold

Uncertainty sampling is one of the simplest and most commonly used query
frameworks in active learning (Settles, 2009). In this framework, an active
learner estimates the uncertainty of a pool of unlabeled instances and submits
queries for those it is least certain how to label. It is challenging to apply active
learning with deep neural networks, as good deep models typically require large
amounts of data. Recent work has shown that uncertainty can be estimated by
taking advantage of specialized models such as Bayesian neural networks (Gal
et al., 2017). However, to improve RL by requesting an expert demonstration,
we require a online query strategy that takes advantage of uncertainty.

In our setting, at each step, before the agent takes an action, it decides
whether to query the expert. A naive way to solve this problem is to make the
decision with a fixed threshold: the agent asks expert for demonstration once
the uncertainty of an observed state exceeds the threshold; otherwise it takes
the action which maximizes the estimated Q-value. However, it is difficult to
find a proper threshold when the distribution of uncertainty keeps changing; the
discrepancy between different tasks also makes this difficult. One proposal is
to adjust the threshold with a fixed adjustment factor to work with the online
Query by Committee (QBC) (Krawczyk and Wozniak, 2017), but it is still
difficult to choose a good adjustment factor for all tasks, especially when the
uncertainty measurement is unbounded and its magnitude unknown.

We propose an adaptive method which enables the agent to adjust its query
policy during training time without any prior knowledge of the task. Each time
the agent makes a decision, it compares the uncertainty of the current state with
that estimated in recent steps. If the current state uncertainty is larger than a
given proportion of recent steps, the agent queries the expert for demonstration;
otherwise it determines its own action. In this algorithm, we decide whether to
ask the expert given the parameters Nr and tquery, representing the amount of
recent steps we consider and the proportion of recent steps for which the state
uncertainty must be higher than the current state uncertainty. In practice,
we use a dequeue to maintain the uncertainty of recent steps and a balanced
binary search tree (BST) to keep these uncertainties in order so that we can
make the decision in O(log2Nr) complexity for each step. The pseudocode of
the algorithm is provided in Algorithm 1.

The performance of the algorithm depends on the choice of uncertainty es-
timation. Below, we propose two methods to estimate the uncertainty. One is
based on bootstrapped DQN and the other one is based on noisy network.
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Algorithm 1 Adaptive Query Strategy with Uncertainty

Input: uncertainty Ut, reference size Nr, proportion threshold tquery ∈ [0, 1],
recent uncertainty dequeue D, recent uncertainty BST B

Output: asking ∈ [TRUE ,FALSE ], D, B
1: idx← size of D × tquery
2: Uthreshold ← B[idx]
3: if Ut > Uthreshold then
4: asking ← TRUE
5: else
6: asking ← FALSE
7: end if
8: if size of D ≥ Rr then
9: Udel ← D.pop left()

10: remove Udel from B
11: end if
12: add Ut into D, B

4.3 Divergence of Bootstrapped DQN

Bootstrapping is a commonly used technique in statistics to estimate a sam-
pling distribution. In bootstrapped DQN (Osband et al., 2016), multiple value
function heads Qk(s, a; θ) are used to approximate a distribution over Q-values.
There are several ways to estimate uncertainty with these bootstrapped heads,
including calculating the entropy of the voting distribution or averaging the
variance of action values predicted by each head. In this work, we consider
each head as a distribution and estimate the uncertainty using Jensen-Shannon
divergence, which is a well-known method to measure the similarities between
multiple distributions.

Notice that while the agents in bootstrapped DQN tend to behave differently
at less critical states because the Q-values of each action might be close to each
other, the JS divergence in this situation will be low since the distributions of Q-
values are similar. Thus, we can prevent from asking these unimportant states
by estimating JS divergence as uncertainty. For example, when considering
an environment with two actions and two bootstrapped value functions, if the
two heads predict (1, 0) and (0, 1) respectively, intuition dictates that the
state should be more uncertain than (0.5, 0.4) and (0.4, 0.5) in another state.
However, with the voting method, both states are considered equally uncertain,
as the two heads vote for different actions in both cases; JS divergence, by
contrast, distinguishes the difference between them. Another advantage of JS
divergence is that as it is a bounded function, its value is more meaningful and
easier to use as a threshold in different environments.

To measure the JS divergence between the bootstrapped heads, we first
normalize the Q-values and actions using softmax to obtain a policy distribution.
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For each head Qk(s, a; θ),

πk(a|s; θ) = eQk(s,a;θ)/
∑
a′

eQk(s,a
′;θ).

Given this policy distribution, we estimate the uncertainty by calculating the
Jensen-Shannon divergence of the policy distribution between each head, yield-
ing

UD = JS(π1, π2, ..., πK) = H(
1

K

∑
k

πk)− 1

K

∑
k

H(πk),

where H(π) is the Shannon entropy of distribution π and K the number of
bootstrapped heads.

4.4 Predictive Variance of Noisy DQN

For our second estimate of uncertainty, we evaluate the predictive variance of a
noisy network. Previous work has shown the effectiveness of estimating uncer-
tainty by the predictive variance of a Bayesian convolution network in classifi-
cation active learning (Gal et al., 2017). Other works have shown that injecting
noise into the parameter space improves the exploration process in deep rein-
forcement learning (Fortunato et al., 2017; Plappert et al., 2017). Combining
these two ideas, we use the noisy network as an exploration policy and estimate
uncertainty using its predictive variance. We replace the fully connected layer
in the output layer with a noisy fully connected layer. The corresponding noisy
output layer can be seen as Bayesian linear regression:

Q(s, a; θ) = waφ(s) + ba,

wa ∼ N(µ(wa),Σ),Σ = diag((σ(wa))2)

ba ∼ N(µ(ba), (σ(ba))2),

where φ(s) ∈ Rp is input to the last layer. wa ∈ Rp, ba ∈ R represents the
variables corresponding to action a, and µ(wa), σ(wa), µ(ba), and σ(ba) are the
parameters actually learned by the model, representing the mean and noise level
of wa and ba respectively.

Given the posterior distribution of the parameters, we derive the predictive
variance as

V ar[Q(s, a)] = V ar[waφ(s) + ba]

= V ar[waφ(s)] + V ar[ba]

= φ(s)TΣφ(s) + (σ(ba))2.

The variance of each action measures the lack of confidence with respect to
this action. We take the variance of the action with the largest Q-value as our
uncertainty:

UV = V ar(Q(s, argmax
a

Q(s, a))),
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which translates to the lack of confidence for the action the agent would take
at the step. By querying the states with low confidence, we avoid bad moves
leading to task failure and explicitly teach the agent which is the proper action
of the state.

5 Experiments

In this section, we describe the environments used for the evaluation as well as
the experimental setup. To focus on the effectiveness of each query strategy, we
show the experimental results of methods based on the bootstrapped and noisy
network separately, after which we present results evaluating the effect of the
query proportion threshold of the proposed method.

5.1 Experimental Setup

We use four different environments for evaluation: (1) Cart-Pole, (2) Acrobot,
(3) Mountain Car, and (4) Lunar Lander, all of which are included in OpenAI
Gym (Brockman et al., 2016). Among them Cart-Pole is the simplest task and
Lunar Lander is the most complicated one. The target score to mark each task
as solved is listed in Table 3.

For each environment, we evaluated six different methods based on boot-
strapped (Osband et al., 2016) or noisy (Fortunato et al., 2017) networks sepa-
rately. The methods are:

1. DQN: Prioritized Double DQN trained without any demonstration

2. DQfD: Deep Q-learning from Demonstration (Hester et al., 2018)

3. GDQN: Greedy query strategy which queries all states until budget is all
spent

4. BDQN: Bernoulli query strategy, queries states at fixed probability

5. ADQN: Active DQN, queries states according to proposed query strategy
and uncertainty estimation

6. ADQNP: Active DQN with DQfD pretraining.

The key differences between the methods are summarized in Table 2.
We tuned the basic parameters such as the learning rate and discount factor

for DQN on each environment to ensure reasonable learning progress and then
fixed these parameters for all six methods, as listed in Table 4. The network
structure applied in all environments was identical: two fully connected hidden
layers with 64 neurons followed by another fully connected layer to the Q-
Values for each action. The layers all used rectified linear units (ReLU) for
non-linearity. We trained the networks using Adam and a ε-greedy policy with
ε annealed linearly from 0.9 to 0.01. We set the parameters of prioritized replay
according to (Schaul et al., 2016). For bootstrapped DQN, we used 10 bootstrap
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Demonstration Pre-training Interaction Query criterion

DQN no no no no
DQfD yes yes no no
GDQN yes no yes greedy
BDQN yes no yes Bernoulli
ADQN yes no yes uncertainty
ADQNP yes yes yes uncertainty

Table 2: Comparison between methods

heads with normalized gradient and shared all the data as (Osband et al., 2016).
For the noisy networks, we used factorized noise and followed the initialization
and hyperparameter values from (Fortunato et al., 2017).

For DQfD, we did not use L2 regularization loss or N-step temporal difference
loss, as they brought no benefit to training in our experiments. We set the expert
margin M = 0.8 as (Hester et al., 2018) and tuned the supervised loss weight
λ in {10−5, 10−4, 10−3, . . . , 1}. The number of demonstration data and pre-
training steps were set to allow DQfD learn a better initial policy than learning
from a scratch.

For each query, all ARLD methods receives five consecutive expert demon-
strations until the end of the episode. The query threshold tquery is tuned in
{0.05, 0.1, 0.3, 0.5}. For ADQNP, the number of demonstration for pretraining
is half of DQfD and the query budget is half of ADQN, resulting in the same
number of total demonstrations. All task-specific parameters are all listed in
Table 4.

Mean score/std Min. score Avg. steps Target score

Cart-Pole 166.77±39.14 93 166.77 195
Acrobot -128.25±66.86 -489 128.25 -100
Mountain Car -134.0±27.52 -158 134 -110
Lunar Lander 155.18±55.58 -16.63 784.92 200

Table 3: Expert statistics

To obtain an expert for each environment, we saved the prioritized double
DQN models during training and evaluated each over 100 episodes. Then we
chose as the environment expert a model that (a) did not perfectly solve the
task (b) had reached low performance variance (c) still solved the task before
the end of the episode. The choice ensures the experts to be realistic rather
than idealistic. These experts were used to collect demonstration data in DQfD
and perform interactive demonstration in ADQN. The evaluation statistics of
these experts are shown in Table 3. In section 5.5, we show the effect of different
artificial expert settings on ADQN and DQfD.

All of the experiments were repeated 20 times with different random seeds.
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Cart-Pole Acrobot Mountain Car Lunar Lander

Discount factor 0.9 0.99 0.99 0.99
Learning rate 0.0001 0.0001 0.001 0.001
Training steps 20000 200000 500000 500000
# of demo/budget 200 100 500 3000
Memory size 10000 100000 100000 100000
Pre-training steps 10000 10000 10000 30000
DQfD λ 0.00001 1 1 1
ADQN-B tquery 0.05 0.3 0.1 0.3
ADQN-N tquery 0.5 0.3 0.3 0.1

Table 4: Task specific parameters

The figures show the median of the results over 20 trials. The y-axis indicates
the averaged test score, where the test scores in each trial were computed at a
fixed frequency by executing 20 test episodes without exploration.

5.2 Comparison between ARLD methods

We first compare the methods without pretraining, i.e., DQN, GDQN, BDQN
and ADQN. Table 5 lists the median of number of steps that each method
takes to solve the tasks in 20 trials. Among methods based on bootstrapped
DQN, the proposed ADQN outperforms other methods in all environments and
yields significant improvements in Acrobot, Mountain Car, and Lunar Lander.
For methods based on noisy network, ADQN also achieves best performance in
three out of four tasks, and improves the learning progress in Acrobot and Lu-
nar Lander dramatically. The strength of ADQN over DQN again confirms the
usefulness of interacting with demonstration. Most importantly, the advantage
of ADQN over GDQN and BDQN validates that ADQN allows a more effec-
tive use of the demonstration efforts by querying strategically at the important
moments.

Fig. 1 shows the learning curves of ARLD methods based on the boot-
strapped or noisy network separately. The results demonstrates that the meth-
ods with demonstration not only outperform the original DQN in general, but
also achieve higher score than the realistically-simulated experts. Among the
methods with demonstration, ADQN is often the most competitive one, espe-
cially in the hardest task of Lunar Lander, which was solved by ADQN with
fewer steps and a higher score.

5.3 Comparison with Pretraining Methods

Next, we compare DQfD with ADQN to understand the effect of collecting
expert demonstration before or during training. We also design ADQNP as
a simple mixture between the two. The results in Table 5 show that ADQN
usually solves the tasks with fewer steps than DQfD or ADQNP, except for
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Cart-Pole Acrobot Mountain Car Lunar Lander

DQN-B 8000 57000 210000 260000
GDQN-B 8000 45000 170000 310000
BDQN-B 7500 31000 100000 217500
ADQN-B 7000 25000 85000 205000
DQfD-B 7500 38000 140000 500000
ADQNP-B 6000 49000 135000 267500

DQN-N 13000 114000 190000 355000
GDQN-N 10000 73000 295000 500000
BDQN-N 10000 55000 170000 160000
ADQN-N 9500 8000 230000 47500
DQfD-N 8000 95000 300000 402500
ADQNP-N 8000 75000 255000 212500

Table 5: Median number of step to solve the task. The bold numbers indicate
the best performance on that task.

the simplest task of Cart Pole. ADQNP also often improves over DQfD when
the tasks gets harder. The results justify the effectiveness of leveraging expert
demonstration during training.

For simulating real-world scenario where the demonstrating humans may
not always be perfect, our simulated experts are designed to be realistic but
imperfect. Then, methods with pretraining need to take additional steps in the
beginning to correct the policy learned from the imperfect experts. This situa-
tion explains the performance dropping in the beginning of DQfD for Acrobot
and Lunar Lander, as shown in Fig 2. ADQN, on the other hand, demonstrates
better ability to leverage the imperfect demonstrations to aid RL.

5.4 Effect of Query Proportion Threshold

Active DQN uses two parameters: the number of recent steps for which we
compare the uncertainty (Nr) and the proportion threshold that determines
whether to make a query given recent steps (tquery). Since the uncertainty
distribution usually changes smoothly, the value of Nr effects the performance
little compared to parameter tquery. In Fig. 3 we plot the performance given
different values of tquery: we observe that in most cases, different choices of tquery
perform similarly. Moreover, in Table 4 we see that the best values of tquery are
either 0.1 or 0.3 in Acrobot, Mountain Car, and Lunar Lander; in Cart-Pole,
the only exception, the result shows the least variance between choices of tquery.
Thus, the performance of Active DQN is not sensitive to the parameter tquery,
and it is easy to choose a value between 0.1 and 0.3 that optimizes performance
for all kinds of tasks.
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5.5 Effect of Expert’s Quality on ADQN and DQfD

In this section, we compare three different approaches to obtain the expert
agents used in the experiment. First of all, the perfect experts are DQN agents
trained on each task until convergence. These well-trained experts can solve
their tasks perfectly and efficiently. Second, we obtain weaker experts by apply-
ing random noise to the perfect expert. That is, each time an expert is going to
make a demonstration, there is a probability the expert will do a random action
rather than following the perfect expert’s policy. The random behaviors some-
times lead to the end of an episode directly, therefore even though the expert
is able to make optimal choices at most of the time, it still might fail to solve
the task at the beginning of an episode. Last, as described in section 5.1 and
3, we saved the temporary models in the process of training a DQN agent and
selected one of them to be a weak expert. Compared to the noisily-acting weak
experts, these policy-consistent weak experts act more consistently through an
episode, hence their behavior are more similar to a human expert.

Figure 4 demonstrates the effect of expert’s quality on ADQN and DQfD
in Lunar Lander. We experiment with both noisy and bootstrapped network
structures along with the three experts mentioned above. The figure shows
both DQfD and ADQN can learn efficiently and solve the task within few steps
with an perfect expert. On the contrary, both of their performances suffer
from the noisily-weak expert. They not only learned slower than learning with
perfect experts, but also converge at a worse score. However, while working with
the policy-consistent weak expert, though DQfD still perform poorly, ADQN
converge at higher scores which are close to ones achieved by working with
perfect experts. As a result, we found that ADQN is able to take the advantage
of policy-consistent weak experts, which are similar to human experts.

6 Conclusion and Future Work

In this work, we propose Active DQN, which improves RL with demonstration
more efficiently with regard to human effort. We use DQfD to leverage demon-
stration data and propose a novel uncertainty-based query strategy which ap-
plies to diverse tasks. We provide two measurements of the uncertainty: the
divergence of Bootstrapped DQN, and the predictive variance of Noisy DQN.
Experimental results show that both of the proposed methods yield better per-
formance than the expert and learn faster with the same number of demonstra-
tions in different tasks.

As an initial work on Active Reinforcement Learning with Demonstration,
the proposed method has achieved promising performance. A possible extension
of this work is to apply it on RL algorithms such as DDPG which work on a
continuous action space. A more difficult challenge is to work with off-policy
methods such as policy gradient which require a different way to learn with
demonstration.
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(a) Comparison between methods with bootstrapped DQN

(b) Comparison between methods with bootstrapped DQN

Figure 1: Comparison between different ARLD methods. The dashed lines
indicate the score of solving the task.
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(a) ADQN, DQfD and ADQNP based on bootstrapped DQN

(b) ADQN, DQfD and ADQNP based on noisy DQN

Figure 2: Comparison between ADQN, DQfD and ADQNP. The dashed lines
indicate the score of solving the task.
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(a) Active DQN based on bootstrapped DQN

(b) Active DQN based on noisy DQN

Figure 3: Comparison between different query thresholds among {0.05, 0.1, 0.3,
0.5}.
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(a) Effect of expert’s quality on DQfD-B and ADQN-B

(b) Effect of expert’s quality on DQfD-N and ADQN-N

Figure 4: Comparison between perfect expert, prefect expert with 40% random
action, and weak expert.
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