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Abstract—Bipartite ranking is a fundamental ranking problem that learns to order relevant instances ahead of irrelevant ones. One
major approach for bipartite ranking, called the pair-wise approach, tackles an equivalent binary classification problem of whether one
instance out of a pair of instances should be ranked higher than the other. Nevertheless, the number of instance pairs constructed
from the input data could be quadratic to the size of the input data, which makes pair-wise ranking generally infeasible on large-
scale data sets. Another major approach for bipartite ranking, called the point-wise approach, directly solves a binary classification
problem between relevant and irrelevant instance points. This approach is feasible for large-scale data sets, but the resulting ranking
performance can be inferior. That is, it is difficult to conduct bipartite ranking accurately and efficiently at the same time. In this paper, we
develop a novel scheme within the pair-wise approach to conduct bipartite ranking efficiently. The scheme, called Active Sampling, is
inspired from the rich field of active learning and can reach a competitive ranking performance while focusing only on a small subset of
the many pairs during training. Moreover, we propose a general Combined Ranking and Classification (CRC) framework to accurately
conduct bipartite ranking. The framework unifies point-wise and pair-wise approaches and is simply based on the idea of treating
each instance point as a pseudo-pair. Experiments on 14 real-word large-scale data sets demonstrate that the proposed algorithm of
Active Sampling within CRC, when coupled with a linear Support Vector Machine, usually outperforms state-of-the-art point-wise and
pair-wise ranking approaches in terms of both accuracy and efficiency.

Index Terms—bipartite ranking, binary classification, large-scale, active learning, AUC.
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INTRODUCTION

[27], [30]. Many existing bipartite ranking algorithms

The bipartite ranking problem aims at learning a ranking
function that orders positive instances ahead of negative
ones. For example, in information retrieval, bipartite
ranking can be used to order the preferred documents
in front of the less-preferred ones within a list of search-
engine results; in bioinformatics, bipartite ranking can
be used to identify genes related to a certain disease
by ranking the relevant genes higher than irrelevant
ones. Bipartite ranking algorithms take some positive
and negative instances as the input data, and produce
a ranking function that maps an instance to a real-
valued score. Given a pair of a positive instance and
a negative one, we say that the pair is mis-ordered if
the ranking function gives a higher score to the negative
instance. The performance of the ranking function is
measured by the probability of mis-ordering an unseen
pair of randomly chosen positive and negative instances,
which is equal to one minus the Area Under the ROC
Curve (AUC) [18], a popular criterion for evaluating
the sensitivity and the specificity of binary classifiers in
many real-world tasks [6], [11], [21] and large-scale data
mining competitions [9], [41].

Given the many potential applications in information
retrieval, bioinformatics, and recommendation systems,
bipartite ranking has received much research attention
in the past two decades [1], [6], [12], [16], [19], [25],
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explicitly or implicitly reduce the problem to binary clas-
sification to inherit the benefits from the well-developed
methods in binary classification [6], [16], [19], [23], [27].
The majority of those reduction-based algorithms can be
categorized to two approaches: the pair-wise approach
and the point-wise one. The pair-wise approach trans-
forms the input data of positive and negative instances
to pairs of instances, and learns a binary classifier for
predicting whether the first instance in a pair should
be scored higher than the second one. Note that for
an input data set that contains N positive instances
and N~ negative ones, the pair-wise approach trains a
binary classifier by optimizing an objective function that
consists of NTN~ terms, one for each pair of instances.
The pair-wise approach comes with strong theoretical
guarantee. For example, [4] shows that a low-regret
ranking function can indeed be formed by a low-regret
binary classifier. The strong theoretical guarantee leads
to promising experimental results in many state-of-the-
art bipartite ranking algorithms, such as RankSVM [23],
RankBoost [19] and RankNet [7]. Nevertheless, the num-
ber of pairs in the input data can easily be of size O(N?),
where N is the size of the input data, if the data is not
extremely unbalanced. The quadratic number of pairs
with respect to N makes the pair-wise approach compu-
tationally infeasible for large-scale data sets in general,
except in a few special algorithms like RankBoost [19]
or the efficient linear RankSVM [25]. RankBoost enjoys
an efficient implementation by reducing the quadratic
number of pair-wise terms in the objective function



to a linear number of equivalent terms; efficient linear
RankSVM transforms the pair-wise optimization formu-
lation to an equivalent formulation that can be solved in
subquadratic time complexity [27].

On the other hand, the point-wise approach directly
runs binary classification on the positive and negative
instance points of the input data, and takes the scoring
function behind the resulting binary classifier as the
ranking function. In some special cases [19], [31], such as
AdaBoost [20] and its pair-wise sibling RankBoost [19],
the point-wise approach is shown to be equivalent to
the corresponding pair-wise one [16], [33]. In other
cases, the point-wise approach often operates with an
approximate objective function that involves only N
terms [21], [27]. For example, [27] shows that minimiz-
ing the exponential or the logistic loss function on the
instance points decreases an upper bound on the number
of mis-ordered pairs within the input data. Because of
the approximate nature of the point-wise approach, its
ranking performance can sometimes be inferior to the
pair-wise approach.

From the discussion above, we see that the pair-wise
approach leads to more satisfactory performance while
the point-wise approach comes with efficiency, and there
is a trade-off between the two. In this paper, we are
interested in designing bipartite ranking algorithms that
enjoy both satisfactory performance and efficiency for
large-scale bipartite ranking. We focus on using the
linear Support Vector Machine (SVM) [40] given its
recent advances for efficient large-scale learning [43].
We first show that the loss function behind the usual
point-wise SVM [40] minimizes an upper bound on
the loss function behind RankSVM, which suggests that
the point-wise SVM could be an approximate bipartite
ranking algorithm that enjoys efficiency. Then, we design
a better ranking algorithm with two major contributions.

Firstly, we study an active sampling scheme to select
important pairs for the pair-wise approach and name the
scheme Active Sampling for RankSVM (ASRankSVM).
The scheme makes the pair-wise SVM computationally
feasible by focusing only on a small number of valuable
pairs out of the quadratic number of pairs , and allows us
to overcome the challenge of having a quadratic number
of pairs. The active sampling scheme is inspired by active
learning, another popular machine learning setup that
aims to save the efforts of labeling [35]. More specifically,
we discuss the similarity and differences between active
sampling (selecting a small number of valuable pairs
within a pool of potential pairs) and pool-based active
learning (labeling a small number of valuable instances
within a pool of unlabeled instances), and propose some
active sampling strategies based on the similarity. Sec-
ondly, we propose a general framework that unifies the
point-wise SVM and the pair-wise SVM (RankSVM) as
special cases. The framework, called combined ranking
and classification (CRC), is simply based on the idea
of treating each instance point as a pseudo-pair. The
CRC framework coupled with active sampling (ASCRC)

improves the performance of the point-wise SVM by
considering not only points but also pairs in its objective
function.

Performing active sampling within the CRC frame-
work leads to a promising algorithm for large-scale
linear bipartite ranking. We conduct experiments on
14 real-world large-scale data sets and compare the
proposed algorithms (ASRankSVM and ASCRC) with
several state-of-the-art bipartite ranking algorithms, in-
cluding the point-wise linear SVM [17], the efficient
linear RankSVM [25], and the Combined Ranking and
Regression (CRR) algorithm [34] which is closely related
to the CRC framework. In addition, we demonstrate
the robustness and the efficiency of the active sampling
strategies and discuss some advantages and disadvan-
tages of different strategies. The results show that AS-
RankSVM is able to efficiently sample only 8,000 of
the more than millions of the possible pairs to achieve
better performance than other state-of-the-art algorithms
that use all the pairs, while ASCRC that considers the
pseudo-pairs can sometimes be helpful. Those results
validate that the proposed algorithm can indeed enjoy
both satisfactory performance and efficiency for large-
scale bipartite ranking.

The paper is organized as follows. Section 2 describe
the problem setup and several related works in the
literature. Then, we illustrate the active sampling scheme
and the proposed CRC framework in Section 3. We
conduct a thorough experimental study to compare the
proposed algorithm to several state-of-the-art ones in
Section 4, and conclude in Section 5.

A preliminary version of this paper appeared in the
5th Asian Conference on Machine Learning [37]. The
paper is then enriched by

1) extending the design of the proposed CRC framework
to allow a threshold term for the classification part in
Section 3.5

2) examining the necessity of each part of the proposed
CRC framework in Section 4.2

3) studying the effect of the budget parameter of active
sampling in Section 4.4

2 SETUP AND RELATED WORKS

In a bipartite ranking problem, we are given a training
set D = {(xx,yx)}_,, where each (xy,yyx) is a training
instance with the feature vector x; in an n-dimensional
space X C R"™ and the binary label y; € {+1,—1}. Such
a training set is of the same format as the training set
in usual binary classification problems. We assume that
the instances (xy,yi) are drawn i.i.d. from an unknown
distribution P on X x {+1, —1}. Bipartite ranking algo-
rithms take D as the input and learn a ranking function
r: X — R that maps a feature vector x to a real-valued
score 7(x).

For any pair of two instances, we call the pair mis-
ordered by r iff the pair contains a positive instance
(x4,4+1) and a negative one (x_,—1) while r(x;) <



r(x_). For a distribution P that generates instances
(x,y), we can define its pair distribution P, that gen-
erates (x,y,x’,y’) to be the conditional probability of
sampling two instances (x,y) and (x’,y’) from P, condi-
tioned on y # . Then, let the expected bipartite ranking
loss Lp(r) for any ranking function r be the expected
number of mis-ordered pairs over Ps.

L) = E [1((y=y)060) —r(x) <0)]

(xy, %"y )~ Py
where I(e) is an indicator function that returns 1 iff the
condition (e) is true, and returns 0 otherwise. The goal
of bipartite ranking is to use the training set D to learn a
ranking function r that minimizes the expected bipartite
ranking loss Lp(r).

Because P is unknown, Lp(r) cannot be computed
directly. Thus, bipartite ranking algorithms usually resort
to the empirical bipartite ranking loss Lp(r), which takes
the expectation over the pairs in D instead of over the
pair distribution P,, with the hope that Lp(r) would be
sufficiently close to Lp(r) when the model complexity of
the candidate ranking functions r is properly controlled.
Denote DV as the set of the positive instances in D, and
D~ as the set of negative instances in D. The formal
definition of LD(r) is

N+N PN (Xl<”‘ﬂ))
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The bipartite ranking loss Lp(r) is closely related to
the area under the ROC curve (AUC), which is com-
monly used to evaluate the sensitivity and the specificity
of binary classifiers [6], [9], [11], [21], [41]. More specif-
ically, AUC calculates the expected number of correctly-
ordered pairs. Hence, AUC,(r) = 1—L4(r) fore = P or D,
and higher AUC indicates better ranking performance.

Bipartite ranking is a special case of the general rank-
ing problem in which the labels y can be any real value,
not necessarily {41, —1}. For example, recommendation
systems may allow users to enter their preferences (la-
bels) on the item x with real-valued or ordinal-scaled
scores. There are lots of recent studies on improving the
accuracy [8], [15], [23] and efficiency [3], [19] of general
ranking problems. In this paper, instead of considering
the general ranking problem, we focus on using the
specialty of bipartite ranking, namely its connection to
binary classification, to improve the accuracy and the
efficiency.

Motivated by the recent advances of linear models
for efficient large-scale learning [43], we consider linear
models for efficient large-scale bipartite ranking. That is,
the ranking functions would be of the form r(x) = wTx,
which is linear to the components of the feature vector
x. In particular, we study the linear Support Vector
Machine (SVM) [40] for bipartite ranking. There are two
possible approaches for adopting the linear SVM on
bipartite ranking problem, the pair-wise SVM approach
and the point-wise SVM approach.

The pair-wise approach corresponds to the famous
RankSVM algorithm [23], which is originally designed
for ranking with ordinal-scaled scores, but can be easily
extended to general ranking with real-valued labels or
restricted to bipartite ranking with binary labels. For
each positive instance (x;,y; = +1) and negative in-
stance (x;,y; = —1), the pair-wise approach transforms
the two instances to two symmetric pairs of instance
((xs,%4),+1) and ((x;,%;), —1), the former for indicating
that x; should be scored higher than x; and the latter for
indicating that x; should be scored lower than x;. The
pairs transformed from D are then fed to an SVM for
learning a ranking function of the form r(x) = w’ ¢(x),
where ¢ indicates some feature transform.

When using a linear SVM, ¢ is simply the identity
function. Then, for the pair ((x;,x;),+1), we see that
I(r(xi) < 7(x;)) = 0 iff w¥(x; = x;) > 0. Define the
transformed feature vector x;; = x; — x; and the trans-
formed label y;; = sign(y; —y;), we can equivalently view
the pair-wise linear SVM as simply running a linear SVM
on the pair-wise training set Dpair = {(Xij, ¥ij)|[vi # y5}-
The pair-wise linear SVM minimizes the hinge loss as a
surrogate to the 0/1 loss on Dy [38], and the 0/1 loss
on Dy, is equivalent to Lp(r), the empirical bipartite
ranking loss of interest. That is, if the linear SVM learns
an accurate binary classifier using D,,;,, the resulting
ranker r(x) = wlx would also be accurate in terms of
the bipartite ranking loss.

Denote the hinge function max(e, 0) by [e];, RankSVM
solves the following optimization problem

mln %w w + Z Ci;[1 WTyinij]+ , 1)
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where C;; denotes the weight of the pair x;;. Because of
the symmetry of x;; and x;;, we naturally assume that
C;; = Cj;. In the original RankSVM formulation, Cj; is
set to a constant for all the pairs. Here we list a more flex-
ible formulation (1) to facilitate some discussions later.
RankSVM has reached promising bipartite ranking per-
formance in the literature [6]. Because of the symmetry of
positive and negative pairs, we can equivalently solve (1)
on those positive pairs with y;; = 1. The number of such
positive pairs is N TN~ if there are N positive instances
and N~ negative ones. The huge number of pairs make it
difficult to solve (1) with a naive quadratic programming
algorithm.

In contrast with the naive RankSVM, the efficient
linear RankSVM [25] changes (1) to a more sophisticated
and equivalent one with an exponential number of con-
straints, each corresponding to a particular linear com-
bination of the pairs. Then, it reaches O(N log N) time
complexity by using a cutting-plane solver to identify the
most-violated constraints iteratively, while the constant
hidden in the big-O notation depends on the parameter
C;; as well as the desired precision of optimization. The
subquadratic time complexity of the efficient RankSVM
can make it much slower than the point-wise approach



(to be discussed below), and hence may not always be
fast enough for large-scale bipartite ranking.

The point-wise SVM approach, on the other hand,
directly runs an SVM on the original training set D
instead of Dyq;,. That is, in the linear case, the point-wise
approach solves the following optimization problem

1
rrgninw+C+ Z [1-wTx;] +C_ Z [4+wix;]y
x; €D+ Xjefo
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Such an approach comes with some theoretical justifica-
tion [27]. In particular, the 0/1 loss on D has been proved
to be an upper bound of the empirical bipartite ranking
loss. In fact, the bound can be tightened by adjusting C,
and C_ to balance the distribution of the positive and
negative instances in D. When C; = C_, [6] shows that
the point-wise approach (2) is inferior to the pair-wise
approach (1) in performance. The inferior performance
can be attributed to the fact that the point-wise approach
only operates with an approximation (upper bound) of
the bipartite ranking loss of interest.

Next, inspired by the theoretical result of upper-
bounding the bipartite ranking loss with a balanced 0/1
loss, we study the connection between (1) and (2) by
balancing the hinge loss in (2). In particular, as shown
in Theorem 1, a balanced form of (2) can be viewed as
minimizing an upper bound of the objective function
within (1). In other words, the weighted point-wise SVM
can be viewed as a reasonable baseline algorithm for
large-scale bipartite ranking problem.

Theorem 1. Let Cs; = % be a constant in (1); Cy = 2N~ -C
and C_ = 2N+ - C in (2). Then, for every w, the objective
function of (1) is upper-bounded by 5 times the objective

function of (2).

Proof. Because
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starting from the objective function of (1) we get
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The theorem can be easily proved by substituting 2w
with a new variable u. O

3 BIPARTITE RANKING WITH ACTIVE SAM-
PLING

As discussed in the previous section, the pair-wise ap-
proach (1) is infeasible on large-scale data sets due
to the huge number of pairs. Then, either some ran-
dom sub-sampling of the pairs are needed [34], or the
less-accurate point-wise approach (2) is taken as the
approximate alternative [27]. Nevertheless, the better
ranking performance of the pair-wise approach over
the point-wise one suggest that some of the key pairs
shall carry more valuable information than the instance-
points. Next, we design an algorithm that samples a
few key pairs actively during learning. The resulting
algorithm achieves better performance than the point-
wise approaches because of the key pairs, and enjoys
better efficiency than the pair-wise approach because of
the sampling. We first show that some proposed active
sampling schemes, which are inspired by the many
existing methods in active learning [28], [32], [35], can
help identify those key pairs better than random sub-
sampling. Then, we discuss how we can unify point-
wise and pair-wise ranking approaches under the same
framework.

3.1

The pair-wise SVM approach (1) is challenging to solve
because of the huge number of pairs involved in Dpg;y.
To make the computation feasible, we can only afford to
work on a small subset of D,,,;, during training. Existing
algorithms conquer the computational difficulty of the
huge number of pairs in different ways. The Combined
Ranking and Regression approach [34] performs stochas-
tic gradient descent on its objective function, which
essentially selects within the huge number of pairs in
a random manner; the efficient RankSVM [25] identi-
fies the most-violated constraints during optimization,
which corresponds to selecting the most valuable pairs
from an optimization perspective.

We take an alternative route and hope to select the
most valuable pairs from a learning perspective. That
is, our task is to iteratively select a small number of
valuable pairs for training while reaching similar per-
formance to the pair-wise approach that trains with all
the pairs. One machine learning setup that works for
a similar task is active learning [35], which iteratively
select a small number of valuable instances for labeling
(and training) while reaching similar performance to the
approach that trains with all the instances fully labeled.
[2] avoids the quadratic number of pairs in the general
ranking problem from an active learning perspective,
and proves that selecting a subquadratic number of pairs
is sufficient to obtain a ranking function that is close to
the optimal ranking function trained by using all the

Pool-based Active Learning



pairs. The algorithm is theoretical in nature, while many
other promising active learning tools [28], [32], [35] have
not been explored for selecting valuable pairs in large-
scale bipartite ranking.

Next, we start exploring those tools by providing a
brief review about active learning. We focus on the setup
of pool-based active learning [35] because of its strong
connection to our needs. In a pool-based active learning
problem, the training instances are separated into two
parts, the labeled pool (£) and the unlabeled pool (/). As
the name suggests, the labeled pool consists of labeled
instances that contain both the feature vector x;, and its
corresponding label y;, and the unlabeled pool contains
unlabeled instances x, only. Pool-based active learning
assumes that a (huge) pool of unlabeled instances is rel-
atively easy to gather, while labeling those instances can
be expensive. Therefore, we hope to achieve promising
learning performance with as few labeled instances as
possible.

A pool-based active learning algorithm is generally
iterative. In each iteration, there are two steps: the train-
ing step and the querying step. In the training step, the
algorithm trains a decision function from the labeled
pool; in the querying step, the algorithm selects one (or
a few) unlabeled instances, queries an oracle to label
those instances, and moves those instances from the
unlabeled pool to the labeled one. The pool-based active
learning framework repeats the training and querying
steps iteratively until a given budget B on the number of
queries is met, with the hope that the decision functions
returned throughout the learning steps are as accurate
as possible for prediction.

Because labeling is expensive, active learning algo-
rithms aim to select the most valuable instance(s) from
the unlabeled pool at each querying step. Various selec-
tion criteria have been proposed to describe the value
of an unlabeled instance [35], such as uncertainty sam-
pling [28], expected error reduction [32], and expected
model change [36].

Moreover, there are several works that solve bipartite
ranking under the active learning scenario [13], [14], [42].
For example, [13] selects points that reduce the ranking
loss functions most from the unlabeled pool while [14]
selects points that maximize the AUC in expectation.
Nevertheless, these active learning algorithms require
either sorting or enumerating over the huge unlabeled
pool in each querying step. The sorting or enumerating
process can be time consuming, but have not been
considered seriously because labeling is assumed to be
even more expensive. We will discuss later that those
algorithms that require sorting or enumerating may not
fit our goal.

3.2 Active Sampling

Following the philosophy of active learning, we propose
the active sampling scheme for choosing a smaller set
of key pairs on the huge training set D,q;-. We call

the scheme Active Sampling in order to highlight some
differences to active learning. One particular difference is
that RankSVM (1) only requires optimizing with positive
pairs. Then, the label y;; of a pair is a constant 1 and
thus easy to get during active sampling, while the label
in active learning remains unknown before the possibly
expensive querying step. Thus, while active sampling
and active learning both focus on using as few labeled
data as possible, the costly part of the active sampling
scheme is on training rather than querying.

For active sampling, we denote B as the budget on
the number of pairs that can be used in training, which
plays a similar role to the budget on querying in active
learning. In brief, active sampling chooses B informative
pairs iteratively for solving the optimization problem (1).
We separate the pair-wise training set D, into two
parts, the chosen pool (£*) and the unchosen pool (I/*).
The chosen pool is the subset of pairs to be used for
training, and the unchosen pool contains the unused
pairs. The chosen pool is similar to the labeled pool in
pool-based active learning; the unchosen pool acts like
the unlabeled pool. The fact that it is almost costless to
“label” the instances in the unchosen pool allows us to
design simpler sampling strategies than those commonly
used for active learning, because no effort is needed to
estimate the unknown labels.

Algorithm 1 Active Sampling

Input: the initial chosen pool, £*; the initial unchosen
pool, U*; the regularization parameters, {C;;}. the
number of pairs sampled per iteration, b; the budget
on the total number of pairs sampled, B; the sampling
strategy, Sample: (U*,w) — x;; that chooses a pair
from U*.

Output: the ranking function represented by the
weights w.

w = linearSVM(L*, {C};},0);
repeat
fori=1—bdo
Xij = Sample(u*,w);
L = L7 U{(xij,y55)} and U™ = U\ {x4;};
end for
w = linearSVM(L*, {C;; }, w);
until (|[£*| > B)
return w;

The proposed scheme of active sampling is illustrated
in Algorithm 1. The algorithm takes an initial chosen
pool £* and an initial unchosen pool U*, where we
simply mimic the usual setup in pool-based active learn-
ing by letting £* be a randomly chosen subset of D,
and U* be the set of unchosen pairs in D, In each
iteration of the algorithm, we use Sample to actively
choose b instances to be moved from U* to L£*. The
strategy Sample takes the current ranking function w
into account. After sampling, a linearSVM is called to
learn from L£* along with the weights in {C;;}. We feed
the current w to the linearSVM solver to allow a warm-



start in optimization. The warm-start step enhances the
efficiency and the performance. The iterative procedure
continues until the budget B of chosen instances is fully
consumed.

Another main difference between the active sampling
scheme and typical pool-based active learning is that
we sample b instances before the training step, while
pool-based active learning often considers executing the
training step right after querying the label of one in-
stance. The difference is due to the fact that the pair-wise
labels y;; can be obtained very easily and thus sampling
and labeling can be relatively cheaper than querying in
pool-based active learning. Furthermore, updating the
weights right after knowing one instance may not lead to
much improvement and can be too time consuming for
the large-scale bipartite ranking problem that we want
to solve.

3.3 Sampling Strategies

Next, we discuss some possible sampling strategies that
can be used in Algorithm 1. One naive strategy is
to passively choose a random sample within ¢/*. For
active sampling strategies, we define two measures that
estimate the (learning) value of an unchosen pair. The
two measures correspond to well-known criteria in pool-
based active learning. Let x;; be the unchosen pair in ¢/*
with y;; = 1, the two measures with respect to the
current ranking function w are

closeness(x;j, w) = |[w’ x| ©)]
correctness(X;j, w) = —[1 — wl x;;]+ 4)

The closeness measure corresponds to one of the
most popular criteria in pool-based active learning called
uncertainty sampling [28]. It captures the uncertainty of
the ranking function w on the unchosen pair. Intuitively,
a low value of closeness means that the ranking function
finds it hard to distinguish the two instances in the pair,
which implies that the ranking function is less confident
on the pair. Therefore, sampling the unchosen pairs that
come with the lowest closeness values may improve the
ranking performance by resolving the uncertainty.

On the other hand, the correctness measure is related
to another common criterion in pool-based active learn-
ing called expected error reduction [32]. It captures the
performance of the ranking function w on the unchosen
pair. Note that this exact correctness measure is only
available within our active sampling scheme because
we know the pair-label y;; to always be 1 without loss
of generality, while usual active learning algorithms do
not know the exact measure before querying and hence
have to estimate it [13], [14]. A low value of correctness
indicates that the ranking function does not perform well
on the pair. Then, sampling the unchosen pairs that come
with the lowest correctness values may improve the
ranking performance by correcting the possible mistakes.
Moreover, sampling the pair with lowest correctness

value shall change w the most in general, which echoes
another criterion in pool-based active learning called
expected model change [36].

Similar to other active learning algorithms [13], [14],
computing the pairs that come with the lowest closeness
or correctness values can be time consuming, as it
requires at least evaluating the values of w’x;, for each
instance (xx,yx) € D, and then computing the measures
on the pairs along with some selection or sorting steps
that may be of super-linear time complexity [25]. Thus,
such a hard version of active sampling is not computa-
tionally feasible for large-scale bipartite ranking. Next,
we discuss the soft version of active sampling that ran-
domly chooses pairs that come with lower closeness or
correctness values by rejection sampling.

Algorithm 2 Soft Version of Active Sampling

Input: the current ranking function represented by the
weights w; the unchosen pool, I/*.
Output: x;;, the sampled pair.
repeat
Sample a pair x;; uniformly from U/*;
Calculate a probability value p;; from w;
until ( random() < p;; )
return x;;;

Algorithm 2 illustrates the soft version of active sam-
pling: we consider a rejection sampling step that samples
a pair x;; with probability p;; based on a method ran-
dom() that generates random numbers between [0, 1]. A
pair that comes with a lower closeness or correctness
values would enjoy a higher probability p;; of being
accepted.

Next, we define the probability value functions that
correspond to the hard versions of closeness and
correctness. Both value functions are in the shape of
the sigmoid function, which is widely used to repre-
sent probabilities in logistic regression and neural net-
works [5]. For soft closeness sampling, we define the
probability value as:

pij =2/ (1 + eIWT"”‘>
For soft correctness sampling, we define p;; as:
piy=1-2/ (1 + ell_wT(xw)H)

We take different forms of soft versions because
closeness is of range [0, co) while correctness is of range
(—00,0].

Note that the sampling strategies above, albeit focus-
ing on the most valuable pairs, is inheritedly biased.
The chosen pool may not be representative enough of
the whole training set because of the biased sampling
strategies. There is a simple way that allows us to correct
the sampling bias for learning a ranking function that
performs well on the original bipartite ranking loss of
interest. We take the idea of [24] to weight the sampled
pair by the inverse of its probability of being sampled.



That is, we could multiply the weight C;; for a chosen
pair x;; by i when it gets returned by the rejection
sampling.

3.4 Combined Ranking and Classification

Inspired by Theorem 1, the points can also carry some
information for ranking. Next, we study how we can
take those points into account during active sampling.
We start by taking a closer look at the similarity and
differences between the point-wise SVM (2) and the
pair-wise SVM (1). The pair-wise SVM considers the
weighted hinge loss on the pairs x;; = x; — x;, while
the point-wise SVM considers the weighted hinge loss
on the points x;. Consider one positive point (xj,+1).
Its hinge loss is [I — w’x;];, which is the same as
[1 — wT(x; — 0)];. In other words, the positive point
(x5, +1) can also be viewed as a pseudo-pair that con-
sists of (x;,+1) and (0, —1). Similarly, a negative point
(x4,—1) can be viewed as a pseudo-pair that consists
of (xj,—1) and (0,+1). Let the set of all pseudo-pairs
within D be

Dpseu

= {(xip=%; —0,+1)|x; € D"}
U{(x0; =0 —x;,+1)|x; € D"}
U{(x0; =0 — x;,—1)|x; € DT}
U{(xj0 =x; = 0,-1)|x; € D" }.

Then, the point-wise SVM (2) is just a variant of the pair-
wise one (1) using the pseudo-pairs and some particu-
lar weights. Thus, we can easily unify the point-wise
and the pair-wise SVMs together by minimizing some
weighted hinge loss on the joint set D* = Dpqir U Dpseu
of pairs and pseudo-pairs. By introducing a parameter
v € [0,1] to control the relative importance between
the real pairs and the pseudo-pairs, we propose the
following novel formulation.

N y
min - owlw oty > CH - wixyly

Xij €D,
¢
+1=7) DY CED 1w xkly . (5)
Xpe€DFseu
where D;_air and Dj,., denote the set of positive pairs

and positive pseudo-pairs, respectively. The new formu-
lation (5) combines the point-wise SVM and the pair-
wise SVM in its objective function, and hence is named
the Combined Ranking and Classification (CRC) frame-
work. When v = 1, CRC takes the pair-wise SVM (1) as
a special case with C;; = 20%i9). when v =0, CRC takes
the point-wise SVM (2) as a special case with C = cl9)
and C_ = C%). The CRC framework (5) remains as
challenging to solve as the pair-wise SVM approach (1)
because of the huge number of pairs. However, the
general framework can be easily extended to the active
sampling scheme, and hence be solved efficiently. We

only need to change the training set from D, to the
joint set D*, and multiply the probability value p;; in the
soft version sampling by ~ or (1 — ) for actual pairs or
pseudo-pairs.

The CRC framework is closely related to the algorithm
of Combined Ranking and Regression (CRR) [34] for
general ranking. The CRR algorithm similarly considers
a combined objective function of the point-wise terms
and the pair-wise terms for improving the ranking per-
formance. The main difference between CRR and CRC
is that the CRR approach takes the squared loss on the
points, while CRC takes the nature of bipartite ranking
into account and considers the hinge loss on the points.
On the other hand, the idea of combining pair-wise
and point-wise approaches had been used in another
machine learning setup, the multi-label classification
problem [39]. The algorithm of Calibrated Ranking by
Pairwise Comparison [22] assumes a calibration label
between relevant and irrelevant labels, and hence unifies
the pair-wise and point-wise label learning for multi-
label classification. The calibration label plays a similar
role to the zero-vector in the pseudo-pairs for combining
pair-wise and point-wise approaches.

To the best of our knowledge, while the CRR approach
has reached promising performance in practice [34], the
CRC formulation has not been seriously studied. The
hinge loss used in CRC allows unifying the point-wise
SVM and the pair-wise SVM under the same framework,
and the unification is essential for applying one active
sampling strategy on both the real pairs and the pseudo-
pairs.

In summary, we propose the active sampling scheme
for RankSVM (ASRankSVM) and the more general CRC
framework (ASCRC), and derive two sampling strategies
that correspond to popular strategies in pool-based ac-
tive learning. The soft version of the sampling strategies
helps reducing the computational cost, and allows cor-
recting the sampling bias by adjusting the weights with
the inverse probability of being sampled.

3.5 Combined Ranking and Classification with
Threshold

In Theorem 1, we connect the point-wise SVM without
threshold term (2) to the pair-wise SVM (1). The standard
SVM for binary classification, however, often come with
a threshold term 6 to allow the classification hyperplane
to be away from the origin. That is, the standard SVM
solves

't
%}g1§wTw+C'+ Z [1-wx;+60], +C_ Z [14+wlx;—0], .

x; €D+ x]‘G'D’

(6)
Note that for any given (6, w),

1
[1-wTx]y < 5 (1 —2w’x; + 20 + [1+2w’x; —20],).

If we revisit the proof of Theorem 1 with the equation
above, we get a similar theorem that connects the stan-
dard SVM to the pair-wise SVM.



Theorem 2. Let C;; = % be a constant in (1); Cy = 2N~ -C
and C_ = 2N*+.C in (6). Then, for every (6, w), the objective
function of (1) is upper-bounded by 1 times the objective

function of (6).

Given the connection between (6) to (1) in Theo-
rem 2, one may wonder whether the trick of pseudo-
pair works for connecting the two formulations. Con-
sider one positive point (xj,+1). Its hinge loss within
6) is [I — wlx; + 6., which is the same as

[1 — [9 wT] <[;1} —Onﬂﬂ , where 0,41 is a zero

+
vector of length n + 1. Thus, the positive point (x;,+1)
can also be viewed as an extended pseudo-pair that

consists of ([;1 ,+1> and (0,,11,—1), ranked by the

extended vector ‘i . We will denote the extended vector

[;1} as X;. Similarly, a negative point (x;,—1) can
7
be viewed as an extended pseudo-pair that consists of
(5(]‘, —1) and (0"_;,_17 —|—1)

Note that if we consider all the extend[ed} vectors

X;, ranking pair-wise extended vectors by means
calculating
T T
o1 - - 6 -1 -1
[W] (X —%;) = [W] (L{J - [XJ'D =w'(x; — x;)

That is, the hinge loss on extended pairs is exactly the
same as the hinge loss on the original pairs.

Based on the discussions above, if we define extended
pairs X;; and extended pseudo-pairs xi, based on the
extended vectors x; and 0,11, we can combine the pair-
wise SVM and the standard SVM with threshold term to
design a variant of the CRC formulation:

Wy Y -8 W Ryl

min
6,w
x77€Dpa1T
Hi-v) > CHP-—[0 W RNy ()
XA-,zED;—seu

Note, however, that 6 in (7) is not included in the
regularization term %WTW. Several existing works, such
as LIBLINEAR [17], include 6 in the regularization term
to allow simpler design of optimization routines. We
adopt the same idea and consider

%ﬂn 1(9T9 +wlw)
+y Y, -0 wlxyly
x77€Dpazr
+1=v) > CEY 1[0 wT] Rk (8)
xkl’.eD;seu

in our study. We call this formulation (8) CRC-threshold,
which is simply equivalent to the original CRC formula-
tion (5) applied to the extended vectors. The equivalence
allows us to easily test whether the flexibility of @

(through using the extended vectors X;) can improve the
original CRC formulation.

4 EXPERIMENTS

In this section, we study the performance and efficiency
of our proposed ASCRC algorithm on real-world large-
scale data sets. We compare ASCRC with random-CRC,
which does random sampling under the CRC frame-
work. In addition, we compare ASCRC with three other
state-of-the-art algorithms for large-scale bipartite rank-
ing: the point-wise weighted linear SVM (2) (WSVM),
an efficient implementation [25] of the pair-wise linear
RankSVM (1) (ERankSVM), and the combined ranking
and regression (CRR) [34] algorithm for general ranking.

We use 14 data sets from the LIBSVM Tools [10] and
the UCI Repository [26] in the experiments. Table 1
shows the statistics of the data sets, which contains
more than ten-thousands of instances and more than ten-
millions of pairs. The data sets are definitely too large
for a naive implementation of RankSVM (1). Note that
the data sets marked with () are originally multi-class
data sets, and we take the sub-problem of ranking the
first class ahead of the other classes as a bipartite ranking
task. For data sets that come with a moderate-sized test
set, we report the test AUC. Otherwise we perform a
5-fold cross validation and report the cross-validation
AUC.

4.1 Experiment Settings

Given a budget B on the number of pairs to be used
in each algorithm and a global regularization parameter
C, we set the instance weights for each algorithm to
fairly maintain the numerical scale between the regular-
ization term and the loss terms. The global regularization
parameter C is fixed to 0.1 in all the experiments. In
particular, the setting below ensures that the total C'("7),
summed over all the pairs (or pseudo-pairs), would be
C' - B for all the algorithms.

o« WSVM: As discussed in Section 2, Cy and C_ shall
be inverse-proportional to N* and N~ to make the
weighted point-wise SVM a reasonable baseline for
b1part1te ranking. Thus, we set O = 2N+ - C and
C_ = 55 -Cin (2). We solve the weighted SVM by
the LIBLINEAR [17] package with its extension on
instance weights.

« ERankSVM: We use the SV MPe"f [25] package to
efficiently solve the linear RankSVM (1) with the
AUC optimization option We set the regularization
parameter Cp, s = 105 -C where the 100 comes from
a suggested value of the SV MP*"/ package.

o CRR: We use the package sofia-ml [34] with the sgd-
sum learner type, combined-ranking loop type and the
default number of iterations that SGD takes to solve
the problem. We set its regularization parameter A =

1
. ABSCCRC (ASRankSVM): We initialize [£*| to b, and

) ij r|c*
assign o) — p‘ | . C in each iteration, where



TABLE 1
Data Sets Statistics

Data Positive | Negative | Total Points Total Pairs Dimension | AUC
letter* 789 19211 20000 30314958 16 CV
protein* 8198 9568 17766 156876928 357 test
news20 9999 9997 19996 199920006 1355191 CV
rcvl 10491 9751 20242 204595482 47236 CcV
a%a 7841 24720 32561 387659040 123 test
bank 5289 39922 45211 422294916 51 CV
jennl 4853 45137 49990 438099722 22 CV
shuttle* 34108 9392 43500 640684672 9 test
mnist* 5923 54077 60000 640596142 780 test
connect* 44473 23084 67557 2053229464 126 CV
acoustic* 18261 60562 78823 2211845364 50 test
real-sim 22238 50071 72309 2226957796 20958 CV
covtype 297711 283301 581012 168683648022 54 CV
url 792145 1603985 2396130 2541177395650 3231961 CV

I' equals to either v or (1 — ) for either real or
pseudo pairs and Z is a normalization constant
D oxijel ﬁ that prevents C12) from being too large.
We solve the linearSVM within ASCRC by the LIB-
LINEAR [17] package with its extension on instance
weights.

o random-CRC: random-CRC simply corresponds
to ASCRC with p;; = 1 for all the pairs. That
is, random-CRC samples uniformly within the
unlabeled pool.

To evaluate the average performance of ASCRC
and random-CRC algorithms, we average their
results over 10 different initial pools.

4.2 Performance Comparison and Robustness

Next, we examine the necessity of three key designs
within the active sampling framework: soft-version ver-
sus hard-version, sampling bias correction within soft-
version of active sampling, and the choice of soft-version
value functions. We first set v = 1 in ASCRC and
random-CRC, which makes ASCRC equivalent to AS-
RankSVM. We let b = 100 and B = 8000, which is a
relatively small budget out of the millions of pairs. We
will study the effect of a larger budget in Section 4.4 and
the effect of using different v in the more general ASCRC
in Section 4.5.

4.2.1

We will discuss the time difference between the soft-
and hard-versions of sampling in Table 6 of Section 4.3.
The soft-versions are both coupled with bias correction.
Intuitively, the soft version is much faster than the hard
version. Here we examine the performance difference
between the two versions first. In Table 2, we compare
the soft- and hard-versions of closeness and correctness
sampling under the t-test of 95% confidence level. For
closeness sampling, the soft version performs better than
the hard version on 9 data sets and ties with 3; for

Soft-Version versus Hard-Version

correctness sampling, the soft version performs better
than the hard version on 12 data sets and ties with 1.
The results justify that the soft version is a better choice
than the hard-version in terms of AUC performance.
Fig. 1 further show how the AUC changes as |L£*|
grows for different versions of sampling, along with
the baseline ERankSVM algorithm. We see that hard-
correctness-sampling always leads to unsatisfactory per-
formance. One possible reason is that hard correctness-
sampling can easily suffer from sampling the noisy
pairs, which come with larger hinge loss. On the other
hand, hard-closeness-sampling is competitive to the soft-
versions (albeit slower), but appears to be saturating to
less satisfactory model in Fig. 1(b). The saturation corre-
sponds to a known problem of uncertainty sampling in
active learning because of the restricted view of the non-
perfect model used for sampling [29]. The soft-version,
on the other hand, has some probability of escaping from
the restricted view, and hence enjoys better performance.

4.2.2 Bias Correction for Soft Version Sampling

Next, we show the AUC difference between doing bias
correction (see Section 3.3) and not doing so for soft-
version sampling in Table 3. A positive difference indi-
cates that doing bias correction leads to better perfor-
mance. First of all, we see that the difference of the bias
correction is relatively small. For soft-close sampling,
performing bias correction is slightly worse in 12 data
sets; for soft-correct sampling, performing bias correction
is slightly better in 9 data sets. Note correctness sampling
is inheritedly more biased towards the noisy pairs as dis-
cussed during hard-version sampling. Thus, performing
bias correction can be necessary and helpful in ensuring
the stability, as justified by the better performance in
those 9 data sets.

4.2.3 Value Functions for Soft Version Sampling

We show how the AUC changes as |£*| grows through-
out the active sampling steps of ASRankSVM in Fig. 5.
For WSVM, ERankSVM and CRR, we plot a horizontal



line on the AUC achieved when using the whole train-
ing set. We also list the final AUC with the standard
deviation of all the algorithms in Table 4.

From Fig. 5 and Table 4, we see that soft-correct
sampling is generally the best. Further, we conduct the
right-tail ¢-test for soft-correct against the others to show
whether the improvement of soft-correct sampling is sig-
nificant. In Table 5, we list the p-values of the ¢-test. The
results are summarized under a 95% significance level,
which means we say soft-correct performs better when
the corresponding p-value is less than 0.05. Actually, we
can see that most of the p-values are much smaller than
0.05, which suggests that the improvement is usually
significant.

First, we compare soft-correct with random sampling
and discover that soft-correct performs better on 10 data
sets and ties with 4, which shows that active sampling
is working reasonably well. While comparing soft-close
with soft-correct in Table 4 and Table 5, we find that
soft-correct outperforms soft-close on 7 data sets and ties
with 5. Moreover, Fig. 5 shows the strong performance
of soft-correct comes from the early steps of active sam-
pling. Finally, when comparing soft-correct with other
algorithms, we discover that soft-correct performs the
best on 8 data sets: it outperforms ERankSVM on 8 data
sets, WSVM on 9 data sets, and CRR on 11 data sets. The
results demonstrate that even when using a pretty small
sampling budget of 8,000 pairs, ASRankSVM with soft-
correct sampling can achieve significant improvement
over those state-of-the-art ranking algorithms that use
the whole training data set. Also, the tiny standard
deviation shown in Table 4 and the significant results
from the t-test suggest the robustness of ASRankSVM
with soft-correct in general.

Nevertheless, we observe a potential problem of soft-
correct sampling from Fig. 5. In data sets letter and
mnist, the performance of soft-correct increases faster
than soft-close in the beginning, but starts dropping in
the middle. The possible reason, similar to the hard-
version sampling, is the existence of noisy pairs that shall
better not to be put into the chosen pool. When sampling
more pairs, the probability that some noisy pairs (which
come with larger hinge loss) are sampled by soft-correct
sampling is higher, and can in term lead to degrading of
performance. The results suggest a possible future work
in combining the benefits of soft-close and soft-correct
sampling to be more noise-tolerant.

4.3 Efficiency Comparison

First, we study the efficiency of soft active sampling
by checking the average number of rejected samples
before passing the probability threshold during rejection
sampling. The number is plotted against the size of L*
in Fig. 6. The soft-close strategy usually needs fewer
than 10 rejected samples, while the soft-correct strategy
generally needs an increasing number of rejected sam-
ples. The reason is that when the ranking performance
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becomes better throughout the iterations, the probability
threshold behind soft-correct could be pretty small. The
results suggest that the soft-close strategy is generally
efficient, while the soft-correct strategy may be less
efficient as |£*| grows.

Next, we list the CPU time consumed for all algo-
rithms under 8,000 pairs budget in Table 6, and the data
sets are ordered ascendantly by its size. We can see that
WSVM and CRR run fast but give inferior performance;
ERankSVM performs better but the training time grows
fast as the data size increases. The result is consistent
with the discussion in Section 1 that conducting bipartite
ranking efficiently and accurately at the same time is
challenging.

For ASRankSVM, random runs the fastest, then soft-
close, and soft-correct is the slowest. The results reflect
the average number of rejected samples discussed above.
In addition, not surprisingly, the soft version samplings
are usually much faster then the corresponding hard
versions, which validate that the time consuming enu-
merating or sorting steps do not fit our goal in terms of
efficiency.

More importantly, when comparing soft-correct with
ERankSVM, soft-correct runs faster on 7 data sets, which
suggests ASRankSVM is as efficient as the state-of-
the-art ERankSVM on large-scale data sets in general.
Nevertheless, we can find that the CPU time of soft-
correct grows much slower than ERankSVM as data size
increases because the time complexity of ASRankSVM
mainly depends on the budget B and the step size b,
not the size of data.

4.4 The Usefulness of Larger Budget

From the previous experiments, we have shown that
ASRankSVM with a budget of 8,000 pairs can perform
better than other competitors on large-scale data sets.
Now, we check the performance of ASRankSVM with
different budget size. In Figure 2, we show the AUC
curves with much larger budgets on two data sets. Then,
we find that the performance of ASRankSVM can be
improved or maintained as the budget size increases.
For example, in data set protein, we can match the
performance of WSVM with around 40,000 pairs and
surpass it slightly with around 80,000 pairs. Neverthe-
less, in most data sets, we find that the slope of AUC
curves become flat around 10,000 pairs, and eventually
converge as the budget increases. That is, increasing the
budget in ASRankSVM leads to consistent but marginal
improvements.

Note that the potential problem of sampling noisy
pairs within the soft-correct sampling can be more seri-
ous when the budget size increases. Fig. 3 illustrates the
problem, where the performance of soft-correct degrades
and rejects many more pairs in the latter sampling
iterations. On the other hand, soft-close maintains the
robustness and the efficiency as the budget increases,
and improves the performance consistently throughout



the iterations. Thus, if a larger budget is used, soft-close
can be a better choice than soft-correct.

4.5 The Usefulness of the CRC Framework

Next, we study the necessity of the CRC framework
by comparing the performance of soft-closeness and
soft-correctness under different choices of ~. We re-
port the best v under a 95% significance level within
{uniform,0.1,0.2,..., 1.0}, where uniform means balanc-
ing the influence of actual pairs and pseudo-pairs by
N = |?7g‘f""|. Moreover, we check whether CRC-threshold
can be useful. Table 7 shows the best v and formulation
for each sampling strategy. The entries with “-thre”
indicates CRC-threshold. The bold entries indicates that
the setting outperforms ERankSVM significantly. There
are important properties that can be observed from
the table. Firstly, we see that the choice of sampling
strategy does not effect the optimal v much, most data
sets have similar optimal v for both soft-closeness and
soft-correctness sampling. Secondly, we find that adding
a threshold term for CRC can sometimes reach better
performance. Last, we see that using v = 1 (real pairs
only) performs well in most data sets, while a smaller
v or uniform can sometimes reach better performance.
The results justify that the real pairs are more important
than the pseudo-pairs, while the latter can sometimes be
helpful. When pseudo-pair helps, as shown in Fig. 4 for
the mnist data set, the flexibility of the CRC framework
can be useful.

4.6 Experiment Result Summary

In summary, a special case of the proposed ASCRC
algorithm that only samples actual pairs (ASRankSVM)
works reasonably well for a budget of 8,000 when cou-
pled with soft-correct sampling. The setting significantly
outperforms WSVM, ERankSVM, CRR and soft-close on
most of the data sets, also the execution time shown the
efficiency of soft-correct sampling is comparable with
ERankSVM. The cons of the soft-correct sampling is
that it becomes increasingly difficult to pass rejection
sampling and it is more sensitive to noisy instances than
soft-close sampling. While v = 1 leads to promising
performance on most of the data sets, further tuning
with a smaller v or adding a threshold term helps in
some data sets. Moreover, using budget size around or
larger than the training size with soft-close sampling
may also help in some data set such as protein. The
results validate the usefulness of active sampling (with
soft-correct) as well as CRC (with a flexible ~).

5 CONCLUSION

We propose the algorithm of Active Sampling (AS) under
Combined Ranking and Classification (CRC) based on
the linear SVM. There are two major components of
the proposed algorithm. The AS scheme selects valuable
pairs for training and resolves the computational burden
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in large-scale bipartite ranking. The CRC framework
unifies the concept of point-wise ranking and pair-wise
ranking under the same framework, and can perform
better than pure point-wise ranking or pair-wise ranking.
The unified view of pairs and points (pseudo-pairs) in
CRC allows using one AS scheme to select from both
types of pairs.

Experiments on 14 real-world large-scale data sets
demonstrate the promising performance and efficiency
of the ASRankSVM and ASCRC algorithms. The algo-
rithms usually outperform state-of-the-art bipartite rank-
ing algorithms, including the point-wise SVM, the pair-
wise SVM, and the combined ranking and regression
approach. The results not only justify the validity of
ASCRC, but also shows the valuable pairs or pseudo-
pairs can be helpful for large-scale bipartite ranking.

As future works, we will consider using other com-
mon loss functions, like exponential loss or logistic loss,
instead of the hinge loss that we discussed. Another in-
teresting direction is adopting more sophisticated active
learning algorithm rather than the simple uncertainty or
error reduction strategies, but maintaining the efficiency
is still challenging.
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Fig. 1. Performance Curves for Hard Version Samplings
TABLE 2
Results Summary under 95% t-test (win/loss/tie)
Close | Correct
Soft v.s Hard | 9/3/1 | 12/0/1
TABLE 3
The Benefit of Bias Correction at |[£*| = 8000,b = 100,y = 1.0
letter protein news20 rcvl a% bank ijennl
Close -1.0540e-03 | -1.0400e-03 | -3.2210e-03 | -5.4200e-04 | -3.3000e-05 | -2.2160e-03 | -2.9800e-04
Correct | -2.4430e-03 | 9.3760e-03 | -2.9550e-03 | -9.6000e-05 | 2.1680e-03 4.5100e-04 7.3300e-04
shuttle mnist connect acoustic real-sim covtype url
Close -9.3600e-04 | 2.7600e-04 | -7.1700e-04 | -2.6960e-03 | -8.2700e-04 | -1.7220e-03 | 3.8000e-05
Correct | 3.0700e-04 | 2.4700e-04 | 3.2030e-03 4.9000e-05 | -1.8710e-03 | 2.8380e-03 | -2.7900e-04
TABLE 4
AUC (meantstd) at |£*| = 8000,b = 100,y = 1.0
ASRankSVM
Data WSVM | ERankSVM | CRR Random Soft-Close Soft-Correct
letter 9808 9877 9874 | 9883 £ .0003 | .9883 =+ .0002 9874 + .0123
protein .8329 .8302 8306 | .8229 + .0031 .8240 + .0016 .8233 + .0028
news20 9379 9753 9743 | .9828 £+ .0008 9836 + .0006 9903 + .0003
rcvl 9876 9916 9755 | .9920 £ .0004 9923 + .0003 9944 + .0002
a%a .9008 9047 .8999 | .9003 + .0006 9012 + .0004 .9007 + .0006
bank .8932 9023 8972 | 9051 + .0010 9057 + .0011 9083 + .0007
jjennl 9335 9343 9336 | .9342 + .0004 9345 + .0006 9348 + .0003
shuttle 9873 9876 9888 | .9894 + .0001 9896 + .0001 9907 + .0000
mnist 9985 9983 9973 | 9967 £ .0004 9979 + .0001 9976 + .0002
connect .8603 .8613 .8532 | .8594 + .0008 .8604 + .0007 .8603 + .0009
acoustic .8881 8911 .8931 | .8952 + .0005 .8952 + .0005 .8988 + .0004
real-sim 9861 9908 29907 | 9908 + .0003 9915 + .0002 9934 + .0064
covtype .8047 .8228 .8189 | .8238 £ .0008 .8239 + .0007 | .8249 =+ .0006
url 9963 .9967 29956 | .9940 + .0003 9961 + .0001 9984 + .0015




TABLE 5
Soft-Correct Versus Other Algorithms Based on the p-values of Right-tail ¢-test at |£*| = 8000,b = 100,y = 1.0

Data WSVM ERankSVM CRR Random Soft-Close

letter 6.0872e-02 5.3288e-01 5.0330e-01 | 5.9297e-01 | 5.9163e-01

protein 1.0000e+00 9.9999e-01 9.9999e-01 | 3.7558e-01 | 7.5565e-01

news20 0.0000e+00 1.1102e-16 1.1102e-16 2.3546e-12 | 2.8089e-14

rcvl 9.9920e-16 3.3084e-12 0.0000e+00 | 8.7937e-12 | 6.9224e-12

a%a 7.5885e-01 1.0000e+00 1.6240e-03 | 8.8260e-02 | 9.8648e-01

bank 4.8739e-14 1.8479e-10 7.7538e-13 3.6276e-07 | 1.2411e-05

jjcnnl 3.9888e-07 6.4120e-04 5.8033e-07 | 5.9807e-04 | 8.8180e-02

shuttle 0.0000e+00 | 0.0000e+00 | 0.0000e+00 | 1.8632e-11 | 2.5577e-12

mnist 1.0000e+00 | 1.0000e+00 | 2.9349e-04 | 1.8367e-05 | 9.9977e-01

connect 4.9737e-01 9.9596e-01 8.3323e-10 | 1.7698e-02 | 5.3523e-01

acoustic 1.2879e-14 2.4347e-13 3.9567e-12 1.2940e-12 | 1.4740e-12

real-sim 2.6379e-03 1.1227e-01 1.0641e-01 1.1297e-01 | 1.8171e-01

covtype 1.8874e-15 8.2916e-07 1.0664e-10 | 8.3370e-04 | 2.3360e-03

url 8.6355e-04 2.8450e-03 9.4953e-05 | 1.5206e-06 | 4.1122e-04

[ Total (win/loss/tie) [ 9/2/3 | 8/4/2 [ 11/1/2 [ 10/0/4 | 7/2/5 |
TABLE 6
CPU Time Table under 8000 Pair Budget(Seconds)

Data Random | Soft-Close | Soft-Correct | Hard-Close | Hard-Correct | WSVM | ERankSVM | CRR
letter 0.808 1.53 19.602 192.671 42.553 0.29 0.72 0.15
protein 3.136 2.943 4.29 12.128 8.315 0.85 4.9 0.99
news20 58.594 56.506 66.394 184.233 128.056 20.1 10.64 4.55
rcvl 5.872 6.318 21.789 114.028 35.258 1.83 2.54 0.77
a% 0.374 0.504 1.065 30.384 19.537 0.28 4.25 0.31
bank 1.957 2.301 4.644 20.8064 13.8512 0.142 5.624 0.3
ijecnnl 0.957 1.508 4.031 107.002 79.32 0.69 2.75 0.28
shuttle 0.146 0.288 3.02 26.307 17.577 0.18 0.98 0.36
mnist 1.61 2.851 56.604 205.135 50.174 492 22.38 2.75
connect 2.734 3.229 5.493 117.047 121.359 2.5 15.42 0.78
acoustic 0.488 0.624 1.03 33.39 41.167 1.82 11.57 1.93
real-sim 4.025 4.35 11.648 318.702 139.042 3.15 7.58 1.78
covtype 1.47 1.801 2.739 800.539 5739.97 6.41 29.54 33
url 31.026 31.011 163.022 122045.33 285394.18 116.61 594.82 58.1
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TABLE 7
Optimal v on Different Datasets
Data Soft-Close Soft-Correct
letter uniform,uniform-thres 0.9,0.9-thres
protein 1 0.4-thres
news20 | uniform,1,uniform-thres uniform,1,uniform-thres
rcvl uniform,1,uniform-thres uniform,1,uniform-thres
a9%a uniform,uniform-thres 0.6-thres
bank 1 uniform,1,uniform-thres
ijjennl 1,uniform-thres 0.8,0.9,1,uniform-thres,0.9-thres
shuttle 0.1-thres,0.2-thres uniform-thres
mnist 0.1 0.6
connect uniform,1,uniform-thres uniform,1,uniform-thres
acoustic 1 uniform,1,uniform-thres
real-sim | uniform,1,uniform-thres uniform,uniform-thres
covtype uniform,1 uniform,0.9,1,uniform-thres,0.9-thres
url uniform,1,uniform-thres 0.8
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