
1

Active Learning Using Hint Information

Chun-Liang Li, Chun-Sung Ferng, and Hsuan-Tien Lin

{b97018, r99922054, htlin}@csie.ntu.edu.tw

Department of Computer Science, National Taiwan University

Keywords: Active Learning, Support Vector Machine

Abstract

The abundance of real-world data and limited labeling budget calls for active learning,

which is an important learning paradigm for reducing human labeling efforts. Many

recently developed active learning algorithms consider both uncertainty and represen-

tativeness when making querying decisions. However, exploiting representativeness

with uncertainty concurrently usually requires tackling sophisticated and challenging

learning tasks, such as clustering. In this paper, we propose a new active learning

framework, called hinted sampling, which takes both uncertainty and representative-

ness into account in a simpler way. We design a novel active learning algorithm within

the hinted sampling framework with an extended support vector machine. Experimental

results validate that the novel active learning algorithm can result in a better and more

stable performance than that achieved by state-of-the-art algorithms. We also show

that the hinted sampling framework allows improving another active learning algorithm

designed from the transductive support vector machine.

1 Introduction

Labeled data are the basic ingredients in training a good model in machine learning.

It is common in real-world applications when one needs to cope with a large amount

of data with costly labeling steps. For example, in the medical domain, a doctor may

be required to distinguish (label) cancer patients from non-cancer patients according to

their clinical records (data). In such applications, an important issue is to achieve high

accuracy within a limited labeling budget. This issue demands active learning (Settles,

2009), which is a machine learning setup that allows iteratively querying the labeling or-

acle (doctor) in a strategic manner to label some selected instances (clinic records). By

using a suitable query strategy, an active learning approach can achieve high accuracy

within a few querying iterations i.e., only a few calls to the costly labeling oracle (Set-

tles, 2009).

One intuitive approaches in active learning is called uncertainty sampling (Lewis

and Gale, 1994). This approach maintains a classifier on hand, and queries the most

uncertain instances, whose uncertainty is measured by the closeness to the decision

boundary of the classifier, to fine-tune the boundary. However, the performance of un-

2

certainty sampling becomes restricted owing to the limited view of the classifier. In

other words, uncertainty sampling can be hair-splitting on the local instances that con-

fuse the classifier, but not considering the global distribution of instances. Therefore,

queries may not represent the underlying data distribution well, leading to unsatisfac-

tory performance of uncertainty sampling (Nguyen and Smeulders, 2004; Settles and

Craven, 2008; Settles, 2009; Huang et al., 2010).

As suggested by Cohn et al. (1996) as well as Xu et al. (2003), active learning can

be improved by considering the unlabeled instances in order to query the instance that

is not only uncertain to the classifier on hand but also “representative” to the global

data distribution. There are many existing algorithms that use unlabeled information to

improve the performance of active learning, such as representative sampling (Xu et al.,

2003).

Representative sampling makes querying decisions by not only the uncertainty of

each instance, but also the representativeness, which is measured by determining whether

the instances reside in a dense area. Typical representative sampling algorithms (Xu

et al., 2003; Nguyen and Smeulders, 2004; Dasgupta and Hsu, 2008) estimate the un-

derlying data distribution via clustering methods. However, the performance of the al-

gorithms depends on the result of clustering, which is a sophisticated and non-trivial

task, especially when the instances are within a high dimensional space. Another

state-of-the-art algorithm (Huang et al., 2010) models the representativeness by esti-

mating the potential label assignment of the unlabeled instances on the basis of the

min-max view of active learning (Hoi et al., 2008). The performance of this algorithm

depends on the results of estimating the label assignments, which is also a complicated

3

task. Yet another representative sampling algorithm makes potential label assignment

of the unlabeled instances from the view of transductive learning, such as transductive

SVM (TSVM; Wang et al., 2011).

In this work, we propose a novel framework of active learning, hinted sampling,

which considers the unlabeled instances as hints (Abu-Mostafa, 1995) of the global

data distribution, instead of directly clustering them or estimating their label assign-

ments. This leads to a simpler active learning algorithm. Similar to representative sam-

pling, hinted sampling also considers both uncertainty and representativeness. Some-

how hinted sampling enjoys the advantage of simplicity by avoiding the clustering or

label-assignment estimation steps. We demonstrate the effectiveness of hinted sampling

by designing a novel algorithm with support vector machine (SVM; Vapnik, 1998). In

the algorithm, we extend the usual SVM to a novel formulation, HintSVM, which is

easier to solve than either clustering or label-assignment estimation. We then study a

simple hint selection strategy to improve the efficiency and effectiveness of the proposed

algorithm. Experimental results demonstrate that the simple HintSVM is comparable

to the best of both uncertainty sampling and representative sampling algorithms, and

results in better and more stable performance than other state-of-the-art active learning

algorithms.

To demonstrate the generality of hinted sampling, we further extend the TSVM

approach for active learning (Wang et al., 2011) to HintTSVM to show that the proposed

framework can benefit not only uncertainty sampling but also representative sampling.

Experimental results confirm the promising performance of HintTSVM as well as the

usefulness of the proposed hinted sampling framework.

4

The rest of the paper is organized as follows. Section 2 introduces the formal prob-

lem definition and reviews related works. Section 3 describes our proposed hinted sam-

pling framework as well as the HintSVM algorithms with the simple hint selection

strategy, and reports experiment results and comparisons. Section 4 discusses TSVM

and HintTSVM with experimental justifications. Section 5 compares hinted sampling

with selective sampling (Cohn et al., 1994), another strong family of active learning

algorithms. Finally, we conclude in Section 6.

A short version of the paper appeared in the 2012 Asian Conference on Machine

Learning (Li et al., 2012). The paper was then enriched by discussing more related

works in Section 2, refining the hint selection strategies along with broader experiments

in Section 3, the novel extension of TSVM (Wang et al., 2011) to hinted sampling for

active learning in Section 4, and the comparison to selective sampling in Section 5.

2 Problem Definition and Related Works

In this work, we focus on pool-based active learning for binary classification, which is

one of the most common setups in active learning (Lewis and Gale, 1994). At the initial

stage, the learning algorithm is presented with a labeled data pool and an unlabeled data

pool. We denote the labeled data pool byDl = {(x1, y1), (x2, y2), ..., (xN , yN)} and the

unlabeled data pool by Du = {x̃1, x̃2, ..., x̃M}, where the input vectors xi, x̃j ∈ Rd

and the labels yi ∈ {−1, 1}. Usually, the labeled data pool Dl is relatively small or

even empty, whereas the unlabeled data poolDu is assumed to be large. Active learning

is an iterative process that contains R iterations of querying and learning. That is, an

5

active learning algorithm can be split into two parts: the querying algorithm Q and the

learning algorithm L.

Using the initial Dl ∪ Du, the learning algorithm L is first called to learn a decision

function f (0) : Rd → R from some hypothesis set F , where the function sign(f (0)(x))

is taken for predicting the label of any input vector x. Then, in iteration r, where

r = 1, 2, ..., R, the querying algorithm Q is allowed to select an instance x̃s ∈ Du and

query its label ys from a labeling oracle. After querying, (x̃s, ys) is added to the labeled

pool Dl and x̃s is removed from the unlabeled pool Du. The learning algorithm L then

learns a decision function f (r) from the updated Dl ∪ Du. The goal of active learning

is to use the limited querying and learning opportunities properly to obtain a decent list

of decision functions [f (1), f (2), ..., f (R)] that can achieve low out-of-sample (test) error

rates.

As discussed in a detailed survey (Settles, 2009), there are many active learning

algorithms for binary classification. In this paper, we shall review some relevant ones.

One of the most intuitive families of algorithms is called uncertainty sampling (Lewis

and Gale, 1994). As the name suggests, the querying algorithm Q of uncertainty sam-

pling queries the most uncertain x̃s ∈ Du, where the uncertainty for each input vec-

tor x̃j ∈ Du is usually computed by re-using the decision function f (r−1) returned from

the learning algorithm L. For instance, Tong and Koller (2000) take the support vector

machine (SVM; Vapnik, 1998) as L and measure the uncertainty of x̃j by the distance

between x̃j and the boundary f (r−1) = 0. In other words, the algorithm in Tong and

Koller (2000) queries the x̃s that is closest to the boundary.

Uncertainty sampling can be viewed as a greedy approach that queries instances

6

from the viewpoint only of the decision function f (r−1). When the decision function

is not close enough to the ideal one, however, this limited viewpoint can hinder the

performance of the active learning algorithm. Thus, Cohn et al. (1996) suggest that the

viewpoint of the unlabeled poolDu should also be included. Their idea leads to another

family of active learning algorithms, called representative sampling (Xu et al., 2003),

or density-weighted sampling (Settles, 2009). Representative sampling takes both the

uncertainty and the representativeness of each x̃j ∈ Du into account concurrently in

the querying algorithm Q, where the representativeness of x̃j with respect to Du is

measured by the density of its neighborhood area. For instance, Xu et al. (2003) em-

ploy the SVM as the learning algorithm L as do Tong and Koller (2000). They use a

querying algorithm Q that first clusters the unlabeled instances near the boundary of

f (r−1) by a K-means algorithm, and then queries one of the centers of those clusters.

In other words, the queried instance is not only uncertain for f (r−1) but also repre-

sentative for Du. Some other works estimate the representativeness with a generative

model. For instance, Nguyen and Smeulders (2004) propose a querying algorithm Q

that uses multiple Gaussian distributions to cluster all input vectors xi ∈ Dl, x̃j ∈ Du

and estimate the prior probability p(x); Q then makes querying decisions based on

the product of the prior probability and some uncertainty measurement. The idea of

estimating the representativeness via clustering is a core element of many representa-

tive sampling algorithms (Xu et al., 2003; Nguyen and Smeulders, 2004; Dasgupta and

Hsu, 2008). Nevertheless, clustering is a challenging task and it is not always easy to

achieve satisfactory clustering performance. When the clustering performance is not

satisfactory, it has been observed (Donmez et al., 2007; Huang et al., 2010) that repre-

7

sentative sampling algorithms could fail to achieve decent performance. In other words,

the clustering step is usually the bottleneck of representative sampling.

Huang et al. (2010) propose an improved algorithm that models representativeness

without clustering. In the algorithm, the usefulness of each x̃j , which implicitly con-

tains both uncertainty and representativeness, is estimated by using a technique in semi-

supervised learning (Hoi et al., 2008) that checks approximately all possible label as-

signments for each unlabeled x̃j ∈ Du. The querying algorithm Q proposed (Huang

et al., 2010) is based on the usefulness of each x̃j; the learning algorithm L is sim-

ply a stand-alone SVM. While the active learning algorithm (Huang et al., 2010) often

achieves promising empirical results, its bottleneck is the label-estimation step, which

is rather sophisticated and thus not always leading to satisfactory performance.

Another improvement of representative sampling is presented by Donmez et al.

(2007), who report that representative sampling is less efficient than uncertainty sam-

pling for later iterations, in which the decision function is closer to the ideal one.

To combine the best properties of uncertainty sampling and representative sampling,

Donmez et al. (2007) propose a mixed algorithm by extending representative sam-

pling (Nguyen and Smeulders, 2004). The proposed query algorithmQ (Donmez et al.,

2007) is split into two stages. The first stage performs representative sampling (Nguyen

and Smeulders, 2004) while estimating the expected error reduction. When the ex-

pected reduction is smaller than a given threshold, the querying algorithm Q switches

to uncertainty sampling for fine-tuning the decision boundary. The bottleneck of the

algorithm (Donmez et al., 2007) is still the clustering step in the first stage.

One simple algorithm employs transductive SVM (TSVM; Joachims, 1999b) to re-

8

place SVM for uncertainty sampling (Wang et al., 2011). Note that TSVM aims to

estimate the labels of unlabeled data to maximize its margin, which is similar to the

algorithm proposed by Huang et al. (2010). Therefore, using TSVM to replace SVM in

uncertainty sampling for querying can also be viewed a concrete instance of represen-

tative sampling. We will have more detailed discussions of the difference between the

two algorithms in Section 4.

Finally, we connect our discussions to a strong family of active learning algorithms,

called selective sampling (Cohn et al., 1994; Settles, 2009). Instead of query the most

uncertain instance like uncertainty sampling, selective sampling defines a region of un-

certainty, and makes a query (samples) from the region only. The original work of Cohn

et al. (1994) maintains a hypothesis setFr of all the decision functions f that agree with

all the labelled instances in iteration r, and samples within the region that the committee

in Fr still disagree on. The sampling-within-region step filters the underlying distribu-

tion that generated the instances. In the common case when the underlying distribution

is unknown but a (large) pool from the distribution is available, as in the pool-based

setting, one simple way is to keep sampling an instance uniformly from Du until one

instance falls into the uncertainty region (Cohn et al., 1994).

The idea of selective sampling can also be easily extended to the stream-based

setup (Cohn et al., 1994). The setup assumes that instances x̃ arrive as a data stream and

the learner is allowed to decide whether to query the label of each instance on the fly.

The stream-based setup and the original selective sampling algorithm form the basis of

providing theoretical guarantees on the performance of many modern (stream-based)

active learning algorithms (Balcan et al., 2006; Dasgupta et al., 2007; Hanneke, 2007;

9

Dasgupta, 2011). Under the stream-based setup, different selective sampling algorithms

can then be viewed as different approaches for calculating the uncertainty of an in-

stance to guide the query decisions. For instance, Beygelzimer et al. (2010) propose

the importance-weighted active learning algorithm (IWAL) that considers a hypothesis

set F ′r that contains all the hypotheses that are close to the best hypothesis subject to

the labelled instances, and takes the largest disagreement of the hypotheses in F ′r for

calculating the uncertainty of an instance.

As suggested implicitly in the algorithm steps of Hanneke (2007), selective sam-

pling algorithms in the stream-based setup can be naturally applied to pool-based algo-

rithm by simulating a data stream fromDu. That is, in each iteration, we keep sampling

an instance uniformly from Du to be x̃ and feed x̃ to the underlying selective sampling

algorithm until the algorithm decides to query the label of the instance. The simulation

allows the resulting algorithm to be representative because of the uniform sampling.

That is, under the simulation, selective sampling can be viewed as yet another form of

representative sampling that queries the denser part of the uncertainty region with higher

probability. Later in Section 5, IWAL coupled with the simulation will be empirically

compared with other uncertainty and representative sampling approaches, including our

proposed one.

3 Hinted Sampling Framework

Instead of facing the challenges of either clustering or label-estimation, we propose

to view the information in Du differently. In particular, the unlabeled instances x̃j ∈

10

(a) the decision function (black) obtained from

two labeled (blue) instances

(b) when using the decision function in (a) for un-

certainty sampling, the top-left cluster keeps be-

ing ignored

Figure 1: illustration of uncertainty sampling

Du are taken as hints (Abu-Mostafa, 1995) that guide the querying algorithm Q. The

idea of using hints leads to a simpler active learning algorithm with better empirical

performance.

First, we illustrate the potential drawback of uncertainty sampling with a linear

SVM classifier (Vapnik, 1998), which is applied to a two-dimensional artificial dataset.

Figure 1 shows the artificial dataset, which consists of three clusters, each of which

contains instances of a particular class. We denote one class by a red cross and the

other by a filled green circle. The labeled instances in Dl are marked with a blue square

while other instances are in Du. In Figure 1(a), the initial two labeled instances reside

in two of the clusters with different labels. The initial decision function f (0) trained

on the labeled instances (from the two clusters) is not aware of the third cluster. The

decision function f (0) then mis-classifies the instances in the third cluster, and causes

the querying algorithmQ (which is based on f (0)) to query only from the instances near

11

(a) the hinted query boundary (dashed magenta)

that is aware of the top-left cluster

(b) when using the hinted query function in (a)

for uncertainty sampling, all three clusters are ex-

plored

Figure 2: illustration of hinted sampling

the “wrong” boundary rather than exploring the third cluster. After several iterations, as

shown in Figure 1(b), the uncertainty sampling algorithm still outputs an unsatisfactory

decision function that mis-classifies the entire unqueried (third) cluster.

The unsatisfactory performance of uncertainty sampling originates in its lack of

awareness of candidate unlabeled instances that should be queried. When trained on

only a few labeled instances, the resulting (linear) decision function is overly confident

about the unlabeled instances that are far from the boundary. Intuitively, uncertainty

sampling could be improved if the querying algorithm Q were aware of and less confi-

dent about the unqueried regions. Both clustering (Nguyen and Smeulders, 2004) and

label-estimation (Huang et al., 2010) are based on this intuition, but they explore the

unlabeled regions in a rather sophisticated way.

We propose a simpler alternative as follows. Note that the uncertainty sampling

12

algorithm measures the uncertainty by the distance between instances and the boundary.

In order to make Q less confident about the unlabeled instances, we seek a “query

boundary” that not only classifies the labeled instances correctly but also passes through

the unqueried regions, denoted by the dashed magenta line in Figure 2(a). Then, in

the later iterations, the query algorithm Q, using the query boundary, would be less

confident about the unqueried regions, and thus be able to explore them. The instances

in the unqueried regions give hints as to where the query boundary should pass. Using

these hints about the unqueried regions, the uncertainty sampling algorithm can take

both uncertainty and the underlying distribution into account concurrently, and achieve

better performance, as shown in Figure 2(b).

Based on this idea, we propose a novel active learning framework, hinted sampling.

The learning algorithm L in hinted sampling is similar to that in uncertainty sampling,

but the querying algorithm is different. In particular, the querying algorithm Q is pro-

vided with some unlabeled instances, called the hint pool Dh ⊆ Du. When properly

using the information in the hint pool Dh, both uncertainty and representativeness can

be considered concurrently to obtain a query boundary that assists Q in making query

decisions. We sketch the framework of Active Learning under Hinted Sampling (ALHS)

in Algorithm 1.

Next, we design a concrete active learning algorithm of hinted sampling based on

SVM, which is also used as the core of many state-of-the-art algorithms (Tong and

Koller, 2000; Xu et al., 2003; Huang et al., 2010), as both L and Q. Before illustrating

the complete algorithm, we show how SVM can be appropriately extended to use the

information in Dh for Q.

13

Algorithm 1 Active Learning under Hinted Sampling (ALHS) framework
Input: the number of rounds R; a labeled pool Dl; an unlabeled pool Dh; parameters
θQ for querying algorithm and θL for learning algorithm
Output: decision functions f (1), ..., f (R)

For r ← 1 to R do

Select Dh from Du

g ← Q(θQ,Dh ∪ Dl)

(x̃s, ys)← Query(g,Du)

Du ← Du \ x̃s; Dl ← Dl ∪ (x̃s, ys)

f (r) ← L(θL,Dl)

End

3.1 HintSVM

The extended SVM is called HintSVM, which takes hints into account. The goal of

HintSVM is to locate a query boundary which does well on two objectives: (1) clas-

sifying labeled instances in Dl, and (2) being close to the unlabeled instances in hint

pool Dh. Note that the two objectives are different from the usual semi-supervised

SVM (Bennett and Demiriz, 1998) such as transductive SVM (Joachims, 1999b), which

pushes the unlabeled instances away from the decision boundary.

The first objective matches an ordinary support vector classification (SVC) prob-

lem. To deal with the second objective, we consider ε-support vector regression (ε-

SVR) and set regression targets to 0 for all instances in Dh, which means that instances

in Dh should be close to the query boundary. By combining the objective functions of

SVC and ε-SVR together, HintSVM solves the following convex optimization problem,

14

which simultaneously achieves the two objectives.

min
w,b,ξ,ξ̃,ξ̃∗

1

2
wTw + Cl

|Dl|∑
i=1

ξi + Ch

|Dh|∑
j=1

(
ξ̃j + ξ̃∗j

)

subject to

yi(w
Txi + b) ≥ 1− ξi for (xi, yi) ∈ Dl,

wT x̃j + b ≤ ε+ ξ̃j for xj ∈ Dh,

−(wT x̃j + b) ≤ ε+ ξ̃∗j for xj ∈ Dh,

ξi ≥ 0 for (xi, yi) ∈ Dl,

ξ̃j, ξ̃
∗
j ≥ 0 for xj ∈ Dh.

(1)

Here ε is the margin of tolerance for being close to the boundary, and Cl, Ch are the

weights of the classification errors (onDl) and hint errors (onDh), respectively. Similar

to the usual SVC and ε-SVR, the convex optimization problem can be transformed to the

dual form to allow using the kernel trick. Define x̂i = xi, x̂|Dl|+j = x̂|Dl|+|Dh|+j = x̃j ,

ŷi = yi, ŷ|Dl|+j = 1, and ŷ|Dl|+|Dh|+j = −1 for 1 ≤ i ≤ |Dl| and 1 ≤ j ≤ |Dh|. The

dual problem of (1) can be written as follows:

min
α

1
2
αTQα + pTα

subject to ŷTα = 0,

0 ≤ αi ≤ Cl for i = 1, 2, · · · , |Dl|,

0 ≤ αj ≤ Ch for j = |Dl|+ 1, · · · , |Dl|+ 2|Dh|,

where pi = −1, pj = ε, and Qab = ŷaŷbx̂
T
a x̂b. The derived dual form can be easily

solved by any state-of-the-art quadratic programming solver, such as the one imple-

mented in LIBSVM (Chang and Lin, 2011).

15

3.2 Hint Selection Strategy

A naı̈ve strategy for selecting a proper hint pool Dh ⊆ Du is to directly let Dh = Du,

which retains all the information about the unlabeled data. However, given that the

size of Du is usually much larger than the size of Dl, this strategy may cause the hints

to overwhelm HintSVM, which leads to performance and computational concerns. In

our earlier version of this work (Li et al., 2012), a specifically designed selection strat-

egy that drops hints with radial functions have been studied. We have conducted some

broader studies that suggest the sufficiency of using a simpler uniform sampling strat-

egy. Next, we will use the strategy to demonstrate the essence, validity and usefulness

of hint information.

3.3 Hint Influence Control

Tong and Koller (2000) show that uncertainty sampling can outperform uniform sam-

pling when enough examples have been queried. Thus, after querying more examples,

there can be advantages by changing the focus of the active learning approach to “re-

fine” the boundary by uncertainty sampling. (Donmez et al., 2007) tries to dynamically

balance the representative sampling and uncertainty sampling. Our earlier work (Li

et al., 2012) exploits two strategies, hint dropping and hint termination, to achieve this

goal. Similar ideas have also been widely used in the bandit problem (Langford and

Zhang, 2007) to balance exploration and exploitation. Here we take a simple alterna-

tive by multiplying the parameter Ch by a ratio δ each iteration, where 0 < δ < 1,

to gradually change our focus to uncertainty sampling. That is, in iteration r, the cost

parameter C(r)
h of hint instances is C(1)

h × δr−1. After enough many iterations, C(r)
h

16

will be closed to 0, which essentially transforms hinted sampling to typical uncertainty

sampling.

3.4 Hinted Sampling with HintSVM

Next, we incorporate the proposed ALHS with the derived HintSVM formulation to

make a novel active learning algorithm, ALHS-SVM.

The querying algorithm Q of ALHS-SVM selects unlabeled instances from the un-

labeled pool Du as the hint pool Dh and trains HintSVM from Dl and Dh to obtain the

query boundary for uncertainty sampling. The use of both Dl and Dh combines uncer-

tainty and representativeness. The learning algorithm L of ALHS-SVM, on the other

hand, trains a stand-alone SVM from Dl to get a decision function f (r), just like L in

uncertainty sampling (Tong and Koller, 2000). The full ALHS-SVM algorithm is listed

in Algorithm 2.

Algorithm 2 The ALHS-SVM algorithm
Input: the number of rounds R; a labeled pool Dl; an unlabeled pool Du; parameters
for HintSVM and SVM; ratio δ
Output: decision functions f (1), ..., f (R)

For r ← 1 to R do

Uniformly select Dh from Du

g ← TrainHintSVM(Ch, Cl, ε,Dh,Dl)

(x̃s, ys)← Query(g,Du)

Du ← Du \ x̃s; Dl ← Dl ∪ (x̃s, ys)

f (r) ← Train SVM(C,Dl)

Ch ← Ch × δ

End

Uncertainty sampling with SVM is a special case of ALHS-SVM when always set-

17

ting Ch = 0. In other words, ALHS can be viewed as a generalization of uncertainty

sampling that considers representativeness through the hints. The simple use of hints

avoids the challenges in clustering or label-estimation steps.

3.5 Experimental Studies of ALHS-SVM

Next, we compared the proposed ALHS-SVM algorithm with the following active

learning algorithms: (1) UNCERTAIN (Tong and Koller, 2000): uncertainty sampling

with SVM, (2) REPRESENT (Xu et al., 2003): representative sampling with SVM and

clustering, (3) DUAL (Donmez et al., 2007): mixture of uncertainty and representative

sampling, (4) QUIRE (Huang et al., 2010): representative sampling with label esti-

mation based on the min-max view. We also list the results of another related active

learning algorithm, TSVM-SVM (Wang et al., 2011), which conducts representative

sampling with transductive SVM, and will compare it with ALHS-SVM in detail in

Section 4.

We conducted experiments on eight UCI benchmarks (Frank and Asuncion, 2010),

which are australian, diabetes, german, splice, wdbc, letetrMvsN , letterV vsY

(Donmez et al., 2007; Huang et al., 2010) and segment-binary (Ratsch et al., 2001;

Donmez et al., 2007) as taken by other related works. For each dataset, we randomly

divided it into two parts with equal size. One part was treated as the unlabeled pool Du

for active learning algorithms. The other part was reserved as the test set. Before

querying, we randomly select one positive instance and one negative instance to form

the labeled pool Dl. For each dataset, we ran the algorithms 20 times with different

random splits.

There are two usage scenarios of active learning algorithms. For one, there are

18

some (related) labelled data on hand for tuning reasonable parameters, and some works

like (Zha et al., 2012; Wang and Ye, 2013; Quanquan Gu, 2014) are based on this

setting. For the other, active learning is conducted from scratch and there is little infor-

mation about reasonable parameters. In that case, the algorithms can only rely on fixed,

pre-defined parameters, and some other works (Donmez et al., 2007; Huang et al., 2010;

Cao et al., 2014; Chen et al., 2014) are based on this setting. For instance, in the micro-

processor design space exploration, the simulation will take hundreds of hours, which

makes tuning parameters expensive and infeasible (Chen et al., 2014). In this paper, we

provide results for both settings for completeness. We will first show the results on the

fixed setting and then the tuned setting.

Comparison under Fixed Parameters. In the experiments, We adapt SVM-light (Joachims,

1999a) for TSVM and LIBSVM (Chang and Lin, 2011) for other SVM-based algo-

rithms with the RBF kernel and the default parameters, except for C = 5. Correspond-

ingly, the parameter λ in the works of Donmez et al. (2007) and Huang et al. (2010)

was set to λ = 1
C

. These parameters ensure that all four algorithms behave in a stable

manner. For ALHS-SVM, we fixed δ = 0.5 and uniformly sample 10% data from Du

as Dh without any further tuning for each dataset. For other algorithms, we take the

parameters in the original papers.

Figure 3 presents the accuracy of different active learning algorithms along with the

number of rounds R, which equals the number of queried instances. Tables 1 and 2 list

the mean and standard error of accuracy when R = |Du| × 5% and R = |Du| × 10%,

respectively. The highest mean accuracy is shown in boldface for each dataset. We

19

0 5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Queried Instances

A
cc

ur
ac

y

UNCERTAIN
REPRESENT
QUIRE
DUAL
TSVM−SVM
ALHS−SVM

(a) australian

0 10 20 30
0.5

0.55

0.6

0.65

0.7

0.75

Number of Queried Instances

A
cc

ur
ac

y

UNCERTAIN
REPRESENT
QUIRE
DUAL
TSVM−SVM
ALHS−SVM

(b) diabetes

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

Number of Queried Instances

A
cc

ur
ac

y

UNCERTAIN
REPRESENT
QUIRE
DUAL
TSVM−SVM
ALHS−SVM

(c) german

0 20 40 60
0.5

0.6

0.7

0.8

0.9

1

Number of Queried Instances

A
cc

ur
ac

y

UNCERTAIN
REPRESENT
QUIRE
DUAL
TSVM−SVM
ALHS−SVM

(d) leterMvsN

0 20 40 60
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Queried Instances

A
cc

ur
ac

y

UNCERTAIN
REPRESENT
QUIRE
DUAL
TSVM−SVM
ALHS−SVM

(e) letterV vsY

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

Number of Queried Instances

A
cc

ur
ac

y

UNCERTAIN
REPRESENT
QUIRE
DUAL
TSVM−SVM
ALHS−SVM

(f) segment

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of Queried Instances

A
cc

ur
ac

y

UNCERTAIN
REPRESENT
QUIRE
DUAL
TSVM−SVM
ALHS−SVM

(g) splice

0 5 10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

1

Number of Queried Instances

A
cc

ur
ac

y

UNCERTAIN
REPRESENT
QUIRE
DUAL
TSVM−SVM
ALHS−SVM

(h) wdbc

Figure 3: Comparison on different datasets

20

Table 1: Comparison on accuracy (mean ± se) after querying 5% of unlabeled pool
Algorithms (%), the highest accuracy for each dataset is in boldface

data UNCERTAIN REPRESENT QUIRE DUAL TSVM-SVM ALHS-SVM
australian 82.188± 1.571 83.739± 0.548 82.319± 1.126 81.304± 0.647 78.116± 1.490 83.362± 0.439
diabetes 63.229± 2.767 66.758± 0.505 66.771± 0.960 65.143± 0.381 67.148± 0.570 68.438± 0.709
german 69.060± 0.497 67.240± 1.099 68.750± 0.605 69.620± 1.323 68.160± 0.382 69.330± 0.373
letterMvsN 89.632± 1.103 83.463± 1.348 81.372± 1.693 83.437± 1.211 80.051± 1.165 91.112± 0.444
letterV vsY 79.245± 1.176 63.523± 2.335 68.516± 2.132 76.213± 1.549 71.258± 0.973 79.300± 0.695
segment 95.437± 0.367 94.390± 0.482 96.074± 0.224 86.078± 2.834 79.160± 0.716 96.095± 0.204
splice 74.430± 0.606 69.117± 1.452 70.340± 0.942 56.969± 0.576 72.847± 0.332 76.334± 0.315
wdbc 93.842± 3.137 95.616± 0.711 96.613± 0.230 96.056± 0.250 95.777± 0.264 97.020± 0.123

Table 2: Comparison on accuracy (mean ± se) after querying 10% of unlabeled pool
Algorithms (%), the highest accuracy for each dataset is in boldface

data UNCERTAIN REPRESENT QUIRE DUAL TSVM-SVM ALHS
australian 83.884± 0.460 84.884± 0.367 84.870± 0.455 81.174± 0.798 82.725± 0.628 84.4391± 0.259
diabetes 66.706± 2.632 66.484± 1.223 67.500± 1.337 65.143± 0.381 67.878± 0.609 71.758± 0.618
german 71.410± 0.488 67.150± 0.773 70.250± 0.560 69.760± 0.299 70.110± 0.342 71.030± 0.257
letterMvsN 95.369± 0.315 92.433± 0.777 95.114± 0.486 86.893± 0.870 84.625± 0.879 95.578± 0.214
letterV vsY 88.213± 0.635 73.806± 1.551 84.723± 0.891 80.123± 1.359 76.645± 0.677 88.561± 0.431
segment 96.528± 0.143 95.684± 0.155 96.658± 0.110 89.519± 1.760 92.420± 0.217 96.445± 0.100
splice 79.931± 0.274 76.274± 0.895 78.560± 0.648 58.947± 0.853 79.503± 0.197 80.750± 0.143
wdbc 97.155± 0.141 96.818± 0.191 96.862± 0.206 95.748± 0.247 96.554± 0.219 97.170± 0.127

also conducted the t-test at 95% significance level (Melville and Mooney, 2004; Guo

and Greiner, 2007; Donmez et al., 2007). The t-test results are given in Table 3, which

summarizes the number of datasets in which ALHS-SVM performs significantly better

(or worse) than the other algorithms.

Comparison between ALHS-SVM and Uncertainty Sampling For some datasets,

such as wdbc and diabetes in Figure 3(h) and 3(b), the result for UNCERTAIN is un-

satisfactory. This unsatisfactory performance is possibly caused by the lack of aware-

ness of unlabeled instances, which echoes our illustration in Figure 1. Note that we

have considered some more aggressive querying criteria (Tong and Koller, 2000) than

UNCERTAIN on the side, and have observed that those criteria are designed for hard-

margin SVM and hence can be worse than UNCERTAIN with soft-margin SVM in our

21

Table 3: ALHS-SVM versus the other algorithm based on t-test at 95% significance
level

Algorithms (win/tie/loss)

Percentage of queries UNCERTAIN REPRESENT QUIRE DUAL TSVM-SVM
5% 1/7/0 6/2/0 5/3/0 4/4/0 6/2/0
10% 3/5/0 7/1/0 6/2/0 5/3/0 8/0/0

experiments. Thus, we excluded them from the tables. In these two cases, ALHS-

SVM improves on UNCERTAIN with much lower standard error by using the hint

information to avoid the worse local optimal. The results demonstrate the validity of

the proposed ALHS framework. For other datasets which UNCERTAIN performs well

on them, ALHS-SVM is still competitive and can sometimes reach even better perfor-

mance. For instance, in splice, ALHS-SVM results in significantly higher accuracy

after 30 queries. The observation further justifies that the hint information can be useful

in boosting the performance of UNCERTAIN.

Comparison between ALHS-SVM and Representative Sampling We will leave

the detailed comparison to TSVM-SVM in the next section. For DUAL, CLUSTER

and QUIRE, we see that ALHS-SVM is only worse than DUAL on german and let-

ter M vs N when ALHS-SVM has not queried enough many instances. For all other

datasets and situations, ALHS-SVM generally results in better performance than all the

other three algorithms. For instance, in Figure 3(g), since splice is a larger and higher

dimensional dataset, representative sampling algorithms that perform clustering (REP-

RESENT, DUAL) or label estimation (QUIRE) fail to reach a decent performance. We

attribute the results to the fact that it is usually non-trivial to perform distribution esti-

22

mation, clustering or label estimations in a high dimensional space. On the other hand,

ALHS uses the hint information without aggressive assumptions, and can thus result in

better and stabler performance.

In summary, Figure 3 shows that ALHS-SVM can achieve comparable results to

those of the best representative sampling and uncertainty sampling algorithms. As

shown in Tables 1 and 2, after querying 5% of the unlabeled instances (Table 1), ALHS-

SVM achieves the highest mean accuracy in 6 out of 8 datasets; after querying 10% of

unlabeled instances (Table 2), ALHS-SVM achieves the highest mean accuracy in 5 out

of 8 datasets. Table 3 further confirms that ALHS-SVM usually outperforms each of

the other algorithms at the 95% significance level.

Comparison under Tuned Parameters. Besides using fixed parameters with default

values for the learning algorithm, we also study the performance of different active

learning approaches with tuned parameters. Next, we compare ALHS-SVM with UN-

CERTAIN, REPRESENT and QUIRE. We leave out DUAL because the learning algo-

rithm of DUAL is tightly coupled with its query algorithm, and it is difficult to tune the

parameters of the learning algorithm fairly in advance.

For each dataset, we randomly divide it into three parts. The first part (fully labelled)

is used for choosing parameters (C, γ) of SVM by cross-validation from {5×10−2, 5×

10−1, · · · , 5 × 102} × {5 × 10−2, 5 × 10−1, · · · , 5 × 102}. The second part is treated

as the unlabeled pool for active learning, and the third part was reserved as the test set.

The ratio of three parts is 1 : 2 : 2. The other settings are the same as the descriptions

in Section 3.5.

23

Table 4: Comparison on accuracy (mean ± se) after querying 5% of unlabeled pool
with tuned parameters

Algorithms (%), the highest accuracy for each dataset is in boldface

data UNCERTAIN REPRESENT QUIRE ALHS
australian 81.123± 1.708 76.866± 2.411 79.656± 1.860 83.533± 0.586
diabetes 65.649± 2.040 67.597± 1.476 64.659± 2.000 70.308± 0.924
german 69.050± 0.885 66.112± 1.074 69.300± 0.613 68.112± 1.007
letterMvsN 91.198± 1.005 91.175± 0.921 90.214± 1.053 92.532± 0.755
letterV vsY 87.871± 0.649 82.774± 0.812 87.347± 0.533 89.831± 0.569
segment 96.645± 0.137 94.167± 0.374 92.267± 1.568 96.672± 0.149
splice 72.195± 0.394 75.011± 0.429 71.891± 0.619 74.379± 0.414
wdbc 94.927± 1.206 95.604± 0.424 82.930± 6.492 92.985± 2.192

Table 5: Comparison on accuracy (mean ± se) after querying 10% of unlabeled pool
with tuned parameters

Algorithms (%), the highest accuracy for each dataset is in boldface

data UNCERTAIN REPRESENT QUIRE ALHS
australian 83.478± 0.609 80.127± 1.332 83.351± 0.441 84.457± 0.359
diabetes 70.097± 0.845 71.981± 0.465 66.769± 1.619 72.468± 0.572
german 69.950± 0.475 68.237± 0.417 69.963± 0.613 69.250± 0.409
letterMvsN 97.246± 0.271 94.230± 0.272 96.897± 0.396 97.635± 0.430
letterV vsY 96.734± 0.215 92.121± 0.298 95.815± 0.231 96.863± 0.168
segment 97.543± 0.070 95.952± 0.130 96.326± 0.343 97.657± 0.069
splice 79.207± 0.195 78.374± 0.285 79.017± 0.258 79.672± 0.277
wdbc 96.502± 0.146 95.714± 0.322 92.454± 1.460 96.593± 0.139

The results of R = |Du| × 5% and R = |Du| × 10% are listed in Table 4 and 5,

respectively. The highest mean accuracy is shown in boldface for each dataset. The

t-test results are given in Table 6.

The results of tuned-parameters settings are similar to the results of the above fixed-

parameter settings. Compared with UNCERTAIN, ALHS-SVM outperforms UNCER-

TAIN in 6 out of 8 datasets with regards to the mean accuracy. Moreover, in Table 6,

ALHS-SVM reaches significantly better performance than UNCERTAIN in 3 out of 8

datasets when we only query 5% of Du and ties with UNCERTAIN in the remaining

cases. Compared with representative sampling algorithms, ALHS-SVM also has better

performance than REPRESENT and QUIRE with regards to both mean accuracy and

results of t-test. The results demonstrate that ALHS-SVM is also effective under the

24

Table 6: ALHS-SVM versus the other algorithm with tuned parameters based on t-test
at 95% significance level

Algorithms (win/tie/loss)

Percentage of queries UNCERTAIN REPRESENT QUIRE
5% 3/5/0 3/5/0 6/2/0
10% 1/7/0 7/1/0 6/2/0

tuned parameters in the early stage of active learning. Furthermore, after querying more

instances, ALHS-SVM keeps having competitive or better performance than existing

uncertainty sampling and representative sampling algorithms when R = |Du| × 10%.

From the study of both fixed and tuned-parameter settings, ALHS-SVM yield bet-

ter and more stable than other algorithms. The results demonstrate the validity and

generality of the proposed ALHS-SVM.

4 Transductive SVM versus HintSVM

As discussed, transductive SVM (TSVM; Joachims, 1999b) has been considered for

active learning (Wang et al., 2011) as a representative sampling approach. TSVM arises

from semi-supervised learning and has been demonstrated useful for many applications,

such text mining (Joachims, 1999b). TSVM aims to maximize its margin between the

labeled data and the unlabeled data by assigning suitable labels to the unlabeled data.

25

The formulation is as follows.

min
w,b,ξ,ξ̄,ȳ

1

2
wTw + Cl

|Dl|∑
i=1

ξi + Cu

|Du|∑
j=1

ξj

subject to

yi(w
Txi + b) ≥ 1− ξi for (xi, yi) ∈ Dl,

ȳj(w
Txj + b) ≥ 1− ξj for xi ∈ Du,

ξi ≥ 0 for (xi, yi) ∈ Dl,

ξj ≥ 0 for xj ∈ Du,

ȳj ∈ {+1,−1} for xj ∈ Du.

(2)

Existing approach (Wang et al., 2011) uses TSVM for querying, which can be viewed

as a form of representative sampling that locates the querying boundary by estimating

the labels of unlabeled instances.

Comparing formulation (2) of TSVM and formulation (1) of HintSVM as described

in Section 3.1, we see that the formulations share some similarities, but focus on very

different objective functions. In this section, we study the validity and effectiveness of

these two formulations for active learning as querying and/or learning algorithms.

4.1 Comparison between HintSVM and TSVM

We study the case when using HintSVM and TSVM as the querying algorithm while

taking the stand-alone SVM as the learning algorithm. The two algorithms are denoted

as ALHS-SVM and TSVM-SVM, respectively. For other experimental settings, we

follow the same setup as described in Section 3.5.

Figure 3 has presented the accuracy of TSVM-SVM and ALHS-SVM as well as the

baseline UNCERTAIN algorithm with SVM. The mean and standard error of accuracy

at different rounds of querying are also readily listed in Tables 1 and 2. Clearly, ALHS-

26

SVM performs generally better than TSVM-SVM across datasets. The results again

justify the usefulness of the proposed ALHS framework. We discuss the performance

difference as follows.

In formulation (2), TSVM-SVM aims to estimate the possible labels on the unla-

beled data, which is similar to QUIRE (Huang et al., 2010). Nevertheless, in QUIRE,

the estimation is used for exploring a better query, but TSVM-SVM takes the estimation

with a goal of a better classifier. Thus, TSVM-SVM pushes the unlabeled data away

from the boundary for better classification ability. Note that ALHS-SVM, on the other

hand, aims at a boundary close to parts of unlabeled data (hints) to explore like QUIRE.

In the earlier iterations of active learning, exploration rather than pushing the unlabeled

data away (as if they are certain) can be important. Thus, TSVM-SVM can be inferior

to ALHS-SVM.

On the other hand, in the latter iterations of active learning, ALHS-SVM is similar

to the baseline UNCERTAIN approach, which is known to perform decently when the

learning algorithm is SVM. Nevertheless, because the boundaries obtained from TSVM

and SVM can be quite different, the instances queried by TSVM may not be “uncer-

tain” for learning with SVM. This explanation matches one interesting observation that

TSVM-SVM is also worse than the baseline UNCERTAIN algorithm in many datasets

such as australian and letter I vs J. Thus, ALHS-SVM also holds an advantage over

TSVM-SVM in the latter iterations.

4.2 Hint Transductive SVM

The discussion in Section 4.1 shows that the discrepancy between TSVM and SVM may

be part of the reason that TSVM-SVM is inferior for active learning. What if we take

27

TSVM for learning instead? Next, we couple TSVM for learning with two querying

approaches: HintSVM or TSVM. The two algorithms are named HintSVM-TSVM and

TSVM-TSVM, and the results will be shown in Figure 4.

In our study, we observe that HintSVM-TSVM may not result in satisfactory perfor-

mance in some datasets. We address this problem to the same reason that TSVM-SVM

is inferior: HintSVM, which is based on a stand-along SVM, is very different from

TSVM. Thus, uncertain instances queried by HintSVM may not be uncertain to the

learning TSVM. Thus, HintSVM-TSVM is yet another combination where the discrep-

ancy between the querying and the learning parts results in unsatisfactory performance.

Thus, HintSVM-TSVM results in inferior performance.

The results in Section 4.1 show that considering the learning algorithm is an impor-

tant issue when designing the querying algorithm to avoid discrepancy. Similar idea has

also been studied in other active learning works (Donmez et al., 2007). One interesting

question is then whether ALHS can be used when employing TSVM as the learning

algorithm. Next, we demonstrate one such possibility. We combine formulation (2) of

TSVM and formulation (1) to an extension of TSVM with hint information, which is

called Hint Transductive SVM (HintTSVM). HintTSVM can then be used for hinted

sampling with TSVM, and expected to be a better match of ALHS when employing

28

TSVM as the learning algorithm. The formulation of HintTSVM is as follows:

min
w,b,ξ,ξ̄,ȳ

1

2
wTw + Cl

|Dl|∑
i=1

ξi + Cu

|D′u|∑
j=1

ξj + Ch

|Dh|∑
j=1

(
ξ̃j + ξ̃∗j

)

subject to

yi(w
Txi + b) ≥ 1− ξi for (xi, yi) ∈ Dl,

ȳj(w
Txj + b) ≥ 1− ξj for xi ∈ D′u,

wT x̃j + b ≤ ε+ ξ̃j for xj ∈ Dh,

−(wT x̃j + b) ≤ ε+ ξ̃∗j for xj ∈ Dh,

ξi ≥ 0 for (xi, yi) ∈ Dl,

ξj ≥ 0 for xj ∈ D′u,

ξ̃j, ξ̃
∗
j ≥ 0 for xj ∈ Dh,

ȳj ∈ {+1,−1} for xj ∈ D′u.

(3)

where Du = D′u ∪ Dh.

Different from HintSVM, it is difficult to solve HintTSVM efficiently since the

TSVM part of the formulation is NP-hard to solve. Therefore, we consider a sim-

ple approximation by splitting the training of HintTSVM into two stages. In the first

stage, we only consider training the TSVM part on Dl and D′u by any existing algo-

rithm (Joachims, 1999b). In the second stage, we use the inferred labels and cost pa-

rameters Ch from the first stage to train a HintSVM as described in Section 3.1. We

call the variant of ALHS with HintTSVM as ALHS-TSVM, and list the details in Al-

gorithm 3.

4.3 Experimental Studies of ALHS-TSVM

We follow the same experiment setup as previous experiments (fixed parameter setting)

and report the results in Figure 4 and Table 7. According to Figure 4, When using

29

0 5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of Queried Instances

A
cc

ur
ac

y

TSVM−TSVM
HintSVM−TSVM
ALHS−TSVM

(a) australian

0 5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of Queried Instances

A
cc

ur
ac

y

TSVM−TSVM
HintSVM−TSVM
ALHS−TSVM

(b) diabetes

0 10 20 30
0.5

0.55

0.6

0.65

0.7

0.75

Number of Queried Instances

A
cc

ur
ac

y

TSVM−TSVM
HintSVM−TSVM
ALHS−TSVM

(c) german

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

Number of Queried Instances

A
cc

ur
ac

y

TSVM−TSVM
HintSVM−TSVM
ALHS−TSVM

(d) leterIvsJ

0 20 40 60
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Queried Instances

A
cc

ur
ac

y

TSVM−TSVM
HintSVM−TSVM
ALHS−TSVM

(e) leterMvsN

0 20 40 60
0.5

0.6

0.7

0.8

0.9

1

Number of Queried Instances

A
cc

ur
ac

y

TSVM−TSVM
HintSVM−TSVM
ALHS−TSVM

(f) letterV vsY

0 20 40 60
0.5

0.6

0.7

0.8

0.9

1

Number of Queried Instances

A
cc

ur
ac

y

TSVM−TSVM
HintSVM−TSVM
ALHS−TSVM

(g) splice

0 20 40 60
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of Queried Instances

A
cc

ur
ac

y

TSVM−TSVM
HintSVM−TSVM
ALHS−TSVM

(h) wdbc

Figure 4: Comparison between TSVM and HintSVM for querying by using TSVM for
learning on different datasets

30

Algorithm 3 The ALHS-TSVM algorithm
Input: the number of rounds R; a labeled pool Dl; an unlabeled pool Dh; parameters
for HintTSVM and TSVM; ratio δ
Output: decision functions f (1), ..., f (R)

For r ← 1 to R do

Uniformly select Dh from Du

D′u ← Du\Dh

g ← TrainHintTSVM(Ch, Cu, Cl, ε,Dh,D′u,Dl)

(x̃s, ys)← Query(g,Du)

Du ← Du \ x̃s; Dl ← Dl ∪ (x̃s, ys)

f (r) ← TrainTSVM(Cl, Cu,Dl,Du)

Ch ← Ch × δ

End

Table 7: ALHS-TSVM versus the other algorithm based on t-test at 95% significance
level

Algorithms (win/tie/loss)

Percentage of queries TSVM-TSVM HintSVM-TSVM
5% 2/6/0 4/1/3
10% 3/5/0 5/1/3

TSVM (TSVM-TSVM) as the learning algorithm, HintSVM still benefits the querying

stage for exploration and results in significantly better performance than TSVM-TSVM

in some datasets, such as letter M vs N and splice. The exploration makes the learn-

ing boundary converge to better local optimal one within a few queries. Nevertheless,

we observe that HintSVM-TSVM may not result in satisfactory performance in other

datasets, such as diabete, german and wdbc. In such cases, ALHS-TSVM results in bet-

ter or competitive performance than both of them. The results demonstrate the validity

31

of employing HintTSVM in ALHS-TSVM to explore unknown region of the data to

TSVM and resolve the potential drawback of HintSVM-SVM as our previous discus-

sion. It also justifies the advantage of using hint for different learning algorithms.

From the results, we see that the only two datasets that ALHS-TSVM do not perform

the strongest are letter I vs J and letter M vs N. On those datasets, HintSVM-TSVM

reaches the best performance. We address this to the difficulty of properly training

HintTSVM in ALHS-TSVM, and the simple HintSVM results in more stable perfor-

mance.

5 Selective Sampling versus Hinted Sampling

As introduced in Section 2, selective sampling (Balcan et al., 2006; Dasgupta et al.,

2007; Beygelzimer et al., 2010) along with the pool-to-stream simulation also allows

taking both uncertainty and representativeness into account. Next, we compare ALHS-

SVM with a state-of-the-art selective sampling algorithm, importance-weighted active

learning (IWAL; Beygelzimer et al., 2010) to evaluate the effectiveness of hinted sam-

pling. Upon receiving x̃ in a simulated data stream in iteration r, IWAL calculates

pr(x̃) = min{1, s(f (r), x̃)× log r

r
},

where s is a scoring function that depends on the goodness of the current hypothesis

f (r) and the instance x̃ in the simulated data stream. In the early iterations, pr(x̃) is

generally close to 1, and IWAL acts more like representative sampling based on the

data distribution in the pool. After several iterations, pr(x̃) will be reduced from 1 and

IWAL acts more like uncertainty sampling with uncertainty calculated from s. From

this perspective, IWAL shares one similarity to ALHS. They both gradually change the

32

focus from representative sampling to uncertainty sampling.

5.1 Experimental Studies of Selective Sampling

We follow the same setup in Section 3.5. For IWAL, we also use SVM as the learning

algorithm and tune the parameter C0 to be 2 to make IWAL perform better than the

original setting with C0 = 8 used by Beygelzimer et al. (2010).

The results are shown in Figure 5. Clearly, IWAL generally performs worse than

ALHS-SVM under the pool-based setup. One possible reason for the big difference

is that IWAL can only get the information of one instance in each iteration through the

pool-to-stream simulation rather than the whole unlabeled pool. The partial information

makes it difficult to query useful instances.

To make a fair comparison to IWAL, we further design another learning algorithm

IWAL-Pool. The algorithm estimates pr(x̃) of all instances in the unlabeled pool and

query the one with the highest probability. The results are also presented in Figure 5.

We see that IWAL-Pool is competitive to IWAL and can significantly outperform IWAL

in diabetes and letter V vs Y. Nevertheless, ALHS-SVM, with its simple yet direct use

of the unlabelled pool, is generally still better than IWAL-Pool. The results demon-

strate the importance of acquiring direct information of unlabeled pool in the pool-based

setup. They also highlight the difference of pool-based setup and stream-based setup in

active learning.

6 Conclusion

We propose a new framework of active learning, hinted sampling, which exploits the

unlabeled instances as hints. Hinted sampling can take both uncertainty and represen-

33

0 5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Queried Instances

A
cc

ur
ac

y

ALHS−SVM
IWAL
IWAL−Pool

(a) australian

0 10 20 30
0.5

0.55

0.6

0.65

0.7

0.75

Number of Queried Instances

A
cc

ur
ac

y

ALHS−SVM
IWAL
IWAL−Pool

(b) diabetes

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

Number of Queried Instances

A
cc

ur
ac

y

ALHS−SVM
IWAL
IWAL−Pool

(c) german

0 20 40 60
0.5

0.6

0.7

0.8

0.9

1

Number of Queried Instances

A
cc

ur
ac

y

ALHS−SVM
IWAL
IWAL−Pool

(d) leterMvsN

0 20 40 60
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Queried Instances

A
cc

ur
ac

y

ALHS−SVM
IWAL
IWAL−Pool

(e) letterV vsY

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

Number of Queried Instances

A
cc

ur
ac

y

ALHS−SVM
IWAL
IWAL−Pool

(f) segment

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of Queried Instances

A
cc

ur
ac

y

ALHS−SVM
IWAL
IWAL−Pool

(g) splice

0 5 10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

1

Number of Queried Instances

A
cc

ur
ac

y

ALHS−SVM
IWAL
IWAL−Pool

(h) wdbc

Figure 5: Comparison between IWAL and ALHS-SVM on different datasets

34

tativeness into account concurrently in a more natural and simpler way. We design a

novel active learning algorithm ALHS within the framework, and couple the algorithm

with a promising hint selection strategy. Because ALHS models the representativeness

by hints, it avoids the potential problems of other more sophisticated approaches that

are employed by other representative sampling algorithms. Hence, ALHS results in a

significantly better and more stable performance than other state-of-the-art algorithms,

and can be used to immediately improve SVM-based uncertainty sampling and TSVM-

based representative sampling. On the other hand, compared with selective sampling

algorithms taking both uncertainty and representativeness into account, the proposed

ALHS also has better performance. It not only justifies the effectiveness of ALHS

again but also demonstrates the importance of considering the whole unlabeled pool in

the querying stage for pool-based active learning problems.

Because of the simplicity and effectiveness of hinted sampling, it is worth study-

ing more about this framework. An intensive research direction is to couple hinted

sampling with other classification algorithms, and investigate deeper on the hint se-

lection strategies. While we use SVM in ALHS, this framework could be generalized

to other classification algorithms. In the future, we plan to investigate more general

hint selection strategies and extend hinted sampling from binary classification to other

classification problem.

Acknowledgments

A preliminary version of this paper appeared in the Asian Conference on Machine

Learning 2012. We thank the reviewers of the conference as well as reviewers for

35

all versions of this paper for their many useful suggestions. This research has been

supported by the National Science Council of Taiwan via NSC 101-2628-E-002-029-

MY2..

References

Abu-Mostafa, Y. S. (1995). Hints. Neural Computation, 4:639–671.

Balcan, M.-F., Beygelzimer, A., and Langford, J. (2006). Agnostic active learning. In

Proceedings of the 23rd International Conference on Machine Learning.

Bennett, K. P. and Demiriz, A. (1998). Semi-supervised support vector machines. In

Advances in Neural Information Processing Systems 11, pages 368–374.

Beygelzimer, A., Hsu, D., Langford, J., and Zhang, T. (2010). Agnostic active learning

without constraints. In Advances in Neural Information Processing Systems 23.

Cao, H., Bao, C., Li, X., and Woon, D. Y.-K. (2014). Class augmented active learning.

In Proceedings of the SIAM International Conference on Data Mining.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, pages 27:1–27:27.

Chen, T., Chen, Y., Guo, Q., Zhou, Z.-H., Li, L., and Xu, Z. (2014). Effective and effi-

cient microprocessor design space exploration using unlabeled design configurations.

ACM Transactions on Intelligent Systems and Technology.

Cohn, D., Atlas, L., and Ladner, R. (1994). Improving generalization with active learn-

ing. Machine Learning.

36

Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1996). Active learning with statistical

models. Journal of Artificial Intelligence Research, 4:129–145.

Dasgupta, S. (2011). Two faces of active learning. Theoretical Computer Science.

Dasgupta, S. and Hsu, D. (2008). Hierarchical sampling for active learning. In Pro-

ceedings of the 25th International Conference on Machine learning, pages 208–215.

Dasgupta, S., Hsu, D., and Monteleoni, C. (2007). A general agnostic active learning

algorithm. In Advances in Neural Information Processing Systems 20.

Donmez, P., Carbonell, J. G., and Bennett, P. N. (2007). Dual strategy active learning. In

Proceedings of the 18th European Conference on Machine Learning, pages 116–127.

Frank, A. and Asuncion, A. (2010). UCI machine learning repository.

Guo, Y. and Greiner, R. (2007). Optimistic active learning using mutual information.

In Proceedings of the 20th International Joint Conference on Artificial Intelligence,

pages 823–829.

Hanneke, S. (2007). Teaching dimension and the complexity of active learning. In

Proceedings of the Annual Conference on Learning Theory.

Hoi, S. C. H., Jin, R., Zhu, J., and Lyu, M. R. (2008). Semi-supervised SVM batch

mode active learning for image retrieval. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, pages 1–7.

Huang, S.-J., Jin, R., and Zhou, Z.-H. (2010). Active learning by querying informative

and representative examples. In Advances in Neural Information Processing Systems

23, pages 892–900.

37

Joachims, T. (1999a). Advances in kernel methods. chapter Making large-scale support

vector machine learning practical.

Joachims, T. (1999b). Transductive inference for text classification using support vector

machines. In Proceedings of the Sixteenth International Conference on Machine

Learning.

Langford, J. and Zhang, T. (2007). The epoch-greedy algorithm for contextual multi-

armed bandits. In Advances in Neural Information Processing Systems 20.

Lewis, D. D. and Gale, W. A. (1994). A sequential algorithm for training text classi-

fiers. In Proceedings of the 17th ACM International Conference on Research and

Development in Information Retrieval, pages 3–12.

Li, C.-L., Ferng, C.-S., and Lin, H.-T. (2012). Active learning with hinted support

vector machine. In Proceedings of the forth Asian Conference on Machine Learning.

Melville, P. and Mooney, R. J. (2004). Diverse ensembles for active learning. In Pro-

ceedings of the 21st International Conference on Machine Learning, pages 584–591.

Nguyen, H. T. and Smeulders, A. (2004). Active learning using pre-clustering. In

Proceedings of the 21st International Conference on Machine Learning, pages 623–

630.

Quanquan Gu, Tong Zhang, J. H. (2014). Batch-mode active learning via error bound

minimization. In Proceedings of the 30th Conference Annual Conference on Uncer-

tainty in Artificial Intelligence.

38

Ratsch, G., Onoda, T., and Müller, K. R. (2001). Soft margins for AdaBoost. Machine

Learning, 2:27:1–27:27.

Settles, B. (2009). Active learning literature survey. Technical report, University of

Wisconsin–Madison.

Settles, B. and Craven, M. (2008). An analysis of active learning strategies for sequence

labeling tasks. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing.

Tong, S. and Koller, D. (2000). Support vector machine active learning with applica-

tions to text classification. In Proceedings of the 17th International Conference on

Machine Learning, pages 999–1006.

Vapnik, V. (1998). Statistical learning theory. Wiley.

Wang, Z., Yan, S., and Zhang, C. (2011). Active learning with adaptive regularization.

Pattern Recognition.

Wang, Z. and Ye, J. (2013). Querying discriminative and representative samples for

batch mode active learning. In Proceedings of the 19th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining.

Xu, Z., Yu, K., Tresp, V., Xu, X., and Wang, J. (2003). Representative sampling for text

classification using support vector machines. In Proceedings of the 25th European

Conference on Information Retrieval Research, pages 393–407.

Zha, Z.-J., Wang, M., Zheng, Y.-T., Yang, Y., Hong, R., and Chua, T.-S. (2012). Interac-

tive video indexing with statistical active learning. IEEE Transactions on Multimedia.

39

