
JMLR: Workshop and Conference Proceedings 29:1–16, 2013 ACML 2013

Active Sampling of Pairs and Points for Large-scale Linear
Bipartite Ranking

Wei-Yuan Shen r00922024@csie.ntu.edu.tw

Hsuan-Tien Lin htlin@csie.ntu.edu.tw

Department of Computer Science and Information Engineering

National Taiwan University

Abstract

Bipartite ranking is a fundamental ranking problem that learns to order relevant instances
ahead of irrelevant ones. One major approach for bipartite ranking, called the pair-wise
approach, tackles an equivalent binary classification problem of whether one instance out
of a pair of instances should be ranked higher than the other. Nevertheless, the number
of instance pairs constructed from the input data could be quadratic to the size of the
input data, which makes pair-wise ranking generally infeasible on large-scale data sets.
Another major approach for bipartite ranking, called the point-wise approach, directly
solves a binary classification problem between relevant and irrelevant instance points. This
approach is feasible for large-scale data sets, but the resulting ranking performance can be
inferior. That is, it is difficult to conduct bipartite ranking accurately and efficiently at
the same time. In this paper, we develop a novel scheme within the pair-wise approach to
conduct bipartite ranking efficiently. The scheme, called Active Sampling, is inspired from
the rich field of active learning and can reach a competitive ranking performance while
focusing only on a small subset of the many pairs during training. Moreover, we propose
a general Combined Ranking and Classification (CRC) framework to accurately conduct
bipartite ranking. The framework unifies point-wise and pair-wise approaches and is simply
based on the idea of treating each instance point as a pseudo-pair. Experiments on 14 real-
word large-scale data sets demonstrate that the proposed algorithm of Active Sampling
within CRC, when coupled with a linear Support Vector Machine, usually outperforms
state-of-the-art point-wise and pair-wise ranking approaches in terms of both accuracy and
efficiency.

Keywords: bipartite ranking, binary classification, large-scale, active learning, AUC.

1. Introduction

The bipartite ranking problem aims at learning a ranking function that orders positive
instances ahead of negative ones. For example, in information retrieval, bipartite ranking
can be used to order the preferred documents in front of the less-preferred ones within
a list of search-engine results. The performance of the ranking function is measured by
the probability of mis-ordering an unseen pair of randomly chosen positive and negative
instances, which is equal to one minus the Area Under the ROC Curve (AUC) [14], a
popular criterion for evaluating the sensitivity and the specificity of binary classifiers in
many real-world tasks [5] and large-scale data mining competitions [7].
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Given the many potential applications in information retrieval, bioinformatics, and rec-
ommendation systems, bipartite ranking has received much research attention in the past
two decades [1; 5; 9; 12; 15; 20; 22; 24]. Many existing bipartite ranking algorithms explic-
itly or implicitly reduce the problem to binary classification to inherit the benefits from the
well-developed methods in binary classificat ion [5; 12; 15; 18; 22]. The majority of those
reduction-based algorithms can be categorized to two approaches: the pair-wise approach
and the point-wise one. The pair-wise approach transforms the input data of positive and
negative instances to pairs of instances, and learns a binary classifier for predicting whether
the first instance in a pair should be scored higher than the second one. The pair-wise
approach comes with strong theoretical guarantee. For example, [3] shows that a low-regret
ranking function can indeed be formed by a low-regret binary classifier. The strong theo-
retical guarantee leads to promising experimental results in many state-of-the-art bipartite
ranking algorithms, such as RankSVM [18], RankBoost [15] and RankNet [6]. Nevertheless,
the number of pairs in the input data can easily be of size Θ(N2), where N is the size of the
input data, if the data is not extremely unbalanced. The quadratic number of pairs with
respect to N makes the pair-wise approach computationally infeasible for large-scale data
sets in general, except in a few special algorithms like RankB oost [15] or the efficient linear
RankSVM [20]. RankBoost enjoys an efficient implementation by reducing the quadratic
number of pair-wise terms in the objective function to a linear number of equivalent terms;
efficient linear RankSVM transforms the pair-wise optimization formulation to an equivalent
formulation that can be solved in subquadratic time compl exity [22].

On the other hand, the point-wise approach directly runs binary classification on the
positive and negative instance points of the input data, and takes the scoring function
behind th e resulting binary classifier as the ranking function. In some special cases [15],
such as AdaBoost [16] and its pair-wise sibling RankBoost [15], the point-wise approach is
shown to be equivalent to the corresponding pair-wise one [12]. In other cases, the point-
wise approach often operates with an approximate objective function that involves only N
terms [22]. For example, [22] shows that minimizing the exponential or the logistic loss
function on the instance points decreases an upper bound on the number of mis-ordered
pairs within the input data. Because of the approximate nature of the point-wise approach,
its ranking performance can sometimes be inferior to the pair-wise approach.

From the discussion above, we see that the pair-wise approach leads to more satisfactory
performance while the point-wise approach comes with efficiency, and there is a trade-off
between the two. In this paper, we are interested in designing bipartite ranking algorithms
that enjoy both satisfactory performance and efficiency for large-scale bipartite ranking. We
focus on using the linear Support Vector Machine (SVM) [31] given its recent advances for
efficient large-scale learning [33]. We first show that the loss function behind the usual point-
wise SVM [31] minimizes an upper bound on the loss function behind RankSVM, which
suggests that the point-wise SVM could be an approximate bipartite ranking algorithm that
enjoys efficiency. Then, we design a better ranking algorithm with two major contributions.

Firstly, we study an active sampling scheme to select important pairs for the pair-wise
approach and name the scheme Active Sampling for RankSVM (ASRankSVM). The scheme
makes the pair-wise SVM computationally feasible by focusing only on a small number of
valuable pairs out of the quadratic number of pairs. The active sampling scheme is inspired
by active learning, another popular machine learning setup that aims to save the efforts
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of labeling [27]. More specifically, we discuss the similarity and differences between active
sampling and pool-based active learning, and propose some active sampling strategies based
on the similarity. Secondly, we propose a general framework that unifies the point-wise SVM
and the pair-wise SVM (RankSVM) as special cases. The framework, called combined
ranking and classification (CRC), is simply based on the idea of treating each instance
point as a pseudo-pair. The CRC framework coupled with active sampling improves the
performance of the point-wise SVM by considering not only points but also pairs in its
objective function.

Performing active sampling within the CRC framework leads to a promising algorithm
for large-scale linear bipartite ranking. We conduct experiments on 14 real-world large-scale
data sets and compare the proposed algorithms (ASRankSVM and ASCRC) with several
state-of-the-art bipartite ranking algorithms, including the point-wise linear SVM [13], the
efficient linear RankSVM [20], and the Combined Ranking and Regression (CRR) algo-
rithm [26] which is closely related to the CRC framework. The results show that AS-
RankSVM is able to efficiently sample only 8, 000 of the more than millions of the possible
pairs to achieve better performance than other state-of-the-art algorithms that use all the
pairs, while ASCRC that considers the pseudo-pairs can sometimes be helpful. Those re-
sults validate that the proposed algorithm can indeed enjoy both satisfactory performance
and efficiency for large-scale bipartite ranking.

The paper is organized as follows. Section 2 describe the problem setup and several
related works in the literature. Then, we illustrate the active sampling scheme and the
CRC framework in Section 3. We conduct a thorough experimental study to compare the
proposed algorithm to several state-of-the-art ones in Section 4, and conclude in Section 5.

2. Setup and Related Works

In a bipartite ranking problem, we are given a training set D = {(xk, yk)}Nk=1, where each
(xk, yk) is a training instance with the feature vector xk in an n-dimensional space X ⊆ Rn

and the binary label yk ∈ {+1,−1}. Such a training set is of the same format as the training
set in usual binary classification problems. We assume that the instances (xk, yk) are drawn
i.i.d. from an unknown distribution P on X ×{+1,−1}. Bipartite ranking algorithms take
D as the input and learn a ranking function r : X → R that maps a feature vector x to a
real-valued score r(x).

For any pair of two instances, we call the pair mis-ordered by r iff the pair contains
a positive instance (x+,+1) and a negative one (x−,−1) while r(x+) ≤ r(x−). For a
distribution P that generates instances (x, y), we can define its pair distribution P2 that
generates (x, y,x′, y′) to be the conditional probability of sampling two instances (x, y) and
(x′, y′) from P , conditioned on y 6= y′. Then, let the expected bipartite ranking loss LP (r)
for any ranking function r be the expected number of mis-ordered pairs over P2.

LP (r) = E
(x,y,x′,y′)∼P2

[
I
(

(y − y′)(r(x)− r(x′)) ≤ 0
)]
,

where I(•) is an indicator function that returns 1 iff the condition (•) is true, and returns
0 otherwise. The goal of bipartite ranking is to use the training set D to learn a ranking
function r that minimizes the expected bipartite ranking loss LP (r). Because P is unknown,
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LP (r) cannot be computed directly. Thus, bipartite ranking algorithms usually resort to
the empirical bipartite ranking loss LD(r), which takes the expectation over the pairs in D
instead of over the pair distribution P2.

The bipartite ranking loss LP (r) is closely related to the area under the ROC curve (AUC),
which calculates the expected number of correctly-ordered pairs. Hence, AUC•(r) = 1 −
L•(r) for • = P or D, and higher AUC indicates better ranking performance. Bipartite
ranking is a special case of the general ranking problem in which the labels y can be any
real value, not necessarily {+1,−1}.

Motivated by the recent advances of linear models for efficient large-scale learning [33],
we consider linear models for efficient large-scale bipartite ranking. That is, the ranking
functions would be of the form r(x) = wTx. In particular, we study the linear Support
Vector Machine (SVM) [31] for bipartite ranking. There are two possible approaches for
adopting the linear SVM on bipartite ranking problems, the pair-wise SVM approach and
the point-wise SVM approach.

The pair-wise approach corresponds to the famous RankSVM algorithm [18], which is
originally designed for ranking with ordinal-scaled scores, but can be easily extended to
general ranking with real-valued labels or restricted to bipartite ranking with binary labels.
For each positive instance (xi, yi = +1) and negative instance (xj , yj = −1), the pair-wise
approach transforms the two instances to two symmetric pairs of instance ((xi,xj),+1) and
((xj ,xi),−1), the former for indicating that xi should be scored higher than xj and the
latter for indicating that xj should be scored lower than xi. The pairs transformed from D
are then fed to an SVM for learning a ranking function of the form r(x) = wTφ(x), where φ
indicates some feature transform.

When using a linear SVM, φ is simply the identity function. Then, for the pair ((xi,xj),+1),

we see that I
(
r(xi) ≤ r(xj)

)
= 0 iff wT (xi − xj) > 0. Define the transformed feature vec-

tor xij = xi − xj and the transformed label yij = sign(yi − yj), we can equivalently view
the pair-wise linear SVM as simply running a linear SVM on the pair-wise training set
Dpair = {(xij , yij)|yi 6= yj}. The pair-wise linear SVM minimizes the hinge loss as a sur-
rogate to the 0/1 loss on Dpair [29], and the 0/1 loss on Dpair is equivalent to LD(r), the
empirical bipartite ranking loss of interest. That is, if the linear SVM learns an accurate
binary classifier using Dpair, the resulting ranker r(x) = wTx would also be accurate in
terms of the bipartite ranking loss.

Denote the hinge function max(•, 0) by [•]+, RankSVM solves the following optimization
problem

min
w

1

2
wTw +

∑
xij∈Dpair

Cij [1−wT yijxij ]+ , (1)

where Cij denotes the weight of the pair xij . Because of the symmetry of xij and xji, we
naturally assume that Cij = Cji. In the original RankSVM formulation, Cij is set to a
constant for all the pairs. Here we list a more flexible formulation (1) to facilitate some
discussions later. RankSVM has reached promising bipartite ranking performance in the
literature [5]. Because of the symmetry of positive and negative pairs, we can equivalently
solve (1) on those positive pairs with yij = 1. The number of such positive pairs is N+N−

if there are N+ positive instances and N− negative ones. The huge number of pairs make
it difficult to solve (1) with a näıve quadratic programming algorithm.
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In contrast with the näıve RankSVM, the efficient linear RankSVM [20] changes (1) to
a more sophisticated and equivalent one with an exponential number of constraints, each
corresponding to a particular linear combination of the pairs. Then, it reaches O(N logN)
time complexity by using a cutting-plane solver to identify the most-violated constraints
iteratively, while the constant hidden in the big-O notation depends on the parameter Cij

as well as the desired precision of optimization. The subquadratic time complexity of the
efficient RankSVM can make it much slower than the point-wise approach (to be discussed
below), and hence may not always be fast enough for large-scale bipartite ranking.

The point-wise SVM approach, on the other hand, directly runs an SVM on the original
training set D instead of Dpair. That is, in the linear case, the point-wise approach solves
the following optimization problem

min
w

1

2
wTw + C+

∑
xi∈D+

[1−wTxi]+ + C−
∑

xj∈D−
[1 + wTxj ]+ . (2)

Such an approach comes with some theoretical justification [22]. In particular, the 0/1
loss on D has been proved to be an upper bound of the empirical bipartite ranking loss.
In fact, the bound can be tightened by adjusting C+ and C− to balance the distribution
of the positive and negative instances in D. When C+ = C−, [5] shows that the point-
wise approach (2) is inferior to the pair-wise approach (1) in performance. The inferior
performance can be attributed to the fact that the point-wise approach only operates with
an approximation (upper bound) of the bipartite ranking loss of interest.

Next, inspired by the theoretical result of upper-bounding the bipartite ranking loss with
a balanced 0/1 loss, we study the connection between (1) and (2) by balancing the hinge
loss in (2). In particular, as shown in Theorem 1, a balanced form of (2) can be viewed
as minimizing an upper bound of the objective function within (1). In other words, the
weighted point-wise SVM can be viewed as a reasonable baseline algorithm for large-scale
bipartite ranking problem.

Theorem 1 Let Cij = C
2 be a constant in (1); C+ = 2N− · C and C− = 2N+ · C in (2).

Then, the objective function of (1) is upper-bounded by 1
4 times the objective function of (2).

Proof Because [1−wTxij ]+ ≤ 1
2

(
[1− 2wTxi]+ + [1 + 2wTxj ]+

)
,

1

2
wTw +

∑
xij∈Dpair

Cij [1−wT yijxij ]+ =
1

2
wTw +

∑
xij∈Dpair,yij=+1

C[1−wTxij ]+

≤ 1

2
wTw +

C

2

∑
xi∈D+

∑
xj∈D−

(
[1− 2wTxi]+ + [1 + 2wTxj ]+

)

=
1

2
wTw +

C

2

N− ∑
xi∈D+

[1− 2wTxi]+ +N+
∑

xj∈D−
[1 + 2wTxj ]+

 .

The theorem can be easily proved by substituting 2w with a new variable u.

5



Shen Lin

3. Bipartite Ranking with Active Querying

As discussed in the previous section, the pair-wise approach (1) is infeasible on large-
scale data sets due to the huge number of pairs. Then, either some random sub-sampling
of the pairs are needed [26], or the less-accurate point-wise approach (2) is taken as the
approximate alternative [22]. Nevertheless, the better ranking performance of the pair-wise
approach over the point-wise one suggest that some of the key pairs shall carry more valuable
information than the instance-points. Next, we design an algorithm that samples a few key
pairs actively during learning. The resulting algorithm achieves better performance than the
point-wise approaches because of the key pairs, and enjoys better efficiency than the pair-
wise approach because of the sampling. We first show that some proposed active sampling
schemes, which are inspired by the many existing methods in active learning [23; 25; 27],
can help identify those key pairs better than random sub-sampling. Then, we discuss how
we can unify point-wise and pair-wise ranking approaches under the same framework.

3.1. Pool-based Active Learning

The pair-wise SVM approach (1) is challenging to solve because of the huge number of pairs
involved in Dpair. To make the computation feasible, we can only afford to work on a small
subset of Dpair during training. Existing algorithms conquer the computational difficulty
of the huge number of pairs in different ways. The Combined Ranking and Regression
approach [26] performs stochastic gradient descent, which essentially selects within the
huge number of pairs in a random manner; the efficient RankSVM [20] identifies the most-
violated constraints during optimization, which corresponds to selecting the most valuable
pairs from an optimization perspective.

We take an alternative route and hope to select the most valuable pairs from a learning
perspective. That is, our task is to iteratively select a small number of valuable pairs for
training while reaching similar performance to the pair-wise approach that trains with all
the pairs. One machine learning setup that works for a similar task is active learning [27],
which iteratively select a small number of valuable instances for labeling (and training)
while reaching similar performance to the approach that trains with all the instances fully
labeled. [2] proves that selecting a subquadratic number of pairs is sufficient to obtain a
ranking function that is close to the optimal ranking function. The algorithm is theoretical
in nature, while many other promising active learning tools [23; 25; 27] have not been
explored for selecting valuable pairs in large-scale bipartite ranking.

Next, we start exploring those tools by providing a brief review about active learning.
We focus on the setup of pool-based active learning [27] because of its strong connection
to our needs. In a pool-based active learning problem, the training instances are separated
into two parts, the labeled pool (L) and the unlabeled pool (U). As the name suggests, the
labeled pool consists of labeled instances that contain both the feature vector xk and its
corresponding label yk, and the unlabeled pool contains unlabeled instances x` only. Pool-
based active learning assumes that a (huge) pool of unlabeled instances is relatively easy
to gather, while labeling those instances can be expensive. Therefore, we hope to achieve
promising learning performance with as few labeled instances as possible. A pool-based
active learning algorithm is generally iterative. In each iteration, there are two steps: the
training step and the querying step. In the training step, the algorithm trains a decision
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function from the labeled pool; in the querying step, the algorithm selects one (or a few)
unlabeled instances, queries an oracle to label those instances, and move those instances
from the unlabeled pool to the labeled one. The pool-based active learning framework
repeats the training and querying steps iteratively until a given budget B on the number of
queries is met, with the hope that the decision functions returned throughout the learning
steps are as accurate as possible for prediction.

Because labeling is expensive, active learning algorithms aim to select the most valuable
instance(s) from the unlabeled pool at each querying step. Various selection criteria have
been proposed to describe the value of an unlabeled instance [27], such as uncertainty
sampling [23], and expected error reduction [25].

Moreover, there are several works that solve bipartite ranking under the active learning
scenario [10; 11; 32]. For example, [10] selects points that reduce the ranking loss functions
most from the unlabeled pool while [11] selects points that maximize the AUC in expecta-
tion. Nevertheless, these active learning algorithms require either sorting or enumerating
over the huge unlabeled pool in each querying step. The sorting or enumerating process
can be time consuming, but have not been considered seriously because labeling is assumed
to be even more expensive. We will discuss later that those algorithms that require sorting
or enumerating may not fit our goal.

3.2. Active Sampling

Following the philosophy of active learning, we propose the Active Sampling scheme for
choosing a smaller set of key pairs on the huge training set Dpair. We call the scheme Active
Sampling in order to highlight some differences to active learning. One particular difference
is that RankSVM (1) only requires optimizing with positive pairs. Then, the label yij of a
pair is a constant 1 and thus easy to get during Active Sampling, while the label in active
learning remains unknown before the possibly expensive querying step. Thus, while Active
Sampling and active learning both focus on using as few labeled data as possible, the costly
part of the Active Sampling scheme is on training rather than querying.

For Active Sampling, we denote B as the budget on the number of pairs that can be
used in training, which plays a similar role to the budget on querying in active learning.
We separate the pair-wise training set Dpair into two parts, the chosen pool (L∗) and the
unchosen pool (U∗). The chosen pool is the subset of pairs to be used for training, and
the unchosen pool contains the unused pairs. The chosen pool is similar to the labeled
pool in pool-based active learning; the unchosen pool acts like the unlabeled pool. The fact
that it is almost costless to “label” the instances in the unchosen pool allows us to design
simpler sampling strategies than those commonly used for active learning, because no effort
is needed to estimate the unknown labels.

The proposed scheme of Active Sampling is illustrated in Algorithm 1. The algorithm
takes an initial chosen pool L∗ and an initial unchosen pool U∗, where we simply mimic
the usual setup in pool-based active learning by letting L∗ be a randomly chosen subset
of Dpair and U∗ be the set of unchosen pairs in Dpair. In each iteration of the algorithm,
we use Sample to actively choose b instances to be moved from U∗ to L∗. After sampling, a
linearSVM is called to learn from L∗ along with the weights in {Cij}. We feed the current
w to the linearSVM solver to allow a warm-start in optimization. The warm-start step
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Input: the initial chosen pool, L∗; the initial unchosen pool, U∗; the regularization parameters,
{Cij}. the number of pairs sampled per iteration, b; the budget on the total number of pairs
sampled, B; the sampling strategy, Sample : (U∗,w)→ xij that chooses a pair from U∗.

Output: the ranking function represented by the weights w.
w = linearSVM(L∗, {Cij},0) ;
repeat

for i = 1→ b do
xij = Sample(U∗,w);
L∗ = L∗ ∪ {(xij , yij)} and U∗ = U∗ \ {xij};

end
w = linearSVM(L∗, {Cij},w);

until (|L∗| ≥ B);

return w;

Algorithm 1: Active Sampling
enhances the efficiency and the performance. The iterative procedure continues until the
budget B of chosen instances is fully consumed.

Another main difference between the active sampling scheme and typical pool-based
active learning is that we sample b instances before the training step, while pool-based
active learning often considers executing the training step right after querying the label of
one instance. The difference is due to the fact that the pair-wise labels yij can be obtained
easily and thus sampling and labeling can be relatively cheaper than querying in active
learning. Furthermore, updating the weights right after knowing one instance may not lead
to much improvement and can be too time consuming on large-scale data sets.

3.3. Sampling Strategies

Next, we discuss some possible sampling strategies that can be used in Algorithm 1. Besides
a näıve choices that passively choose a random sample within U∗, we define two measures
that estimate the (learning) value of an unchosen pair. The two measures correspond to
well-known criteria in pool-based active learning. Let xij be the unchosen pair in U∗ with
yij = 1, the two measures with respect to the current ranking function w are

closeness(xij ,w) = |wTxij | (3)

correctness(xij ,w) = −[1−wTxij ]+ (4)

The closeness measure corresponds to one of the most popular criteria in pool-based
active learning called uncertainty sampling [23]. It captures the uncertainty of the ranking
function w on the unchosen pair. Intuitively, a low value of closeness means that the
ranking function finds it hard to distinguish the two instances in the pair, which implies
that the ranking function is less confident on the pair. Therefore, sampling the unchosen
pairs that come with the lowest closeness values may improve the ranking performance by
resolving the uncertainty.

On the other hand, the correctness measure is related to another common criterion in
pool-based active learning called expected error reduction [25]. It captures the performance
of the ranking function w on the unchosen pair. Note that this exact correctness measure
is only available within our active sampling scheme because we know the pair-label yij to
always be 1 without loss of generality, while usual active learning algorithms do not know
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the exact measure before querying and hence have to estimate it [10; 11]. A low value of
correctness indicates that the ranking function does not perform well on the pair. Then,
sampling the unchosen pairs that come with the lowest correctness values may improve the
ranking performance by correcting the possible mistakes.

Similar to other active learning algorithms [10; 11], computing the pairs that come with
the lowest closeness or correctness values can be time consuming, as it requires at least
evaluating the values of wTxk for each instance (xk, yk) ∈ D, and then computing the mea-
sures on the pairs along with some selection or sorting steps that may be of super-linear
time complexity [20]. Thus, such a hard version of active sampling is not computationally
feasible for large-scale bipartite ranking. Next, we discuss the soft version of active sam-
pling that randomly chooses pairs that come with lower closeness or correctness values by
rejection sampling.

We consider a reject sampling step that samples a pair xij with probability pij . We
calculate a probability threshold to decide whether to accept the candidate pair. A pair
that comes with a lower closeness or correctness values would enjoy a higher probability pij
of being accepted.

Next, we define the probability threshold functions that correspond to the hard ver-
sions of closeness and correctness. Both threshold functions are in the shape of the sig-
moid function, which is widely used to represent probabilities in logistic regression and
neural networks [4]. For soft closeness sampling, we define the probability threshold pij ≡
2/
(

1 + e|w
Txij |

)
. For soft correctness sampling, we define pij ≡ 1−2/

(
1 + e[1−wT (xij)]+

)
.

We take different forms of soft versions because closeness is of range [0,∞) while correctness
is of range (−∞, 0].

Note that the sampling strategies above, albeit focusing on the most valuable pairs, is
inheritedly biased. The chosen pool may not be representative enough of the whole training
set because of the biased sampling strategies. There is a simple way that allows us to
correct the sampling bias for learning a ranking function that performs well on the original
bipartite ranking loss of interest. We take the idea of [19] to weight the sampled pair by
the inverse of its probability of being sampled. That is, we could multiply the weight Cij

for a chosen pair xij by 1
pij

when it gets returned by the rejection sampling.

3.4. Combined Ranking and Classification

Inspired by Theorem 1, the points can also carry some information for ranking. Next,
we study how we can take those points into account during Active Sampling. We start
by taking a closer look at the similarity and difference between the point-wise SVM (2)
and the pair-wise SVM (1). The pair-wise SVM considers the weighted hinge loss on the
pairs xij = xi − xj , while the point-wise SVM considers the weighted hinge loss on the
points xk. Consider one positive point (xk,+1). Its hinge loss is [1−wTxi]+, which is the
same as [1 −wT (xi − 0)]+. In other words, the positive point (xi,+1) can also be viewed
as a pseudo-pair that consists of (xi,+1) and (0,−1). Similarly, a negative point (xj ,−1)
can be viewed as a pseudo-pair that consists of (xj ,−1) and (0,+1). Let the set of all
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pseudo-pairs within D be

Dpseu = {(xi0 = xi − 0,+1)|xi ∈ D+} ∪ {(x0j = 0− xj ,+1)|xj ∈ D−}
∪ {(x0i = 0− xi,−1)|xi ∈ D+} ∪ {(xj0 = xj − 0,−1)|xj ∈ D−}.

Then, the point-wise SVM (2) is just a variant of the pair-wise one (1) using the pseudo-pairs
and some particular weights. Thus, we can easily unify the point-wise and the pair-wise
SVMs together by minimizing some weighted hinge loss on the joint set D∗ = Dpair ∪Dpseu

of pairs and pseudo-pairs. By introducing a parameter γ ∈ [0, 1] to control the relative
importance between the real pairs and the pseudo-pairs, we propose the following novel
formulation.

min
w

1

2
wTw + γ

∑
xij∈D+

pair

C(ij)
crc [1−wTxij ]+ + (1− γ)

∑
xk`∈D+

pseu

C(k`)
crc · [1−wTxk`]+ , (5)

where D+
pair and D+

pseu denote the set of positive pairs and positive pseudo-pairs, respec-
tively. The new formulation (5) combines the point-wise SVM and the pair-wise SVM
in its objective function, and hence is named the Combined Ranking and Classification
(CRC) framework. When γ = 1, CRC takes the pair-wise SVM (1) as a special case with

Cij = 2C
(ij)
crc ; when γ = 0, CRC takes the point-wise SVM (2) as a special case with

C+ = C
(i0)
crc and C− = C

(0j)
crc . The CRC framework (5) remains as challenging to solve as

the pair-wise SVM approach (1) because of the huge number of pairs. However, the gen-
eral framework can be easily extended to the active sampling scheme, and hence be solved
efficienctly. We only need to change the training set from Dpair to the joint set D∗, and
multiply the probability threshold pij in the soft version sampling by γ (1− γ) for actural
pairs (pseudo-pairs).

The CRC framework is closely related to the algorithm of Combined Ranking and Re-
gression (CRR) [26] for general ranking. The CRR algorithm similarly considers a combined
objective function of the point-wise terms and the pair-wise terms for improving the ranking
performance. The main difference between CRR and CRC is that the CRR approach takes
the squared loss on the points, while CRC takes the nature of bipartite ranking into account
and considers the hinge loss on the points. The idea of combining pair-wise and point-wise
approaches had been used in the multi-label classification problem [30]. The algorithm
of Calibrated Ranking by Pairwise Comparison [17] assumes a calibration label between
relevant and irrelevant labels, and unifies the pair-wise and point-wise label learning for
multi-label classification.

To the best of our knowledge, while the CRR approach has reached promising perfor-
mance in practice [26], the CRC formulation has not been seriously studied. The hinge loss
used in CRC allows unifying the point-wise SVM and the pair-wise SVM under the same
framework, and the unification is essential for applying one active sampling strategy on both
the real pairs and the pseudo-pairs.

4. Experiments

We study the performance and efficiency of our proposed ASCRC algorithm on real-world
large-scale data sets. We compare ASCRC with random-CRC, which does random sampling

10
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Table 1: Data Sets Statistics
Dataset positive negative total points total pairs dimension AUC
letter* 789 19211 20000 30314958 16 CV

protein* 8198 9568 17766 156876928 357 test
news20 9999 9997 19996 199920006 1355191 CV

rcv1 10491 9751 20242 204595482 47236 CV
a9a 7841 24720 32561 387659040 123 test

bank 5289 39922 45211 422294916 51 CV
ijcnn1 4853 45137 49990 438099722 22 CV

shuttle* 34108 9392 43500 640684672 9 test
mnist* 5923 54077 60000 640596142 780 test

connect* 44473 23084 67557 2053229464 126 CV
acoustic* 18261 60562 78823 2211845364 50 test
real-sim 22238 50071 72309 2226957796 20958 CV
covtype 297711 283301 581012 168683648022 54 CV

url 792145 1603985 2396130 2541177395650 3231961 CV

under the CRC framework. In addition, we compare ASCRC with three other state-of-the-
art algorithms: the point-wise weighted linear SVM (2) (WSVM), an efficient implemen-
tation [20] of the pair-wise linear RankSVM (1) (ERankSVM), and the combined ranking
and regression (CRR) [26] algorithm for general ranking.

4.1. Data Sets

We use 14 data sets from the LIBSVM Tools [8] and the UCI Repository [21] in the experi-
ments. Table 1 shows the statistics of the data sets, which contains more than ten-thousands
of instances and more than ten-millions of pairs. The data sets are definitely too large for a
näıve implementation of RankSVM (1). Note that the data sets marked with (∗) are origi-
nally multi-class data sets, and we take the sub-problem of ranking the first class ahead of
the other classes as a bipartite ranking task. For data sets that come with a moderate-sized
test set, we report the test AUC. Otherwise we perform a 5-fold cross validation and report
the cross-validation AUC.

4.2. Experiment Settings

Given a budget B on the number of pairs to be used in each algorithm and a global reg-
ularization parameter C, we set the instance weights for each algorithm to fairly maintain
the numerical scale between the regularization term and the loss terms. The global regular-
ization parameter C is fixed to 0.1 in all the experiments. In particular, the setting below
ensures that the total C(ij), summed over all the pairs (or pseudo-pairs), would be C ·B for
all the algorithms.
• WSVM: As discussed in Section 2, C+ and C− shall be inverse-proportional to N+

and N− to make the weighted point-wise SVM a reasonable baseline for bipartite
ranking. Thus, we set C+ = B

2N+ ·C and C− = B
2N− ·C in (2). We solve the weighted

SVM by the LIBLINEAR [13] package with its extension on instance weights.

• ERankSVM: We use the SVMperf [20] package to efficiently solve the linear RankSVM (1)
with the AUC optimization option. We set the regularization parameter Cperf = B

100 ·C
where the 100 comes from a suggested value of the SVMperf package.

• CRR: We use the package sofia-ml [26] with the sgd-svm learner type, combined-
ranking loop type and the default number of iterations that SGD takes to solve the
problem. We set its regularization parameter λ = 1

B·C .

11
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• ASCRC (ASRankSVM): We initialize |L∗| to b, and assign C
(ij)
crc = Γ|L∗|

pijZ
· C in each

iteration, where Γ equals to either γ or (1−γ) for either real or pseudo pairs and Z is a

normalization constant
∑

xij∈L∗
1
pij

that prevents C
(ij)
crc from being too large. We solve

the linearSVM within ASCRC by the LIBLINEAR [13] package with its extension on
instance weights.

• random-CRC: random-CRC corresponds to ASCRC with pij = 1 for all the pairs.
To evaluate the average performance of ASCRC and random-CRC algorithms, we average
their results over 10 different initial pools.

4.3. Performance Comparison and Robustness

We first set γ = 1 in ASCRC and random-CRC, which makes ASCRC equivalent to AS-
RankSVM. The more general ASCRC will be studied later. We let b = 100 and B = 8000,
which is a relatively small budget out of the millions of pairs.

We show how the AUC changes as |L∗| grows throughout the active sampling steps of
ASRankSVM in Fig. 1. For WSVM, ERankSVM and CRR, we plot a horizontal line on
the AUC achieved when using the whole training set. We also list the final AUC with the
standard deviation of all the algorithms in Table 2.

From Fig. 1 and Table 2, we see that soft-correct are generally the best among the other
competitors. Further, we conduct right-tail t-test for soft-correct against the others to show
whether the improvement of soft-correct sampling is significant. In Table 3, we summarize
the performance result under a 95% significance level.

First, we compare soft-correct with random sampling and discover that soft-correct per-
forms better on 10 data sets, which shows that active sampling is working reasonably well.
While comparing soft-close with soft-correct in Table 2 and Table 3, we find that soft-
correct outperforms soft-close on 7 data sets and ties with 5. Moreover, Fig. 1 shows the
strong performance of soft-correct comes from the early steps of active sampling. Finally,
when comparing soft-correct with other algorithms, we discover that soft-correct performs
the best on 8 data sets: it outperforms ERankSVM on 8 data sets, WSVM on 9 data
sets, and CRR on 11 data sets. The results demonstrate that even when using a pretty
small sampling budget of 8, 000 pairs, ASRankSVM with soft-correct sampling can achieve
significant improvement over those state-of-the-art ranking algorithms that use the whole

Figure 1: Performance Curves on Different Datasets
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Table 2: AUC (mean±std) at |L∗| = 8000, b = 100, γ = 1.0
ASRankSVM

Data WSVM ERankSVM CRR Random Soft-Close Soft-Correct

letter .9808 .9877 .9874 .9883 ± .0003 .9883 ± .0002 .9874 ± .0123

protein .8329 .8302 .8306 .8229 ± .0031 .8240 ± .0016 .8233 ± .0028

news20 .9379 .9753 .9743 .9828 ± .0008 .9836 ± .0006 .9903 ± .0003

rcv1 .9876 .9916 .9755 .9920 ± .0004 .9923 ± .0003 .9944 ± .0002

a9a .9008 .9047 .8999 .9003 ± .0006 .9012 ± .0004 .9007 ± .0006

bank .8932 .9023 .8972 .9051 ± .0010 .9057 ± .0011 .9083 ± .0007

ijcnn1 .9335 .9343 .9336 .9342 ± .0004 .9345 ± .0006 .9348 ± .0003

shuttle .9873 .9876 .9888 .9894 ± .0001 .9896 ± .0001 .9907 ± .0000

mnist .9985 .9983 .9973 .9967 ± .0004 .9979 ± .0001 .9976 ± .0002

connect .8603 .8613 .8532 .8594 ± .0008 .8604 ± .0007 .8603 ± .0009

acoustic .8881 .8911 .8931 .8952 ± .0005 .8952 ± .0005 .8988 ± .0004

real-sim .9861 .9908 .9907 .9908 ± .0003 .9915 ± .0002 .9934 ± .0064

covtype .8047 .8228 .8189 .8238 ± .0008 .8239 ± .0007 .8249 ± .0006

url .9963 .9967 .9956 .9940 ± .0003 .9961 ± .0001 .9984 ± .0015

training data set. Also, the tiny standard deviation shown in Table 2 and the significant
results from t-test suggest the robustness of ASRankSVM with soft-correct in general.

4.4. Efficiency Comparison

First, we study the efficiency of soft active sampling by checking the average number of
rejected samples before passing the probability threshold during rejection sampling. The
number is plotted against the size of L∗ in Fig. 2. The soft-close strategy usually needs
fewer than 10 rejected samples, while the soft-correct strategy generally needs an increasing
number of rejected samples. The reason is that when the ranking performance becomes
better throughout the iterations, the probability threshold behind soft-correct could be
pretty small. The results suggest that the soft-close strategy is generally efficient, while the
soft-correct strategy may be less efficient as L∗ grows.

Next, we list the CPU time consumed for all algorithms under 8, 000 pairs budget in
Table 4, and the data sets are ordered ascendantly by its size. We can see that WSVM
and CRR run fast but give inferior performance while ERankSVM performs better but
the training time grows fast as the data size increases. The result is consistent with the
discussion in Section 1 that conducting bipartite ranking efficiently and accurately at the
same time is challenging. On the other hand, under the ASRankSVM scheme, random
runs the fastest, then soft-close, and soft-correct is the slowest. This result reflects the
average number of rejected samples discussed above. Also, we can find that the soft version
samplings are usually much faster then the corresponding hard versions, which validate the
time consuming enumerating or sorting steps can not fit our goal in terms of efficiency.

More importantly, when comparing soft-correct with ERankSVM, soft-correct runs faster
on 7 data sets, which suggests the development of ASRankSVM is as efficient as the state-

Table 3: 95% t-test Results Summary: Soft-Correct Versus Other Algorithms at |L∗| =
8000, b = 100, γ = 1.0

WSVM ERankSVM CRR Random Soft-Close

Total (win/loss/tie) 9/2/3 8/4/2 11/1/2 10/0/4 7/2/5
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Table 4: CPU Time Table under 8000 Pair Budget(Seconds)
Data Random Soft-Close Soft-Correct Hard-Close Hard-Correct WSVM ERankSVM CRR
letter 0.808 1.53 19.602 192.671 42.553 0.29 0.72 0.15

protein 3.136 2.943 4.29 12.128 8.315 0.85 4.9 0.99
news20 58.594 56.506 66.394 184.233 128.056 20.1 10.64 4.55

rcv1 5.872 6.318 21.789 114.028 35.258 1.83 2.54 0.77
a9a 0.374 0.504 1.065 30.384 19.537 0.28 4.25 0.31

bank 1.957 2.301 4.644 20.8064 13.8512 0.142 5.624 0.3
ijcnn1 0.957 1.508 4.031 107.002 79.32 0.69 2.75 0.28
shuttle 0.146 0.288 3.02 26.307 17.577 0.18 0.98 0.36
mnist 1.61 2.851 56.604 205.135 50.174 4.92 22.38 2.75

connect 2.734 3.229 5.493 117.047 121.359 2.5 15.42 0.78
acoustic 0.488 0.624 1.03 33.39 41.167 1.82 11.57 1.93
real-sim 4.025 4.35 11.648 318.702 139.042 3.15 7.58 1.78
covtype 1.47 1.801 2.739 800.539 5739.97 6.41 29.54 3.3

url 31.026 31.011 163.022 122045.33 285394.18 116.61 594.82 58.1

Figure 2: Sampling Efficiency Curves on Different Datasets
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of-the-art ERankSVM on large-scale data sets in general. Nevertheless, we can find that
the CPU time of soft-correct grows much slower than ERankSVM as data size increases
because the time complexity of ASRankSVM scheme mainly depends on the budget B and
the step size b, not the size of data.

Figure 3: The Benefit of Trade-off Parameter
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Table 5: Optimal γ on Different Datasets
letter protein news20 rcv1 a9a bank ijcnn1

Soft-Close uniform 1 uniform,1 uniform,1 uniform,0.7 1 1

Soft-Correct 0.9 0.1,0.2 uniform,1 uniform,1 uniform,0.6,0.7 uniform,1 0.8,0.9,1

shuttle mnist connect acoustic real-sim covtype url

Soft-Close uniform,1 0.1,0.2,0.4 uniform,1 1 uniform,1 uniform,1 uniform,1

Soft-Correct uniform,1 0.6 uniform,1 uniform,1 uniform uniform,0.9,1 0.8

4.5. The Usefulness of the CRC Framework

Next, we study the necessity of the CRC framework by comparing the performance of soft-
closeness and soft-correctness under different choices of γ. We report the best γ within
{uniform, 0.1, 0.2, ..., 1.0}, where uniform means balancing the influence of real pairs and

pseudo-pairs by γ =
|Dpair|
|D∗| . Table 5 shows the best γ on each data set and sampling

strategy, and the bold γ indicates the setting outperforms ERankSVM significantly. We
see that using γ = 1 (real pairs only) performs well in most data sets, while a smaller γ
or uniform can sometimes reach the best performance. The results justify that the real
pairs are more important than the pseudo-pairs, while the latter can sometimes be helpful.
When pseudo-pair helps, as shown in Fig. 3 for the mnist data set, the flexibility of the
CRC framework can be useful.

5. Conclusion

We propose the algorithm of Active Sampling (AS) under Combined Ranking and Classifi-
cation (CRC) based on the linear SVM. There are two major components of the proposed
algorithm. The AS scheme selects valuable pairs for training and resolves the computa-
tional burden in large-scale bipartite ranking. The CRC framework unifies the concept of
point-wise ranking and pair-wise ranking under the same framework, and can perform bet-
ter than pure point-wise ranking or pair-wise ranking. The unified view of pairs and points
(pseudo-pairs) in CRC allows using one AS scheme to select from both types of pairs.

Experiments on 14 real-world large-scale data sets demonstrate the promising perfor-
mance and efficiency of the ASRankSVM and ASCRC algorithms. The algorithms usually
outperform state-of-the-art bipartite ranking algorithms, including the point-wise SVM, the
pair-wise SVM, and the combined ranking and regression approach. The results not only
justify the validity of ASCRC, but also shows the valuable pairs or pseudo-pairs can be
helpful for large-scale bipartite ranking.
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