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Abstract

The abundance of real-world data and limited labeling budget calls for active learning,
which is an important learning paradigm for reducing human labeling efforts. Many re-
cently developed active learning algorithms consider both uncertainty and representative-
ness when making querying decisions. However, exploiting representativeness with uncer-
tainty concurrently usually requires tackling sophisticated and challenging learning tasks,
such as clustering. In this paper, we propose a new active learning framework, called hinted
sampling, which takes both uncertainty and representativeness into account in a simpler
way. We design a novel active learning algorithm within the hinted sampling framework
with an extended support vector machine. Experimental results validate that the novel
active learning algorithm can result in a better and more stable performance than that
achieved by state-of-the-art algorithms.

Keywords: Active Learning, Support Vector Machine

1. Introduction

Labeled data are the basic ingredients in training a good model in machine learning. It is
common in real-world applications that one needs to cope with a large amount of data, and
labeling such data can be costly. For example, in the medical domain, a doctor may be
required to distinguish (label) cancer patients from non-cancer patients according to their
clinical records (data). In such applications, an important issue is to achieve high accuracy
within a limited budget. This issue demands active learning (Settles, 2009), which is a
machine learning setup that allows iteratively querying the labeling oracle (doctor) in a
strategic manner to label some selected instances (clinic records). By using a suitable query
strategy, an active learning approach can achieve high accuracy while performing only a
few iterations i.e., only a few calls to the (expensive) querying oracle (Settles, 2009).

One intuitive approaches in active learning is called uncertainty sampling (Lewis and
Gale, 1994). This approach maintains a classifier on hand, and queries the most uncertain
instances, whose uncertainty is measured by the closeness to the decision boundary of the
classifier, to fine-tune the boundary. However, the performance of uncertainty sampling
becomes restricted owing to the limited view of the classifier. In other words, uncertainty
sampling can be hair-splitting on the local instances that confuse the classifier, but not
considering the global distribution of instances. Therefore, queries may not represent the
underlying data distribution well, leading to unsatisfactory performance of uncertainty sam-
pling (Settles, 2009).
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As suggested in Cohn et al. (1996); Xu et al. (2003), active learning can be improved by
considering the unlabeled instances in order to query the instance that is not only uncertain
to the available classifier but also “representative” to the global data distribution. There
are many existing algorithms that use unlabeled information to improve the performance
of active learning, such as representative sampling (Xu et al., 2003).

Representative sampling makes querying decisions use not only the uncertainty of each
instance, but also the representativeness, which is measured by determining whether the
instances reside in a dense area. Typical representative sampling algorithms (Xu et al.,
2003; Nguyen and Smeulders, 2004; Dasgupta and Hsu, 2008) estimate the underlying data
distribution via clustering methods. However, the performance of the algorithms depends
on the result of clustering, which is a sophisticated and non-trivial task, especially when the
instances are within a high dimensional space. Another state-of-the-art algorithm (Huang
et al., 2010) models the representativeness by estimating the potential label assignment of
the unlabeled instances on the basis of the min-max view of active learning (Hoi et al.,
2008). The performance of this algorithm depends on the results of estimating the label
assignments, which is also a complicated task.

In this work, we propose a novel framework of active learning, hinted sampling, which
considers the unlabeled instances as hints (Abu-Mostafa, 1995) of the global data distribu-
tion, instead of directly clustering them or estimating their label assignments. This leads
to a simpler active learning algorithm. Similar to representative sampling, hinted sampling
also considers both uncertainty and representativeness. Hinted sampling enjoys the ad-
vantage of simplicity by avoiding the clustering or label-assignment estimation steps. We
demonstrate the effectiveness of hinted sampling by designing a novel algorithm with sup-
port vector machine (SVM; Vapnik, 1998). In the algorithm, we extend the usual SVM
to a novel formulation, HintSVM, which is easier to solve than either clustering or label-
assignment estimation. We then study the hint selection strategy to improve the efficiency
and effectiveness of the proposed algorithm. Experimental results demonstrate that the
simple HintSVM with a proper hint selection strategy is comparable to the best of both un-
certainty sampling and representative sampling algorithms, and results in better and more
stable performance than other state-of-the-art active learning algorithms.

The rest of the paper is organized as follows. Section 2 introduces the formal problem
definition and reviews the related works. Section 3 describes our proposed hinted sampling
framework as well as the HintSVM algorithms. Section 4 elucidates the hint selection
strategy. Section 5 reports experiment results and comparisons. Finally, Section 6 concludes
this work.

2. Problem Definition and Related Works

In this work, we focus on pool-based active learning for binary classification, which is one
of the most common setup in active learning (Lewis and Gale, 1994). At the initial stage
of the setup, the learning algorithm is presented with a labeled data pool and an unlabeled
data pool. We denote the labeled data pool by Dl = {(x1, y1), (x2, y2), ..., (xN , yN )} and
the unlabeled data pool by Du = {x̃1, x̃2, ..., x̃M}, where the input vectors xi, x̃j ∈ Rd

and the labels yi ∈ {−1, 1}. Usually, the labeled data pool Dl is relatively small or even
empty, whereas the unlabeled data pool Du is assumed to be large. Active learning is an
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iterative process that contains R iterations of querying and learning. That is, an active
learning algorithm can be split into two parts: the querying algorithm Q and the learning
algorithm L.

Using the initial Dl ∪ Du, the learning algorithm L is first called to learn a decision
function f (0) : Rd → R, where the function sign(f (0)(x)) is taken for predicting the label
of any input vector x. Then, in each r-th iteration, where r = 1, 2, ..., R, the querying
algorithm Q is allowed to select an instance x̃s ∈ Du and query its label ys from a labeling
oracle. After querying, (x̃s, ys) is added to the labeled pool Dl and x̃s is removed from the
unlabeled pool Du. The learning algorithm L then learns a decision function f (r) from the
updated Dl ∪ Du. The goal of active learning is to use the limited querying and learning
opportunities properly to obtain a decent list of decision functions [f (1), f (2), ..., f (R)] that
can achieve low out-of-sample (test) error rates.

As discussed in a detailed survey (Settles, 2009), many active learning algorithms for
binary classification exist. In this paper, we shall review some well-recognized and relevant
ones. One of the most intuitive families of algorithms is called uncertainty sampling (Lewis
and Gale, 1994). As the name suggests, the querying algorithm Q of uncertainty sampling
queries the most uncertain x̃s ∈ Du, where the uncertainty for each input vector x̃j ∈ Du
is usually computed by re-using the decision function f (r−1) returned from the learning
algorithm L. For instance, Tong and Koller (2000) take the support vector machine (SVM;
Vapnik, 1998) as L and measure the uncertainty of x̃j by the distance between x̃j and the
boundary f (r−1) = 0. In other words, the algorithm in Tong and Koller (2000) queries
the x̃s that is closest to the boundary.

Uncertainty sampling can be viewed as a greedy approach that queries instances from
the viewpoint only of the decision function f (r−1). When the decision function is not close
enough to the ideal one, however, this limited viewpoint can hinder the performance of
the active learning algorithm. Thus, Cohn et al. (1996) suggest that the viewpoint of the
unlabeled pool Du should also be included. Their idea leads to another family of active
learning algorithms, called representative sampling (Xu et al., 2003), or density-weighted
sampling (Settles, 2009). Representative sampling takes both the uncertainty and the rep-
resentativeness of each x̃j ∈ Du into account concurrently in the querying algorithm Q,
where the representativeness of x̃j with respect to Du is measured by the density of its
neighborhood area. For instance, Xu et al. (2003) employ the SVM as the learning algo-
rithm L as do Tong and Koller (2000). They use a querying algorithm Q that first clusters
the unlabeled instances near the boundary of f (r−1) by a K-means algorithm, and then
queries one of the centers of those clusters. In other words, the queried instance is not
only uncertain for f (r−1) but also representative for Du. Some other works estimate the
representativeness with a generative model. For instance, Nguyen and Smeulders (2004)
propose a querying algorithm Q that uses multiple Gaussian distributions to cluster all
input vector xi ∈ Dl, x̃j ∈ Du and estimate the prior probability p(x); Q then makes
querying decisions using the product of the prior probability and some uncertainty mea-
surement. The idea of estimating the representativeness via clustering is a core element of
many representative sampling algorithms (Xu et al., 2003; Nguyen and Smeulders, 2004;
Dasgupta and Hsu, 2008). Nevertheless, clustering is a challenging task and it is not always
easy to achieve satisfactory clustering performance. When the clustering performance is
not satisfactory, it has been observed (Donmez et al., 2007; Huang et al., 2010) that repre-
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sentative sampling algorithms also fail to achieve decent performance. In other words, the
clustering step is usually the bottleneck of representative sampling.

Huang et al. (2010) propose an improved algorithm that models representativeness with-
out clustering. In the algorithm, the usefulness of each x̃j , which implicitly contains both
uncertainty and representativeness, is estimated by using a technique in semi-supervised
learning (Hoi et al., 2008) that checks approximately all possible label assignments for each
unlabeled x̃j ∈ Du. The querying algorithm Q proposed (Huang et al., 2010) is based on
the usefulness of each x̃j ; the learning algorithm L is simply a stand-alone SVM. While the
active learning algorithm (Huang et al., 2010) often achieves promising empirical results, its
bottleneck is the label-estimation step, which is rather sophisticated and thus not always
easy to achieve a satisfactory performance.

Another improvement of representative sampling is presented by Donmez et al. (2007),
who report that representative sampling is less efficient than uncertainty sampling for later
iterations, in which the decision function is closer to the ideal one. To combine the best prop-
erties of uncertainty sampling and representative sampling, Donmez et al. (2007) propose
a mixed algorithm by extending representative sampling (Nguyen and Smeulders, 2004).
The proposed query algorithm Q (Donmez et al., 2007) is split into two stages. The first
stage performs representative sampling (Nguyen and Smeulders, 2004) while estimating the
expected error reduction. When the expected reduction is less than a given threshold, the
querying algorithm Q switches to uncertainty sampling for fine-tuning the decision bound-
ary. The bottleneck of the algorithm (Donmez et al., 2007) is still the clustering step in the
first stage.

Instead of facing the challenges of either clustering or label-estimation, we propose to
view the information in Du differently. In particular, the unlabeled instances x̃j ∈ Du are
taken as hints (Abu-Mostafa, 1995) that guide the querying algorithm Q. The idea of using
hints leads to a simpler active learning algorithm with better empirical performance, as
introduced in the next sections.

3. Hinted Sampling Framework

First, we illustrate the potential drawback of uncertainty sampling with a linear SVM
classifier (Vapnik, 1998), which is applied to a two-dimensional artificial dataset. Figure 1
shows the artificial dataset, which consists of three clusters, each of which contains instances
of a particular class. We denote one class by a red cross and the other by a filled green
circle. The labeled instances in Dl are marked with a blue square while other instances
are in Du. In Figure 1(a), the initial two labeled instances reside in two of the clusters
with different labels. The initial decision function f (0) trained on the labeled instances
(from the two clusters) is not aware of the third cluster. The decision function f (0) then
mis-classifies the instances in the third cluster, and causes the querying algorithm Q (which
is based on f (0)) to query only from the instances near the “wrong” boundary rather than
exploring the third cluster. After several iterations, as shown in Figure 1(b), the uncertainty
sampling algorithm still outputs an unsatisfactory decision function that mis-classifies the
entire unqueried (third) cluster.

The unsatisfactory performance of uncertainty sampling originates in its lack of aware-
ness of candidate unlabeled instances that should be queried. When trained on only a few
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(a) (b)

Figure 1: (a) The decision function (black) obtained from two labeled (blue) instances; (b)
when using the decision function in (a) for uncertainty sampling, the upper-left
cluster keeps being ignored

(a) (b)

Figure 2: (a) The hinted query function (dashed magenta line) that is aware of the upper-
left cluster; (b) when using the hinted decision function in (a) for uncertainty
sampling, all three clusters are explored

labeled instances, the resulting (linear) decision function is overly confident about the unla-
beled instances that are far from the boundary. Intuitively, uncertainty sampling could be
improved if the querying algorithm Q were aware of and less confident about the unqueried
regions. Both clustering (Nguyen and Smeulders, 2004) and label-estimation (Huang et al.,
2010) are based on this intuition, but they explore the unlabeled regions in a rather sophis-
ticated way.
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We propose a simpler alternative as follows. Note that the uncertainty sampling algo-
rithm measures the uncertainty by the distance between instances and the boundary. In
order to make Q less confident about the unlabeled instances, we seek a “query bound-
ary” that not only classifies the labeled instances correctly but also passes through the
unqueried regions, denoted by the dashed magenta line in Figure 2(a). Then, in the later
iterations, the query algorithm Q, using the query boundary, would be less confident about
the unqueried regions, and thus be able to explore them. The instances in the unqueried
regions give hints as to where the query boundary should pass. Using these hints about
the unqueried regions, the uncertainty sampling algorithm can take both uncertainty and
the underlying distribution into account concurrently, and achieve better performance, as
shown in Figure 2(b).

Based on this idea, we propose a novel active learning framework, hinted sampling. The
learning algorithm L in hinted sampling is similar to that in uncertainty sampling, but
the querying algorithm is different. In particular, the querying algorithm Q is provided
with some unlabeled instances, called the hint pool Dh ⊆ Du. When suitably using the
information in the hint pool Dh, both uncertainty and representativeness can be considered
concurrently to obtain a query boundary that assists Q in making query decisions. Next,
we design a concrete active learning algorithm based on SVM, which is also used as the core
of many state-of-the-art algorithms (Tong and Koller, 2000; Xu et al., 2003; Huang et al.,
2010), as both L and Q. Before illustrating the complete algorithm, we show how SVM can
be appropriately extended to use the information in Dh for Q.

3.1. HintSVM

The extended SVM is called HintSVM, which takes hints into account. The goal of HintSVM
is to locate a query boundary which does well on two objectives: (1) classifying labeled
instances in Dl, and (2) being close to the unlabeled instances in hint pool Dh. Note that
the two objectives are different from the usual semi-supervised SVM (Bennett and Demiriz,
1998), which pushes the unlabeled instances away from the decision boundary.

The first objective matches an ordinary support vector classification (SVC) problem.
To deal with the second objective, we consider ε-support vector regression (ε-SVR) and set
regression targets to 0 for all instances in Dh, which means that instances in Dh should
be close to the query boundary. By combining the objective functions of SVC and ε-SVR
together, HintSVM solves the following convex optimization problem, which simultaneously
achieves the two objectives.

min
w,b,ξ,ξ̃,ξ̃∗

1

2
wTw + Cl

|Dl|∑
i=1

ξi + Ch

|Dh|∑
j=1

(
ξ̃j + ξ̃∗j

)
subject to yi(w

Txi + b) ≥ 1− ξi for (xi, yi) ∈ Dl,
wT x̃j + b ≤ ε+ ξ̃j for xj ∈ Dh,

−(wT x̃j + b) ≤ ε+ ξ̃∗j for xj ∈ Dh.

(1)

Here ε is the margin of tolerance for being close to the boundary, and Cl, Ch are the weights
of the classification errors (on Dl) and hint errors (on Dh), respectively. Similar to the usual
SVC and ε-SVR, the convex optimization problem can be transformed to the dual form to

226



Active Learning with Hinted Support Vector Machine

allow using the kernel trick. Define x̂i = xi, x̂|Dl|+j = x̂|Dl|+|Dh|+j = x̃j , ŷi = yi, ŷ|Dl|+j = 1,
and ŷ|Dl|+|Dh|+j = −1 for 1 ≤ i ≤ |Dl| and 1 ≤ j ≤ |Dh|. The dual problem of (1) can be
written as follows:

min
α

1
2α

TQα+ pTα

subject to ŷTα = 0,
0 ≤ αi ≤ Cl for i = 1, 2, · · · , |Dl|,
0 ≤ αj ≤ Ch for j = |Dl|+ 1, · · · , |Dl|+ 2|Dh|,

where pi = −1, pj = ε, and Qab = ŷaŷbx̂
T
a x̂b. The derived dual form can be easily solved

by any state-of-the-art quadratic programming solver, such as the one implemented in
LIBSVM (Chang and Lin, 2011).

3.2. Hinted Sampling with HintSVM

Next, we incorporate the proposed hinted sampling with the derived HintSVM formulation
to make a novel active learning algorithm, Active Learning with HintSVM (ALHS).

The querying algorithm Q of ALHS selects unlabeled instances from the unlabeled
pool Du as the hint pool Dh and trains HintSVM from Dl and Dh to obtain the query
boundary for uncertainty sampling. The use of both Dl and Dh combines uncertainty and
representativeness. The learning algorithm L of ALHS, on the other hand, trains a stand-
alone SVM from Dl to get a decision function f (r), just like L in uncertainty sampling (Tong
and Koller, 2000). The full ALHS algorithm is listed in Algorithm 1.

Algorithm 1 The ALHS algorithm

input: the number of rounds R; a labeled pool Dl; an unlabeled pool Dh; parameters of
HintSVM and SVM

for r ← 1 to R do
Select Dh from Du
h← TrainHintSVM(Cl, Ch, ε,Dh ∪ Dl)
(x̃s, ys)← Query(h,Du)
Du ← Du \ x̃s; Dl ← Dl ∪ (x̃s, ys)
f (r) ← TrainSVM(C,Dl)

end

Uncertainty sampling with SVM is a special case of ALHS when Dh is empty. In other
words, ALHS can be viewed as a generalization of uncertainty sampling that considers
representativeness through the hints. The simple use of hints avoids the challenges in
clustering or label-estimation steps. With a proper selection of hints, ALHS can be aware
of the key unqueried regions, therefore improving the performance. Next, we design and
illustrate one promising selection strategy.

4. Hint Selection Strategy

A näıve strategy for selecting a proper hint pool Dh ⊆ Du is to directly let Dh = Du, which
retains all the information about the unlabeled data. However, given that the size of Du
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(a) (b) (c)

Figure 3: (a) The original decision boundary; (b) HintSVM boundary after querying; (c)
HintSVM boundary (dashed magenta) after querying and dropping

is usually much larger than the size of Dl, this strategy may cause the hints to overwhelm
HintSVM, which leads to performance and computational concerns. Another näıve strategy
is to uniformly select Dh from Dl by random sampling. However, the uniform-random
strategy is not aware of the labeled instances and can hence result in less effective hints. In
this section, we propose a strategy that resolves the problems in the näıve strategies above,
and echoes some ideas from the design of modern active learning algorithms. Our strategy
consists of three steps: hint influence balancing, hint sampling and hint termination.

4.1. Hint Influence Balancing

When the hint pool Dh is relatively larger than the labeled pool Dl, one potential issue is
that the objective function of HintSVM is dominated by the hint errors ξ̃j + ξ̃∗j introduced
by Dh. In order to guide HintSVM to balance both the classification performance and the

hint errors, we simply set Ch = C, Cl = max
(
|Dh|
|Dl| , 1

)
× C to equalize the contribution

of Dl and Dh, where C is used in the learning algorithm L for ALHS to learn the SVM
decision function f (r).

4.2. Hint Sampling

In ALHS, the hints are used for guiding the uncertainty-based querying algorithm to con-
sider the less-queried regions. Thus, there is no need to allocate hints within regions that
already contain many labeled examples. In fact, hints in those regions may even mislead
the uncertainty-based querying algorithm. A strategic hint selection strategy that is aware
of Dl can therefore improve not only the computational efficiency but also the learning
performance of ALHS.

Instead of re-selecting a new Dh from Du in each iteration, we propose a simple alter-
native: retaining a huge Dh = Du at the initial stage, and dropping some less-useful hints
in each iteration. To design the hint sampling (dropping) strategy, we first review the char-
acteristics of HintSVM. In Figure 3(a), the red empty circles represent the hints and the
query boundary returned from HintSVM passes through their center. In Figure 3(b), after
querying the filled blue circle xi, which is closest to the query boundary in Figure 3(a), the
query boundary is pushed away from xi because of the classification objective of HintSVM,
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but still passes through the same region because of the many hints. The instance to be
queried is then the green square, which is close to xi and arguably not carrying much addi-
tional information. To drive the query boundary away from the known xi, the surrounding
neighbors of xi should be dropped from the hint pool Dh, as shown in Figure 3(c). Then,
the boundary could assist the querying algorithm Q in querying other potentially more
valuable instances that are far from xi, such as the one marked by a square in Figure 3(c).

We implement the idea with a neighborhood function φi : Rd → [0, 1] to measure the
closeness of an unlabeled instance x̃j to each given labeled instance xi. Given the labeled
pool Dl and the neighborhood functions φi of each xi ∈ Dl, we propose dropping x̃j from the
hint pool with the probability maxxi∈Dl φi(x̃j). That is, if x̃j is close to some xi (high φi(x̃j)),
with a high probability that x̃j would be dropped from Dh. The neighborhood function φi
can be viewed as a “dropping recommendation” from xi. We design φi by requesting the
function to satisfy three natural constraints: (1) φi(xi) = 1, which means a duplicate
example should be dropped (2) the φi for the closest neighbor to xi is P (3) the φi for the
farthest neighbor to xi is p, where p ≤ P .

We model φi by a radius basis function to satisfy the three constraints:

φi(x̃j) = P (rαij ). (2)

Here rj = ‖x̃j − xi‖/di is a normalized distance of x̃j given xi, and di is the distance
to the closest neighbor of xi. Then, according to (2) and the constraints, we can easily

solve αi = log
(

log p
logP

)/
logRi , where Ri is the normalized distance of the farthest neighbor

of xi.
We now briefly compare four sampling strategies for ALHS: (1) ALL: include all un-

labeled instances, (2) RAND: randomly drop instances from Dh with a fixed probability,
(3) CLOSEST: drop a fixed number of neighbors closest to the queried instance, (4) SAM-
PLE: the proposed strategy. The results on two datasets are shown in Figure 4, and the
detailed experimental settings are listed in Section 5. According to the experimental re-
sults, the ALL strategy is the worst because too many hints overwhelm HintSVM. RAND
strategy can solve the weakness of ALL strategy, but its performance at the earlier stage
may be unsatisfactory if current labeled instances are not considered. CLOSEST matches
the characteristic of HintSVM, but it may be an overkill to drop all neighbors based on
only one queried instance. Among the strategies, SAMPLE performs the best. It drops the
neighbor instances with the probabilities computed from neighborhood functions, and has
a chance to keep some neighbors as hints in dense regions.

Furthermore, based on the hint selection strategy, the hint pool Dh contains the most
informative instances in Du. Therefore, when Dh is non-empty, we propose to let Q select
queries from Dh instead of Du.

4.3. Hint Termination

After querying a sufficient number of instances, ALHS captures the underlying data distri-
bution with a high probability and the classifier f (r) on hand shall be close to the ideal one.
At that time, all hints carry little information to assist ALHS and thus are not important.
The querying algorithm Q in ALHS can then drop all the hints to switch to uncertainty
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Figure 4: Comparison of hint sampling methods for different datasets

sampling. This idea is similarly explored by Donmez et al. (2007), and we call it hint
termination.

We set a termination rule based on the proportion of the remaining hint instances. After
we drop many hints by querying enough instances, the remaining hints are not important.
The termination rule is |Dh|

|Dl|+|Du| ≤ δ, where δ is a given threshold. We examine two

thresholds at δ = 0 (no termination) and δ = 0.5. As shown in Figure 5, the experiment
results show that δ = 0.5 is comparable to δ = 0 and could even outperform δ = 0 in some
cases. We observe the similar results in other datasets, and thus consider δ = 0.5 in future
experiments.

10 20 30

0.4

0.5

0.6

0.7

Number of Queried Instances

A
cc

ur
ac

y

 

 

δ=0
δ=0.5

(a) diabetes

20 40 60
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Queried Instances

A
cc

ur
ac

y

 

 

δ=0
δ=0.5

(b) letterV vsY

Figure 5: Comparison of different δ values
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Table 1: Comparison on accuracy (mean ± se) after querying 5% of unlabeled pool
Algorithms (%), the highest accuracy for each dataset is in boldface

data UNCERTAIN REPRESENT QUIRE DUAL ALHS
australian 82.188± 1.571 83.739± 0.548 82.319± 1.126 81.304± 0.647 84.072± 0.454
breast 96.334± 0.278 95.264± 0.439 96.657± 0.187 96.408± 0.196 96.525± 0.219
diabetes 63.229± 2.767 66.758± 0.505 66.771± 0.960 65.143± 0.381 66.862± 1.632
german 69.060± 0.497 67.240± 1.099 68.750± 0.605 69.620± 0.323 69.750± 0.349
letterMvsN 89.632± 1.103 83.463± 1.348 81.372± 1.693 83.437± 1.211 91.919± 0.812
letterV vsY 79.245± 1.176 63.523± 2.335 68.516± 2.132 76.213± 1.549 79.381± 1.174
segment 95.437± 0.367 94.390± 0.482 96.074± 0.224 86.078± 2.834 96.095± 0.204
splice 74.430± 0.606 69.117± 1.452 70.340± 0.942 56.969± 0.576 75.506± 0.403
wdbc 93.842± 3.137 95.616± 0.711 96.613± 0.230 96.056± 0.250 96.921± 0.200

5. Experiment

We compared the proposed ALHS algorithm with the following active learning algorithms:
(1) UNCERTAIN (Tong and Koller, 2000): uncertainty sampling with SVM, (2) REPRE-
SENT (Xu et al., 2003): representative sampling with SVM and clustering, (3) DUAL (Don-
mez et al., 2007): mixture of uncertainty and representative sampling, (4) QUIRE (Huang
et al., 2010): representative sampling with label estimation based on the min-max view.

We conducted experiments on nine UCI benchmarks (Frank and Asuncion, 2010), which
are australian, breast, diabetes, german, splice, wdbc, letetrMvsN , letterV vsY (Donmez
et al., 2007; Huang et al., 2010) and segment-binary (Ratsch et al., 2001; Donmez et al.,
2007) as chosen by other related works. For each dataset, we randomly divided it into two
parts with equal size. One part was treated as the unlabeled pool Du for active learning
algorithms. The other part was reserved as the test set. Before querying, we randomly
labeled one positive instance and one negative instance to form the labeled pool Dl. For
each dataset, we ran the algorithms 20 times with different random splits.

Due to the difficulty of locating the best parameters for each active learning algorithms
in practice, we chose to compare all algorithms on fixed parameters. In the experiments,
every SVM-based algorithm took LIBSVM (Chang and Lin, 2011) with the RBF kernel and
the default parameters, except for C = 5. Correspondingly, the parameter λ in Donmez
et al. (2007); Huang et al. (2010) was set to λ = 1

C . These parameters ensure that all four
algorithms behave in a stable manner. For ALHS, we fixed δ = 0.5, P = 0.5 and p = 0.01
as discussed in the previous sections with no further tuning for each dataset. For other
algorithms, we take the parameters in the original papers.

Figure 6 presents the accuracy of different active learning algorithms along with the
number of rounds R, which equals the number of queried instances. Tables 1 and 2 list the
mean and standard error of accuracy when R = |Du|×5% and R = |Du|×10%, respectively.
The highest mean accuracy is shown in boldface for each dataset. We also conducted the t-
test at 95% significance level as described by Melville and Mooney (2004); Guo and Greiner
(2007); Donmez et al. (2007). The t-test results are given in Table 3, which summarizes the
number of datasets in which ALHS performs significantly better (or worse) than the other
algorithms.

231



Li Ferng Lin

5 10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

Number of Queried Instances

A
cc

ur
ac

y

 

 

UNCERTAIN
REPRESENT
QUIRE
DUAL
ALHS

(a) australian

5 10 15 20 25 30

0.7

0.8

0.9

1

Number of Queried Instances

A
cc

ur
ac

y

 

 

UNCERTAIN
REPRESENT
QUIRE
DUAL
ALHS

(b) breast
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(c) diabetes
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(d) leterMvsN
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(e) letterV vsY
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(f ) segment
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(g) wdbc
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(h) splice

Figure 6: Comparison on different datasets
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Table 2: Comparison on accuracy (mean ± se) after querying 10% of unlabeled pool
Algorithms (%), the highest accuracy for each dataset is in boldface

data UNCERTAIN REPRESENT QUIRE DUAL ALHS
australian 83.884± 0.460 84.884± 0.367 84.870± 0.455 81.174± 0.798 84.986± 0.314
breast 96.804± 0.188 96.378± 0.212 96.642± 0.179 96.422± 0.235 96.789± 0.175
diabetes 66.706± 2.632 66.484± 1.223 67.500± 1.337 65.143± 0.381 71.159± 1.224
german 71.410± 0.488 67.150± 0.773 70.250± 0.560 69.760± 0.299 71.690± 0.333
letterMvsN 95.369± 0.315 92.433± 0.777 95.114± 0.486 86.893± 0.870 95.648± 0.264
letterV vsY 88.213± 0.635 73.806± 1.551 84.723± 0.891 80.123± 1.359 88.697± 0.607
segment 96.528± 0.143 95.684± 0.155 96.658± 0.110 89.519± 1.760 96.545± 0.100
splice 79.931± 0.274 76.274± 0.895 78.560± 0.648 58.947± 0.853 80.635± 0.309
wdbc 97.155± 0.141 96.818± 0.191 96.862± 0.206 95.748± 0.247 97.111± 0.157

Table 3: ALHS versus the other algorithm based on t-test at 95% significance level

Algorithms (win/tie/loss)

Percentage of queries UNCERTAIN REPRESENT QUIRE DUAL
5% 6/3/0 7/2/0 6/3/0 5/4/0
10% 5/4/0 7/2/0 6/3/0 5/4/0

For some datasets, such as wdbc and breast in Figure 6(g) and 6(b), representative sam-
pling approaches (REPRESENT, DUAL and QUIRE) achieve a better performance, while
the result for UNCERTAIN is unsatisfactory. This unsatisfactory performance is possibly
caused by the lack of awareness of unlabeled instances, which echoes our illustration in
Figure 1. ALHS improves on UNCERTAIN by using the hints, and is comparable to other
representative sampling algorithms.1 On the other hand, in Figure 6(h), since splice is
a larger and higher dimensional dataset, representative sampling algorithms that perform
clustering (REPRESENT, DUAL) or label estimation (QUIRE) fail to reach a decent per-
formance, while ALHS keeps a stable performance and slightly outperforms UNCERTAIN
by using the hints.

In Figure 6, we see that ALHS can achieve comparable results to those of the best
representative sampling and uncertainty sampling algorithms. As shown in Tables 1 and 2,
after querying 5% of the unlabeled instances (Table 1), ALHS achieves the highest mean
accuracy in 8 out of 9 datasets; after querying 10% of unlabeled instances (Table 2), ALHS
achieves the highest mean accuracy in 6 out of 9 datasets. Table 3 further confirms that
ALHS usually outperforms each of the other algorithms at the 95% significance level.

1. There are some more aggressive querying criteria (Tong and Koller, 2000) than UNCERTAIN and we
have compared with those as additional experiments. Our preliminary observation was that those criteria
can be worse than UNCERTAIN with soft-margin SVM and hence we excluded them from the tables.
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6. Conclusion

We propose a new framework of active learning, hinted sampling, which exploits the unla-
beled instances as hints. Hinted sampling can take both uncertainty and representativeness
into account concurrently in a more natural and simpler way. We design a novel active
learning algorithm ALHS within the framework, and couple the algorithm with a promising
hint selection strategy. Because ALHS models the representativeness by hints, it avoids
the potential problems of other more sophisticated approaches that are employed by other
representative sampling algorithms. Hence, ALHS results in a significantly better and more
stable performance than other state-of-the-art algorithms.

Due to the simplicity and effectiveness of hinted sampling, it is worth studying more
about this framework. An intensive research direction is to couple hinted sampling with
other classification algorithms, and investigate deeper on the hint selection strategies. While
we use SVM in ALHS, this framework could be generalized to other classification algorithms.
In the future, we plan to investigate more general hint selection strategies and extend hinted
sampling from binary classification to other classification problem.
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