
A Deep Model with Local Surrogate Loss
for General Cost-sensitive Multi-label Learning

Cheng-Yu Hsieh Yi-An Lin Hsuan-Tien Lin
Department of Computer Science and Information Engineering

National Taiwan University
{r05922048, r02922163}@ntu.edu.tw htlin@csie.ntu.edu.tw

Abstract

Multi-label learning is an important machine learning prob-
lem with a wide range of applications. The variety of crite-
ria for satisfying different application needs calls for cost-
sensitive algorithms, which can adapt to different criteria eas-
ily. Nevertheless, because of the sophisticated nature of the
criteria for multi-label learning, cost-sensitive algorithms for
general criteria are hard to design, and current cost-sensitive
algorithms can at most deal with some special types of crite-
ria. In this work, we propose a novel cost-sensitive multi-label
learning model for any general criteria. Our key idea within
the model is to iteratively estimate a surrogate loss that ap-
proximates the sophisticated criterion of interest near some
local neighborhood, and use the estimate to decide a descent
direction for optimization. The key idea is then coupled with
deep learning to form our proposed model. Experimental re-
sults validate that our proposed model is superior to existing
cost-sensitive algorithms and existing deep learning models
across different criteria.

1 Introduction
Multi-label learning (MLL) addresses the problem of asso-
ciating each data point with a set of relevant labels. It has
recently attracted much research attention since the problem
setting meets the needs of various real-world applications.
For instance, in image classification, an image may contain
multiple objects simultaneously (Boutell et al. 2004). Other
MLL applications include text categorization (Schapire and
Singer 2000), music tag annotation (Lo et al. 2011), and
video classification (Qi et al. 2007). Different MLL appli-
cations often aim for different goals, and thus a variety of
criteria have been proposed to measure the performance of
MLL algorithms from different angles. Some popular crite-
ria include Hamming loss, Rank loss, Example-F1, Micro-
F1, Macro-F1, and Precision-at-k (Tsoumakas, Katakis, and
Vlahavas 2010; Madjarov et al. 2012).

Classical MLL algorithms such as binary relevance
(Tsoumakas, Katakis, and Vlahavas 2010), classifier chain
(Read et al. 2011), and label powerset (Tsoumakas, Katakis,
and Vlahavas 2010) are designed to optimize some specific
criterion. Nevertheless, because of the different behaviors of
different criteria, an algorithm that optimizes one criterion

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

well may not be a good choice for other criteria, and it is
difficult to modify those classical algorithms towards other
criteria. The demands from real-world applications call for
algorithms that can adapt to optimize different evaluation
criteria. Such algorithms allows applications to not only con-
duct goal-specific optimization but also change their goals
more easily if needed. As the evaluation criterion defines the
cost for misclassifications made by the learning algorithms,
MLL algorithms that adapt to optimize different criteria is
generally referred to as cost-sensitive multi-label learning
(CSMLL) algorithms (Li and Lin 2014).

Many CSMLL algorithms have been proposed in re-
cent years (Dembczynski, Cheng, and Hüllermeier 2010;
Lo et al. 2011; Li and Lin 2014; Wu and Lin 2017; Huang
and Lin 2017). For example, probabilistic classifier chain
(Dembczynski, Cheng, and Hüllermeier 2010) makes cost-
sensitive prediction with inference steps towards Bayes-
optimal decisions, often with the help of an efficient infer-
ence rule that corresponds to the criterion of interest; con-
densed filter tree (Li and Lin 2014) adapts to optimize differ-
ent criteria by transforming the criterion into sample weights
when training the underlying classifiers; progressive random
k-labelsets (Wu and Lin 2017) reduces the original CSMLL
problem into multiple cost-sensitive multi-class classifica-
tion subproblems. Nonetheless, current CSMLL algorithms
are generally restricted to a certain class of criteria that can
be decomposed to per-instance measures, and cannot deal
with other criteria such as Precision-at-k.

In this work, we loosen the restriction and study a more
general CSMLL setting that requires the algorithms to adapt
to optimize virtually any common MLL criterion. How-
ever, given the complicated nature of MLL criteria, design-
ing such general cost-sensitive algorithm is challenging. In
particular, most of the criteria are highly non-convex and
even discontinuous, and it is thus generally impossible to
optimize the criterion directly through numerical optimiza-
tion. A common practice to tackle the difficulty is to de-
velop appropriate surrogate loss function of the criterion of
interest to make the optimization procedure tractable. (Pet-
terson and Caetano 2010; 2011; Zhang and Zhou 2006;
Gong et al. 2013; Nam et al. 2014; Gao and Zhou 2011;
Dembczynski, Kotlowski, and Hüllermeier 2012). The sur-
rogate loss function serves as a smooth proxy of the crite-
rion and carries better optimization properties during train-

ing. Nevertheless, current surrogate loss functions rely on
human designs with respect to one or a few criteria, and can-
not be systematically applied to solve the general CSMLL
problem for any criteria of interest.

In this work, we approach the general CSMLL problem
by letting the machine learn a surrogate loss function for
the criterion of interest, therefore escaping from the restric-
tions of human designs. Nevertheless, given the complicated
nature of the MLL criteria, learning a global surrogate loss
function turns out to be computationally demanding and
conceptually difficult. We thus propose to learn the surrogate
loss function locally. That is, we plug the surrogate-learning
step into the iterative numerical optimization procedure of
training CSMLL classifiers. In each surrogate-learning step,
the proposed locally-learned surrogate loss (LLSL) is only
required to approximate a given criterion of interest near
some local neighborhood. The approximation captures the
local behavior of the criterion’s cost surface, and carries suf-
ficient information to guide the numerical optimization pro-
cedure towards a descent direction for optimizing the crite-
rion. We further combine the idea of LLSL with gradient-
based optimization in deep learning to propose a novel deep
model for multi-label learning that can automatically adapt
to optimize general criteria.

The main contributions of this paper are highlighted as
follows:
• We present a novel methodology that systematically and

automatically learns to optimize any given criterion for
multi-label learning. The methodology solves a broader
range of CSMLL problems than existing CSMLL algo-
rithms.

• The methodology is used to design the world’s first cost-
sensitive deep learning model for multi-label learning.

• The proposed deep learning model enjoys superior per-
formances against existing methods across various real-
world datasets and evaluation criteria.

2 Background
2.1 Problem Setup
In a multi-label learning (MLL) problem, we denote an in-
stance by a feature vector x ∈ Rd, and its relevant labels by
a bit vector y ∈ {0, 1}K , where K is the number of labels
and y[k] = 1 if and only if the k-th label is relevant. Given a
training set D = {(xn,yn)}Nn=1, the goal of the multi-label
learning problem is to learn a hypothesis h : Rd → RK to
make predictions on unseen instances accurately. The flexi-
ble definition of h above covers two typical cases: a classi-
fier hwhich is only allowed to output bit vectors that directly
decides the relevance of each label, or a ranker hwhose real-
valued outputs can be used to rank the labels by the predicted
relevance level.

More specifically, given a test dataset D′ = {x′m}Mm=1,
the goal is to make the prediction vectors {ŷ′m =
h(x′m)}Mm=1 close to the hidden ground-truth vectors
{y′m}Mm=1. Denote a matrix Y′ that contains {y′m}Mm=1 as
its rows, and another matrix Ŷ′ that contains {ŷ′m}Mm=1
as its rows, the goal can be expressed as minimizing a

criterion Ψ(Y′, Ŷ′) that measures the difference between
the two matrices of vectors. A special family of criteria,
called example-based criteria, measures the average differ-
ence vector by vector (row by row). That is, Ψ(Y′, Ŷ′) =
1
M

∑M
m=1 ψ(y′m, ŷ

′
m). For instance, when h is a classifier,

one simplest choice is ψH(y, ŷ) = 1
K

∑K
k=1Jy[k] 6= ŷ[k]K,

called the Hamming loss. Other popular choices include the
Example-F1 loss, where ψF (y, ŷ) = 1− 2y•ŷ

‖y‖1+‖ŷ‖1
; and the

Rank loss with ψR(y, ŷ) = 1
R(y)

∑
(k,l):y[k]<y[l]Jŷ[k] >

ŷ[l]K+ 1
2Jŷ[k] = ŷ[l]K, whereR(y) = |{(k, l)|y[k] < y[l]}|

is a normalizer. When h is a ranker, a common example-
based criterion is called (negative) Precision-at-k, where
ψP (y, ŷ) = 1 − 1

k

∑
`∈topk(ŷ) y[`] and topk(ŷ) returns the

indices that correspond to the k largest values in ŷ. As min-
imizing these instance-averaging criteria can be reduced to
minimizing ψ on each instance, ψ is used in this paper to
replace Ψ for example-based criteria.

In addition, the definition of Ψ covers the more general
case of measuring the difference for the entire test set (pre-
diction matrix). For example, when h is a classifier, the pop-
ular Macro-F1 loss can be expressed as

Ψma(Y, Ŷ) = 1− 1

K

K∑
k=1

2
∑M
m=1 YmkŶmk∑M

m=1 Ymk +
∑M
m=1 Ŷmk

,

which is physically the mean F1 loss per label. The Micro-
F1 loss can be similarly expressed as

Ψmi(Y, Ŷ) = 1−
2
∑K
k=1

∑M
m=1 YmkŶmk∑K

k=1

∑M
m=1 Ymk +

∑K
k=1

∑M
m=1 Ŷmk

,

which is the F1 loss on all matrix components. Other crite-
rion such as (negative) Macro-averaged Precision-at-k can
also be defined when h is a ranker. Note that we consider
all criteria to be the lower the better for the simplicity of
comparison.

Notice that for a given criterion Ψ and a ground-truth la-
bel matrix Y, a cost function that maps any predicted label
matrix Ŷ to a scalar cost can be defined as CΨ|Y(Ŷ) =

Ψ(Y, Ŷ). In the rest of the paper, we refer to CΨ|Y as CΨ

when Y is clear in the context.

2.2 Related Work
Given such great variety of evaluation metrics for MLL, tra-
ditional MLL algorithms are however designed to optimize
only a certain or few specific metrics. For example, algo-
rithms such as binary relevance (Tsoumakas, Katakis, and
Vlahavas 2010) and classifier chain (Read et al. 2011) that
decompose MLL into K binary classification problems can
arguably only focus on optimizing Hamming loss. On the
other hand, label powerset approach (Tsoumakas, Katakis,
and Vlahavas 2010) can merely focus on optimizing 0/1 loss
since it transforms the original MLL problem into multi-
class classification problem.

Nevertheless, it should be noted that even for a single
MLL criterion of interest, optimizing this criterion is in fact
difficult owing to the highly non-smooth nature of MLL

criteria. As a result, there are currently two main fami-
lies of methods that attempt to overcome the challenge.
The first common paradigm is to approach the problem by
designing surrogate losses that can be optimized by effi-
cient algorithms. For example, (Petterson and Caetano 2010;
2011) derived surrogates for the F-measure which can be op-
timized efficiently by SVM-style models; (Zhang and Zhou
2006; Gong et al. 2013; Nam et al. 2014) introduced differ-
ent loss functions for neural networks targeting at different
criteria; and (Gao and Zhou 2011; Dembczynski, Kotlowski,
and Hüllermeier 2012) proposed consistent surrogates for
the Rank loss. While an appropriate surrogate loss can in-
deed improve model performance on its corresponding cri-
terion, deriving a surrogate for every criterion is nonetheless
unsatisfactory for practical use.

Another major family of algorithms, generally termed
cost-sensitive multi-label learning algorithms, tackles the
problem by considering the cost (criterion) information in
the model’s training or prediction phase (Dembczynski,
Cheng, and Hüllermeier 2010; Lo et al. 2011; Li and Lin
2014; Wu and Lin 2017; Huang and Lin 2017). Although
these methods can adapt to different criteria more easily,
current algorithms can still only deal with example-based
criteria due to their restricted problem setting.

3 Proposed Method
Inspired by the rich literatures on cost-sensitive classifi-
cation (Elkan 2001; Zadrozny, Langford, and Abe 2003;
Li and Lin 2014; Wu and Lin 2017), we first propose a
sample-weighting CSMLL framework which is able to deal
with example-based criteria. We then highlight a prelimi-
nary cost-sensitive multi-label deep learning model which
can be derived based on the framework. Last, to overcome
the drawbacks of such simple model, we present a novel
technique which can be used to optimize any given MLL
criterion. The idea is coupled with deep learning to form a
deep model for general cost-sensitive MLL.

3.1 Sample-weighting CSMLL Framework
In the literatures of both cost-sensitive multi-class classifi-
cation as well as CSMLL, re-weighting the training samples
has been a simple yet effective approach (Zadrozny, Lang-
ford, and Abe 2003; Beygelzimer, Langford, and Raviku-
mar 2009; Li and Lin 2014). Motivated by these work, we
propose a sample-weighting framework which can be easily
used to develop CSMLL algorithms.

Assume that there are K classifiers fk : Rd → {0, 1}
each responsible for predicting a corresponding label ŷn[k]
of a given instance xn. The main concept of the framework
is to iteratively train these K classifiers on weighted exam-
ples, where the sample weights act as the connection to the
evaluation criterion ψ. In particular, when training the k-th
classifier fk, each example xn is weighted by a correspond-
ing sample weight wn,k. The sample weight is decided by
how much cost it would incur for misclassifying the k-th la-
bel of xn. To estimate this misclassification cost for ŷn[k],
one can assume that the otherK−1 classifiers are fixed, and
obtain their current predictions via {ŷn[i] = fi(xn)}i6=k. By

Algorithm 1 Sample-weighting framework for CSMLL
1: Let fk be a single-label classifier that predicts ŷ[k]
2: for m = 1 to M iterations do
3: for k = 1 to K do
4: for each instance (xn,yn) do
5: Assume the other classifiers {fi}i 6=k fixed
6: Calculate c0n,k by Equation 1
7: Calculate c1n,k by Equation 2
8: wn,k ← |c0n,k − c1n,k|
9: Assign sample weight wn,k to (xn,yn)

10: end for
11: Train fk with the weighted examples
12: end for
13: end for

having these predictions in hand, the misclassification cost
can then be calculated as |c0n,k−c1n,k|, where c0n,k is the cost
for predicting ŷn[k] as zero:

c0n,k = ψ(yn, (ŷn[1, ..., k − 1], 0, ŷn[k + 1, ...,K])), (1)

and c1n,k is the cost for predicting ŷn[k] as one:

c1n,k = ψ(yn, (ŷn[1, ..., k − 1], 1, ŷn[k + 1, ...,K])). (2)

By assigning wn,k = |c0n,k − c1n,k|, the sample weights can
guide fk to focus on the examples that have greater influence
on the final cost and optimize the criterion in interest. Based
on the proposed framework, various CSMLL algorithms can
be designed. In fact, it can also be showed that a previ-
ous CSMLL work, condensed filter tree (Li and Lin 2014),
is merely a special case that utilizes this sample-weighting
technique. We present this general framework for CSMLL
in Algorithm 1.

In short, the key idea behind the framework is that
if we are able to refer to all the other label predictions
{fi(xn)}i 6=k while training a single-label classifier fk, the
cost for wrongly predicting ŷn[k] can then be calculated
and embedded within the sample weights to achieve cost-
sensitiveness.

3.2 A Simple Cost-sensitive Multi-label Deep
Learning Model

Having the sample-weighting framework for CSMLL dis-
cussed, we now turn our attention to how a simple cost-
sensitive multi-label deep learning model can be devel-
oped from it. Following previous work on multi-label neu-
ral networks (Zhang and Zhou 2006; Gong et al. 2013;
Nam et al. 2014), we also consider the architectures with K
output nodes, where each output node ok can be viewed as
a single-label classifier that predicts the k-th label. To lever-
age the sample-weighting technique, one should be able to
access the current predictions of the otherK−1 labels while
training the k-th label classifier. In fact, this turns out to be
rather intuitive for deep learning models.

Let hθt : Rd → [0, 1]K denotes a multi-label neural net-
work, where θt is the network weights at timestep t. At any

t, the complete label prediction ŷn for an instance xn can
be simply obtained by feeding the example as the network
input, i.e., ŷn = hθt(xn). With ŷn available, for each out-
put node ok (or the k-th single-label classifier), one can then
follow the framework and associate each example xn with
the calculated sample weight wn,k. As each ok is consid-
ered a binary classifier for ŷ[k], an intuitive choice of the
loss function for these output nodes is the commonly known
logloss:

Llog(y[k], ŷ[k]) = −(y[k] log(ŷ[k])+(1−y[k]) log(1−ŷ[k]))

By coupling the logloss with the sample weights and con-
sidering training all K label classifiers jointly, the final loss
function to be optimized by the neural network at time t then
becomes:

LWBCE =
1

N

N∑
n=1

K∑
k=1

wn,kLlog(yn[k], ŷn[k]) (3)

We note that if the sample weights are not used, i.e., wn,k =
1 for all n and k. Eq.3 degenerates to the conventional bi-
nary cross entropy (BCE), as proposed in (Nam et al. 2014).
Thus, we term the loss in Eq.3 as weighted binary cross en-
tropy (WBCE). It is also worthwhile to note that the sample
weightswn,k change as the network updates. Hence, the loss
function LWBCE is in fact changing according to the sam-
ple weights at different timestep t. We present this simple
method to train a cost-sensitive multi-label deep learning
model in Algorithm 2.

Weighted BCE versus BCE By decomposing Eq.3, the
weighted BCE loss for an instance (xn,yn) is:

K∑
k=1

wn,kLlog(yn[k], ŷn[k]) (4)

From the perspective of a single instance, the original sam-
ple weights {wn,k}Kk=1 can also be viewed as the weights for
each label. These weights encode the information about the
relative importance of each label. That is, ifwn,k > wn,l, the
network should probably focus more on making the predic-
tion on ŷn[k] correct even at the cost of wrongly predicting
ŷn[l].

To compare the proposed WBCE with the ordinary BCE,
we visualize the contours and gradients computed w.r.t. both
losses in an illustrative two-dimensional scenario in Figure
1. It can be seen that the first label (dimension) has more
influence on the cost than the second label (dimension) as
the cost differences on the first axis is much greater than
those on the second axis. Nonetheless, as the ordinary BCE
does not take any cost information into account, the gradient
it provides is unaware of the relative importance of labels.
In contrast, gradient computed w.r.t. the weighted BCE loss
is inclined much toward the first dimension, suggesting a
direction to a relatively low-cost region.

While the weighted loss is able to take the cost informa-
tion into account and provides a trajectory along the low-
cost regions, the gradient direction it suggests is however
relatively naive. The weights {wn,k}Kk=1 for an instance

Algorithm 2 Weighted binary cross entropy for deep learn-
ing models
Input: Training set D = {(xn,yn)}Nn=1 and an example-
based MLL criterion ψ

1: Randomly initialize the neural network hθ0
2: repeat
3: Split D into M random mini-batches {Dm}Mm=1
4: for m = 1 to M do
5: for each instance (xn,yn) ∈ DM do
6: ŷn ← hθ(xn)
7: for k = 1 to K do
8: Calculate the sample weight wn,k
9: end for

10: end for
11: Update the network weights with gradients

computed w.r.t LWBCE
12: end for
13: until converge

(xn,yn) are in fact calculated as merely the cost differences
between the current prediction ŷ and its one-bit neighbors,
i.e., label vectors y ∈ {y|‖y − ŷ‖1 = 1}. In other words,
the weights are only the first-order approximation to the cost
surface, and thereby the gradient suggested by the weighted
loss leverages only limited cost information. Most impor-
tantly, this preliminary model can still only handle example-
based criteria, as with current cost-sensitive methods.

3.3 Locally-learned Surrogate Loss for General
Cost-sensitive Multi-label Deep Learning

From Figure 1, it can be seen that the key to designing a cost-
sensitive model is that the loss surface for which the model
is optimized should sufficiently reflect the curvature of the
criterion in interest. This in fact matches the main concept
behind the previous literatures that work on developing sur-
rogates for MLL criteria, as their main goal is also to come
up with smooth approximates that preserve the characteris-
tics of their corresponding criteria.

However, when designing a model for general criteria, it
is inefficient, or even impossible, to manually derive surro-
gate losses for every criterion. Therefore, we call for a sur-
rogate that can by itself learns to adapt to different criteria.
In essence, we ask the question: can a surrogate loss be au-
tomatically learned to approximate a target criterion rather
than explicitly designed by human? Nevertheless, learning
to approximate the complicated MLL criteria is undoubtedly
difficult, and it is certainly not preferable ending up with an-
other complex surrogate which actually does not decrease
the problem complexity. Therefore, what we aim for is an
optimization-friendly surrogate that can however provide de-
cent approximation to the target criterion.

Among various optimization strategies, gradient descent
based algorithms are simple but powerful, and are nowadays
the most prevalent practices for training modern models.
One key characteristic of gradient descent based algorithms
is they leverage only local information of the error surface
to decide to descent direction for optimization. Therefore, if

Figure 1: The contour and gradient direction of ordinary BCE (left) and WBCE (right). Note that each vertex on the square
corresponds to a predicted label vector, and C(ŷ) is the cost function defined by the evaluation criterion.

we consider using gradient descent based algorithms for the
optimization of the surrogate loss, instead of a global ap-
proximation of the MLL criterion, it is arguably sufficient
for the approximation to be locally faithful. In addition, a di-
rect advantage gained from considering local approximation
is that simpler (smoother) approximator is perhaps enough
to learn an accurate local estimation.

To this end, we answer the previously posed question
by a novel surrogate called locally-learned surrogate loss
(LLSL), which is a (a) smooth surrogate (b) learned auto-
matically (c) to provide locally faithful approximation to the
criterion of interest (d) that guides the descent direction for
optimization. In particular, for a given criterion of interest,
we consider an iterative procedure for optimization. In each
iteration, LLSL is first updated to approximate the local be-
havior of the criterion and is then used to determine the de-
scent direction for model optimization in that specific itera-
tion. Such routine is carried out repeatedly until the underly-
ing model converges. Since LLSL is automatically learned,
the key idea is in fact applicable to any MLL criterion. To
the best of our knowledge, this is the first surrogate proposed
that can adapt to general MLL criteria by itself. We note that
as LLSL can essentially be viewed as a loss function, it can
be coupled with any descent based optimization model such
as deep learning to form a CSMLL model, as we shall show
shortly.

Formally, let hθt : Rd → RK be a MLL model param-
eterized by the weights θt at time t, Y be the ground truth
label matrix where its n-th row is yn, and Ŷ be the pre-
dicted label matrix where its n-th row is ŷn = hθt(xn). To
optimize a MLL criterion Ψ, we wish to provide a smooth
surrogate to the cost surface CΨ of the MLL criterion near
the local neighborhood of Ŷ. Specifically, for an instance
(xn,yn), we like to estimate how the perturbation in ŷn af-
fects the behavior of CΨ, and use this estimate to decide the
descent direction for the instance. LetG be a class of models
considered for the local approximation, such as linear mod-
els, and {zl}Ll=1 be the local neighbors around ŷn. We first
form a dataset Z(t) = {zl, CΨ(Zl)}Ll=1, where Zl is the la-
bel matrix obtained by replacing the n-th row of Ŷ with zl.
As the dataset consists of a set of local neighbors around Ŷ

and their corresponding cost, LLSL can then be learned as:

L
(t)
LLSL(.) = arg min

g∈G
L(g,Z(t)) (5)

where L is a measurement for the closeness of the learned
surrogate g and the cost surfaceCΨ. We note that the learned
surrogate is a regressor g : RK → R who takes as input a
label vector and predicts its corresponding cost. With the
above formulation, the surrogate loss can be learned with
different sets of local neighbors Z(t), closeness measure-
ment L and approximation models G. For example, when
L is the square loss, and G is assumed to be linear. The sur-
rogate loss is actually learned as a linear regression:

L
(t)
LLSL(o) = (arg min

w

∑
(z,c)∈Z(t)

(c−wT z)2)To (6)

where o ∈ RK is the predicted label vector space. Other
types of regressors (approximators) such as polynomial re-
gression can also be considered by proper choices on G and
L. After the surrogate loss is learned, its gradient can now be
easily computed to lead the update of any gradient descent
based optimization model. For instance, if the underlying
MLL model is a neural network with K output nodes, con-
tinuing from Eq.6, the partial derivative of the surrogate loss
computed w.r.t. each output node ok is obtained by:

∂L
(t)
LLSL(o)

∂ok
= w[k] (7)

As the gradient for the output layer is computed, the whole
network weights can then be updated by backpropagation to
optimize the surrogate loss, as well as the target criterion.
We present this novel deep learning model for general MLL
criteria in Algorithm 3.

For the selection of the local neighbors {zl}Ll=1 from
which the surrogate loss is learned, a natural choice for a
classifier h is {z|‖z − ŷn‖1 ≤ n}, i.e., the label vectors
whose Hamming distance to the current prediction is less
than n, or, the n-bit neighbors. As for a ranker h, a natural
choice would be {z|ŷn + p} where p is a random perturba-
tion. We also note that more advanced methods for defining

Algorithm 3 Locally-learned surrogate loss for deep learn-
ing models
Input: Training set D = {(xn,yn)}Nn=1, criterion in inter-
est Ψ, a class of approximators G and L

1: Randomly initialize the neural network hθ0
2: repeat
3: Split D into M random mini-batches {Dm}Mm=1
4: for m = 1 to M do
5: for each instance (xn,yn) ∈ DM do
6: ŷn ← hθt(xn)
7: Collect a set local neighbors and their

corresponding cost Z(t) = {zl, CΨ(Zl)}Ll=1
8: Learn the local surrogate loss LLLSL on Z
9: end for

10: Update the network with gradients computed
w.r.t LLLSL

11: end for
12: until converge

the neighborhood can be considered. For example, one can
select the local neighbors using the cost function as the dis-
tance measurement.

While the general definition of Eq.5 and the non-smooth
nature of the criteria make it hard to derive rigorous theo-
retical results for the proposed method, analyses on simple
cases are still available. For instance, when the local learner
is linear, it is rather straightforward to show that the time
complexity of fitting a LLSL is polynomial in K, and the
resulting learned surrogate indeed points to a descending di-
rection under mild conditions. We conjecture that the de-
scending direction, when coupled with careful line-search
step, can then prove optimization convergence to a local
minimum. We leave the work as our future direction, and
first demonstrate the superiority of our method by the em-
pirical results as we shall show in the next section.

Connection to Weighted BCE It is worthwhile to note
that the proposed LLSL can be viewed as a generalization of
the weighted BCE. For WBCE, the weights for an instance
(xn,yn) are calculated simply as wn,k = |ψ(yn, zn,k) −
ψ(yn, ŷn)|, where zn,k is the label vector obtained from
flipping the k-th bit of ŷn. This in fact corresponds to the
LLSL framework with Z = {z|‖z − ŷn‖1 = 1}, L and G
being linear least squares, which utilizes the cost informa-
tion along each axis separately. Nonetheless, given the com-
plicated behavior of MLL criteria, a more sophisticated ap-
proximation that leverages the cost information around the
current prediction jointly is perhaps necessary to capture the
curvature of the cost surface.

4 Experiments
4.1 Experiment setup
To evaluate the effectiveness of the proposed models, we
conduct experiments on a total of eleven datasets across
different evaluation criteria. First, on seven benchmark

datasets1 (Tsoumakas et al. 2011), we compare our meth-
ods with: the state-of-the-art cost-sensitive MLL algorithm,
condensed filter tree (CFT) (Li and Lin 2014), and exist-
ing deep learning models including BP-MLL (Zhang and
Zhou 2006), WARP (Gong et al. 2013), and BCE (Nam et
al. 2014). In the experiments, we consider two main classes
of evaluation criteria: (a) example-based criteria: Hamming
loss, Rank loss, and Example-F1 loss; (b) set-based crite-
ria: Micro-F1 and Macro-F1. Since both CFT and the deep
model coupled with WBCE can only optimize example-
based criteria, their results on Micro-F1 and Macro-F1 are
not available. In addition, as WBCE essentially degenerates
to BCE on Hamming loss2, the results for it are also omitted.

For fair comparison, all deep learning models are de-
ployed with a fixed architecture. The architecture is com-
posed of two fully-connected layers, where the number of
hidden units for each layer is set to min(d, 1024) with d be-
ing the input dimension. Each fully-connected layer is fol-
lowed by a dropout layer with dropout ratio of 0.5. For the
hidden units, Leaky ReLU is considered as the activation
function.

For the proposed LLSL, we utilize several different set-
tings to approximate the criterion of interest. Specifically,
we consider three types of the underlying learners: (a) an
ordinary least square regressor that learns from the one-bit
neighbors; (b) an ordinary least square regressor that learns
from the two-bit neighbors; (c) a second-degree polyno-
mial regressor that learns from the two-bit neighbors. The
three different settings will be referred to as LLSLlinear-1,
LLSLlinear-2, and LLSLpoly-2 respectively.

In each run of the experiment, we randomly split 50%,
25%, and 25% of the dataset for training, validation, and
testing. Finally, the results are averaged over 10 different
random runs. Due to space limit, the relative ranking for all
algorithms are shown in Figure 2, and the detailed numerical
results are provided in Appendix.

To demonstrate the scalability of our model, we further
compare our method to the state-of-the-art algorithm, sparse
local embeddings for extreme classification (SLEEC) (Bha-
tia et al. 2015), which is designed specially for handling
datasets with many labels. This set of experiments are con-
ducted on four benchmark datasets3 with many labels. We
follow (Bhatia et al. 2015) to use Precision-at-k as the eval-
uation criterion.

4.2 Comparisons with Cost-sensitive Algorithm
From Figure 2, we see cases where even cost-insensitive
deep learning models can outperform the traditional non-
deep cost-sensitive algorithm CFT. This somewhat stresses
the importance of studying deep learning models for MLL.
In addition, when comparing to CFT, our model almost con-
stantly reaches better performances against CFT. Most im-
portantly, while CFT can only deal with example-based cri-
teria, our proposed model can adapt easily toward optimiz-
ing any general criteria.

1birds, emotions, enron, medical, scene, tmc2007, and yeast.
2All sample weights wn,k are equal to 1

K
under Hamming loss.

3Bibtex, Delicious, EURLex-4K, and Wiki10-31K.

Figure 2: The average rank of different models on different
criteria. The lower (left) the rank, the better the performance.

4.3 Comparisons between Deep Learning Models
Cost-insensitive versus Cost-sensitive To validate our
proposed methods, we begin with the comparison between
WBCE and BCE. Given that BCE is designed as the soft
counterpart for Hamming loss, it shows its competence on
Hamming loss in Figure 2. Nonetheless, since BCE can-
not adapt to different criteria, WBCE outperforms BCE on
Example-F1 and Rank loss, as shown in Figure 2. The re-
sults demonstrate that the proposed WBCE is indeed a (sim-
ple) way to make deep learning models cost-sensitive.

Although WBCE can reach better performances than BCE
on Example-F1 and Rank loss, when comparing it to the
proposed LLSL, LLSL wins by a large margin in Figure 2.
The results justify the need for studying a more sophisti-
cated method to make deep learning models cost-sensitive.
Furthermore, we shall note that LLSL is able to optimize
any given criterion while WBCE is restricted to cope with
example-based criteria.

In Figure 2, when comparing the proposed LLSL to other
deep learning models, our model steadily shows superior
performances across different criteria, while the other mod-
els can only sometimes reach the best result on the criteria
for which they are designed to optimize. The results again
demonstrate the ability of LLSL to adapt to general criteria.

The Approximators for LLSL In order to gain more in-
sights on the proposed LLSL, we further compare the perfor-
mances of LLSLlinear-1, LLSLlinear-2, and LLSLpoly-2 to see
how different underlying approximators behave on differ-
ent criteria. In Figure 2, we see that LLSLlinear-1 performs
the best against the others on Hamming loss and Rank loss.
On the other hand, LLSLpoly-2 outperforms the other two on
Example-F1, Micro-F1 and Macro-F1. LLSLlinear-2 can only
reach the best result on few cases.

To explain the results, we take a step further to investi-
gate the reason behind so. In particular, we investigate the
goodness of the estimations learned by different approxima-
tors. The goodness is measured by the RMSE between the
true cost and the estimated cost on a set of points sampled
from the local neighborhood where the estimation is learned.
The results are reported in Table 1. From the table, it can be
seen that the performance of a model is strongly correlated

Table 1: Approximation error in RMSE
Approximators

Datasets Criterion linear-1 linear-2 poly-2 Consistent

birds Rank 0.073 ± 0.079 2.150 ± 3.148 1.274 ± 2.849 3
Example-F1 0.034 ± 0.048 0.053 ± 0.044 0.023 ± 0.032 3
Micro-F1 0.146 ± 0.046 0.116 ± 0.021 0.132 ± 0.033 3
Macro-F1 0.485 ± 0.025 0.551 ± 0.061 0.450 ± 0.064 3

emotions Ranking 0.170 ± 0.072 0.613 ± 0.329 0.990 ± 0.560 3
Example-F1 0.159 ± 0.070 0.173 ± 0.033 0.093 ± 0.029 3
Micro-F1 0.227 ± 0.054 0.242 ± 0.088 0.152 ± 0.026 3
Macro-F1 0.209 ± 0.047 0.187 ± 0.114 0.172 ± 0.016 3

scene Ranking 0.110 ± 0.058 0.603 ± 0.291 0.478 ± 0.495 3
Example-F1 0.154 ± 0.088 0.133 ± 0.072 0.123 ± 0.067 7
Micro-F1 0.390 ± 0.137 0.355 ± 0.140 0.225 ± 0.175 3
Macro-F1 0.200 ± 0.153 0.184 ± 0.090 0.172 ± 0.089 3

Table 2: Results on datasets with many labels
Algorithms

Datasets (n) P@k SLEEC BCE loss Locally-learned loss

Bibtex (n) P@1 0.3492 0.4482 0.3647
(n) P@3 0.6036 0.6698 0.6157
(n) P@5 0.7113 0.7612 0.7270

Delicious (n) P@1 0.3241 0.3194 0.2980
(n) P@3 0.3862 0.3778 0.3581
(n) P@5 0.4344 0.4282 0.4081

EURLex-4K (n) P@1 0.2074 0.2345 0.2287
(n) P@3 0.3570 0.3654 0.3579
(n) P@5 0.4767 0.4731 0.4677

Wiki10-31K (n) P@1 0.1412 0.1442 0.1396
(n) P@3 0.2702 0.2665 0.2563
(n) P@5 0.3730 0.3631 0.3586

to how well the underlying local approximation to the crite-
rion is. That is, the lower the approximation error, the better
the model performs. We mark every row in the table as con-
sistent if the above holds. The results also suggest a general
guideline to choose suitable approximator for LLSL when it
comes to different criteria. While the bias of the estimation
varies with the choice of local learner, we observe that the
estimation error decreases as the optimization proceeds.

Interestingly, while we generally believe that more so-
phisticated approximator may provide more faithful estima-
tion to the criterion of interest, it is shown that the relatively
simple linear-1 approximator gives the best estimation to
Hamming loss and Rank loss. The interesting finding can be
explained by the inherent nature of the two criteria. In other
words, as the minimization of Hamming loss and Rank loss
can actually be decomposed by labels (Dembczynski, Kot-
lowski, and Hüllermeier 2012), a linear approximator that
treats each label independently might be enough good for
estimating these criteria. Nevertheless, for the other more
complicated criteria such as Macro-F1, a more sophisticated
approximation is required for better performance.

4.4 Scaling Up to Datasets with Many Labels
On large scale datasets, we demonstrate the scalability and
flexibility of the proposed LLSL by using it to fine-tune deep
models that are originally pre-trained on BCE loss. In table
2, BCE stands for models that are trained with the conven-
tional BCE loss, and LLSL stands for models that are fine-
tuned with the proposed locally-learned surrogate loss. In

the experiments, we find the gradients of the surrogate loss
learned for Precision-at-k appear to be very sparse, resulting
in slower convergence. An useful practical finding to tackle
such issue is to optimize the mixture loss between Ham-
ming loss, represented by BCE, and the learned surrogate
loss. In a high-level sense, as Hamming loss treats each label
equally, it in fact encodes the global information about the
target metric. Thus, it can be viewed as a regularizer to the
locally-learned surrogate loss which exploits the local infor-
mation. As long as we could find the sweet spot between the
two losses, optimizing the mixture loss between them works
well in practice. Furthermore, following the idea, LLSL can
actually be mixed with other objectives such as the proposed
WBCE. A joint optimization between LLSL and other loss
functions might also lead to an interesting future direction.

In Table 2, it is shown that our proposed LLSL success-
fully improves the performances of cost-insensitive models
on large scale datasets. In addition, our model reaches com-
petitive performance to the state-of-the-art. This not only
demonstrates the scalability of our proposed method, but
also shows the capability for LLSL to cope with criterion
like Precision-at-k when the deep model is a ranker.

5 Conclusion
We propose a novel locally-learned surrogate loss (LLSL)
that can adapt toward optimizing general MLL criteria by
learning local approximation to the criterion of interest. The
learned surrogate loss is then coupled with deep learning
model to optimize the target criterion. The proposed LLSL
can successfully capture the local behavior of the target
MLL criterion and in turn provides cost-aware gradients
guiding the network updates. Extensive experimental results
show that our proposed deep model achieves outstanding
performances against the state-of-the-art methods.

Acknowledgements
We thank the anonymous reviewers and the members of
NTU CLLab for valuable suggestions. This material is based
upon work supported by the Air Force Office of Scientific
Research, Asian Office of Aerospace Research and Devel-
opment (AOARD) under award number FA2386-15-1-4012,
and by the Ministry of Science and Technology of Taiwan
under number MOST 103-2221-E- 002-149-MY3

References
Beygelzimer, A.; Langford, J.; and Ravikumar, P. 2009.
Error-correcting tournaments. CoRR abs/0902.3176.
Bhatia, K.; Jain, H.; Kar, P.; Varma, M.; and Jain, P. 2015.
Sparse local embeddings for extreme multi-label classifica-
tion. In NIPS 2015.
Boutell, M. R.; Luo, J.; Shen, X.; and Brown, C. M. 2004.
Learning multi-label scene classification. Pattern Recogni-
tion 37(9):1757–1771.
Dembczynski, K.; Cheng, W.; and Hüllermeier, E. 2010.
Bayes optimal multilabel classification via probabilistic
classifier chains. In ICML 2010.

Dembczynski, K.; Kotlowski, W.; and Hüllermeier, E. 2012.
Consistent multilabel ranking through univariate losses. In
ICML 2012.
Elkan, C. 2001. The foundations of cost-sensitive learning.
In IJCAI 2001.
Gao, W., and Zhou, Z. 2011. On the consistency of multi-
label learning. In COLT 2011.
Gong, Y.; Jia, Y.; Leung, T.; Toshev, A.; and Ioffe, S. 2013.
Deep convolutional ranking for multilabel image annotation.
CoRR abs/1312.4894.
Huang, K.-H., and Lin, H.-T. 2017. Cost-sensitive label
embedding for multi-label classification. Machine Learning
106(9–10):1725–1746.
Li, C.-L., and Lin, H.-T. 2014. Condensed filter tree for
cost-sensitive multi-label classification. In ICML 2014.
Lo, H.; Wang, J.; Wang, H.; and Lin, S. 2011. Cost-sensitive
multi-label learning for audio tag annotation and retrieval.
IEEE Trans. Multimedia 13(3):518–529.
Madjarov, G.; Kocev, D.; Gjorgjevikj, D.; and Dzeroski, S.
2012. An extensive experimental comparison of methods for
multi-label learning. Pattern Recognition 45(9):3084–3104.
Nam, J.; Kim, J.; Loza Mencı́a, E.; Gurevych, I.; and
Fürnkranz, J. 2014. Large-scale multi-label text classifi-
cation - revisiting neural networks. In ECML PKDD 2014.
Petterson, J., and Caetano, T. S. 2010. Reverse multi-label
learning. In NIPS 2010.
Petterson, J., and Caetano, T. S. 2011. Submodular multi-
label learning. In NIPS 2011.
Qi, G.; Hua, X.; Rui, Y.; Tang, J.; Mei, T.; and Zhang, H.
2007. Correlative multi-label video annotation. In Pro-
ceedings of the 15th International Conference on Multime-
dia 2007.
Read, J.; Pfahringer, B.; Holmes, G.; and Frank, E. 2011.
Classifier chains for multi-label classification. Machine
Learning 85(3):333–359.
Schapire, R. E., and Singer, Y. 2000. Boostexter: A
boosting-based system for text categorization. Machine
Learning 39(2/3):135–168.
Tsoumakas, G.; Xioufis, E. S.; Vilcek, J.; and Vlahavas, I. P.
2011. MULAN: A java library for multi-label learning.
Journal of Machine Learning Research 12:2411–2414.
Tsoumakas, G.; Katakis, I.; and Vlahavas, I. P. 2010. Mining
multi-label data. In Data Mining and Knowledge Discovery
Handbook, 2nd ed. 667–685.
Wu, Y.-P., and Lin, H.-T. 2017. Progressive k-labelsets for
cost-sensitive multi-label classification. Machine Learning
106(5):671–694.
Zadrozny, B.; Langford, J.; and Abe, N. 2003. Cost-sensitive
learning by cost-proportionate example weighting. In ICDM
2003, 435.
Zhang, M., and Zhou, Z. 2006. Multi-label neural networks
with applications to functional genomics and text catego-
rization. IEEE Trans. Knowl. Data Eng. 18(10):1338–1351.

