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I. I NTRODUCTION

The online perceptron [1], [2] algorithm is a mistake-
driven procedure which updates the current classifier whenever
the new arriving data is misclassified. The algorithm can be
interpreted as a stochastic gradient descent method which has
been successfully applied to the learning task with large-scale
data set [3], [4], [5]. How to decide the learning rate becomes
an important issue in this type learning algorithm [6], [7],
[8], [9], [10], [11]. The passive and aggressivealgorithm
proposed an updating scheme to determine the new updated
classifier [12], [13], [14]. It suggests that the new classifier
should not only classify the new arriving data correctly but
also as close to the current classifier as possible. A closed form
of updating rule was derived even taking the loss function of
new arriving data into account.

Based on the success of PA algorithm [13], [14], we propose
a new updating rule that will take the class mean information
into account. The intuition behind our proposed method is
that under the linearly separable assumption, the difference
vector of positive mean and negative mean will suggests a
good proximal classifier [15]. We incorporate this observation
by adding a term‖w − m̃‖2

2 into our new objective function
wherem̃ is the difference between positive class mean and
negative class mean of accumulated training data until now.
As the PA algorithm did, a closed form of updating rule can
be derived. Thus, our proposed method can have the same
computational advantage with PA algorithm. The preliminary
numerical results show that our proposed method is less
sensitive to the input order of training data. Besides, the
number of mistakes made in a single pass is less than the
PA algorithm.

II. PA A LGORITHM WITH CLASS MEANS

Online learning considers an input of streaming of examples
(xt, yt) in consecutive trials. In this study, we confined our-
selves within the linear hypothesis spaceH, that is defined by
H = {hw|hw(x) = sgn(〈x,w〉),w ∈ R

n}. In the t trial,
we predict the label ofxt based on the current classifier
wt. If the output consists of the labelyt, we do nothing;
otherwise, we update the current classifierwt to improve
its performanceon the examplext. The performanceof the
classifier can be measured by aloss functionℓ(w; (xt, yt)).
If we can correctly predictxt by w, ℓ(w; (xt, yt)) = 0. The
ultimate learning goal is to minimize the cumulative loss inthe
whole consecutive trials. The passive and aggressive algorithm

realizes this concept and enforces a criterion that the new
classifier should not jump to far away from current classifier.
Combining these two purposes together, the PA algorithm
solves the minimization problem as follows:

min
w∈Rn

1

2
‖w − wt‖2

2 + Cℓ(w; (xt, yt)), (1)

where C > 0 weights the importance of the loss function.
We note that if the current classifierwt correctly predicts
the label ofxt it will be the optimal solution of (1). The
closed update forms of PA algorithm for the squares loss, the
hinge loss and the hard margin loss have been derived. This
makes PA algorithm has been successfully applied to many
real applications.

We extend the PA algorithm’s idea. The new updated
classifier should be close to aproximal modelthat provides
the information about the accumulated examples until now.
Under the linearly separable assumption, the difference vector
of positive mean and negative mean will suggests a good
proximal classifier[15]. We incorporate this observation into
our optimization model. Thus, we have

min
w∈Rn

1

2
‖w − wt‖2

2 +
γ

2
‖w − m̃‖2

2 + Cℓ(w; (xt, yt)), (2)

whereC > 0 andγ > 0 are weighted parameters. Thẽm =
m+−m− which is the difference between positive mean and
negative mean of accumulated examples until now. It is very
easy to update the exactlỹm of accumulated examples without
keeping all examples in the pass. We simplify the minimization
problem (2) and have an equivalent minimization problem as
follows:

min
w∈Rn

1 + γ

2
‖w‖2

2 − 〈wt + γm̃,w〉 + Cℓ(w; (xt, yt)). (3)

Similar to the PA algorithm, we derive the close form of
updating rules for the hard margin loss (PAm), the hinge loss
(PAm-1) and the squares loss (PAm-2) as follows,

wt+1 =
1

1 + γ
(wt + γm̃ + αytx

t)

whereα is defined as

α =















loss+γ(1−yt〈m̃,wt〉)
‖wt‖2

2

for PAm

min{C,
loss+γ(1−yt〈m̃,wt〉)

‖wt‖2
2

} for PAm-1
loss+γ(1−yt〈m̃,wt〉)

‖wt‖2
2
+ 1+γ

2C

for PAm-2

and the
loss = 1 − yt〈x

t,wt〉.
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The details of our proposed method is summarized in Algo-
rithm 1.

Algorithm 1: PAm Algorithm (single pass)

/* m:samples, n:dimensions,
(X,Y):training set */

Input: X ∈ R
m×n,Y ∈ R

m,C > 0, γ > 0
Output: w

begin1

/* initialization */
w1 = 0, m+ = 0,m− = 0, Pm = 0, Nm = 0;2

for t = 1 : m do3

if yt > 0 then4

m+ = Pm∗m++w
t

Pm+1 ;5

else6

m− = Nm∗m
−

+w
t

Nm+1 ;7

end8

loss = 1 − yt〈x
t,wt〉;9

if loss > 0 then10

/* aggressive */
m̃ = m+ − m−;11

α =12














loss+γ(1−yt〈m̃,wt〉)
‖xt‖2

2

for PAm

min{C,
loss+γ(1−yt〈m̃,wt〉)

‖xt‖2
2

} for PAm-1
loss+γ(1−yt〈m̃,wt〉)

‖xt‖2
2
+ 1+γ

2C

for PAm-2

wt+1 = 1
1+γ

(wt + γm̃ + αytw
t);

else13

/* passive */
wt+1 = wt;14

end15

end16

end17

If we are allowed to maintain a fixed size queueQw so that
we can remember many latest new classifiers. We can replace
wt by w̄q, wherew̄q is the averageclassifier in the queue
Qw. Intuitively, we will have more stable model than PAm
does. We describe the details in Algorithm 2.

III. N UMERICAL RESULT

In order to demonstrate the robustness and efficiency of our
methods, we conduct several experiments and compare the
results with conventional PA algorithm. The datasets that we
used in the numerical tests come from two sources, LIBSVM
library site1 and the Pascal Large Scale Learning Challenge in
20082. The first source provides 4 moderate size datasets. We
implemented our algorithms in MATLAB and all experiments
were run on a personal computer consisting of a 3.0 GHz
processor and 4 gigabytes RAM. Table I summarizes the sizes
of benchmark datasets.

In the first part of our experiment, we would like to
investigate the effect of the input order of examples. We run

1http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
2http://largescale.ml.tu-berlin.de/about/.

Algorithm 2: PAm-W Algorithm (keep many latest new
classifiers in a queue)

/* m:samples, n: dimensions,
(X,Y):training set */

Input: X ∈ R
m×n,Y ∈ R

m,C > 0, γ > 0
Output: w

begin1

/* initialization */
w1 = 0, m+ = 0, m− = 0, Qw=0, Pm = 0,2

Nm = 0;
for t = 1 : m do3

if yt > 0 then4

m+ = Pm∗m++w
t

Pm+1 ;5

else6

m− = Nm∗m
−

+w
t

Nm+1 ;7

end8

loss = 1 − yt〈x
t,wt〉;9

if loss > 0 then10

if | Qw | is not full then11

Qw = [Qw,wt]12

else13

/* Qw is full, FIFO
replacement */

Qw = [Qw(2 : end),wt]14

end15

/* aggressive */
m̃ = m+ − m−;16

α =17














loss+γ(1−yt〈m̃,w̄q〉)

‖xt‖2
2

for PAmW

min{C,
loss+γ(1−yt〈m̃,w̄q〉)

‖xt‖2
2

for PAmW-1
loss+γ(1−yt〈m̃,w̄q〉)

‖xt‖2
2
+ 1+γ

2C

for PAmW-2

wt+1 = 1
1+γ

(w̄q + γm̃ + αytw̄q);
else18

/* passive */
wt+1 = wt;19

end20

end21

end22

TABLE I
THE STATISTICS FOR4 MEDIUM -SIZE AND 3 LARGE-SCALE DATA SETS.

Dataset Training Testing Features
svmguide1 3089 4000 4
w3a 4912 44837 300
ijcnn1 35000 91701 22
adult 32550 16281 123
alpha 400000 100000 500
delta 400000 100000 500
gamma 400000 100000 500

a single pass for PA algorithm and PAm algorithm ten times
with different input order at each time. We report the average
CPU seconds and the average number of updates in a single
pass in Table II and Table III respectively. PAm family has
much less number of update thus can be finished a single
pass with a shorter CPU time. We note that the less number
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of update indicates that less mistakes made in the learning
process. The average testing error rate and standard deviation
of these ten testing error rates are shown in TABLE IV and
TABLE V respectively. These results show that PAm family
has better performance in accuracy. Moreover, PAm family has
much smaller standard deviation than PA family. That is an
evidence shows that our proposed method is less sensitive to
the input order. We also give the best performance of these
methods in Table VI. In summary, the PAm-1, PAm algorithm
with the hinge loss, outperforms in most of datasets.

TABLE II
COMPARISON OF AVERAGE RUNNING TIME

Dataset PA PA-1 PA-2 PAm PAm-1 PAm-2
svmguide1 0.0248 0.0558 0.0276 0.0215 0.0249 0.0235
w3a 0.0388 0.0627 0.0461 0.0600 0.0673 0.0666
ijcnn1 0.2466 0.4669 0.2689 0.2138 0.2447 0.2182
adult 0.3286 0.5364 0.4002 0.3083 0.32240.2957
alpha 42.5299 52.2090 47.321413.0613 13.8954 13.3054
delta 25.6031 32.2362 42.4580 26.1802 14.012813.4835
gamma 23.0035 26.5207 23.1364 15.212812.7841 13.1756

TABLE III
COMPARISON OF AVERAGE NUMBER OF UPDATES

Dataset PA PA-1 PA-2 PAm PAm-1 PAm-2
svmguide1 1053.7 1069.0 1231.9 737.9 728.3 774.4
w3a 542.7 562.3 734.4 384.9 337.8 406.7
ijcnn1 10620.4 10616.8 11912.8 4525.6 5367.1 5120.3
adult 13020.6 12378.2 17343.3 6436.3 5485.0 5565.3
alpha 261730.5 261493.7 262013.2120078.5 129455.3 121121.6
delta 226541.7 226506.0 226853.9 103098.9 88980.788953.2
gamma 216626.6 216670.0 217098.8 96354.3 82639.582601.6

TABLE IV
COMPARISON OF AVERAGE TESTING ERROR RATE

Dataset PA PA-1 PA-2 PAm PAm-1 PAm-2
svmguide1 0.0788 0.0830 0.0731 0.0778 0.07160.0712
w3a 0.0230 0.0239 0.0220 0.0219 0.0211 0.0220
ijcnn1 0.1055 0.0938 0.0912 0.0975 0.0803 0.0855
adult 0.2013 0.1654 0.1715 0.1788 0.1606 0.1629
alpha 0.3008 0.3520 0.3367 0.2638 0.2490 0.2638
delta 0.2936 0.2993 0.2937 0.2713 0.2161 0.2177
gamma 0.2886 0.2845 0.2800 0.2408 0.2016 0.2021

TABLE V
COMPARISON OF STANDARD DEVIATION TESTING ERROR RATE

Dataset PA PA-1 PA-2 PAm PAm-1 PAm-2
svmguide1 0.0447 0.0644 0.0599 0.0437 0.03620.0238
w3a 0.0048 0.0057 0.0054 0.0019 0.0015 0.0037
ijcnn1 0.0327 0.0152 0.0095 0.0280 0.0063 0.0094
adult 0.0329 0.0070 0.0102 0.0141 0.0062 0.0079
alpha 0.0613 0.0921 0.0715 0.0260 0.0093 0.0274
delta 0.0860 0.0525 0.0535 0.0708 0.0004 0.0022
gamma 0.0817 0.0555 0.0588 0.0517 0.0004 0.0009

In the second part of experiment, we investigate the conver-
gence of PA algorithm and PAm algorithm. We run 20 epochs
for each methods and record the classifier when an epoch is
complete. For the PAm family, the proximal classifier will not
be changed once the first epoch is finished. We compute the
cosine similarity between two consecutive epoch classifiers.
We plot the results forsvmguide1 and adult datasets

in Fig. 1. From these results, we observe that PAm-1 will
have almost identical classifiers after 3 to 5 epochs. We also
observe the convergency of our proposed methods from the
angle of error rate as well as the number of update within one
epoch. The baseline of error rate is provided by the smooth
support vector machine (SSVM[16]) which is a batch learning
algorithm. PAm-1 will approach to SSVM’s results after 3
to 5 epochs ongamma anddelta datasets. We summarize
these results in Fig. 2. In the batch learning framework, if the
given dataset is linear non-separable, certain samples must be
misclassified. We record the number of update in each epoch
and plot the results in Fig. 3. We find that the PA and PAm
go through enough passes the updating times will be almost
fixed. However, the PAm will be fixed to the smaller updating
times than PA. In the other words, the numbers of misclassified
samples on PAm are less than PA after enough passes.

TABLE VI
COMPARISON OF MINIMAL TESTING ERROR RATE

Dataset PA PA-1 PA-2 PAm PAm-1 PAm-2
svmguide1 0.0458 0.0443 0.0443 0.0438 0.04300.0428
w3a 0.0192 0.0186 0.0189 0.0186 0.0185 0.0185
ijcnn1 0.0844 0.0823 0.0830 0.0792 0.0727 0.0765
adult 0.1666 0.1603 0.1582 0.1589 0.1526 0.1540
alpha 0.2446 0.2452 0.2458 0.2415 0.2386 0.2400
delta 0.2215 0.2381 0.2232 0.2169 0.2155 0.2158
gamma 0.2169 0.2092 0.2051 0.2020 0.2010 0.2013
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Fig. 1. Comparison of model similarity between two consecutive passes for
the data setssvmguide1andadult.

IV. SUMMARY AND FUTURE WORK

We incorporate a proximal classifier with the passive and
aggressive algorithm to solve the large scale binary classifica-
tion problem under the online learning setting. The proximal
classifier is defined by the difference of class means of the
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Fig. 2. Comparison of error rate convergence for data setsgammaanddelta
based on several PAm and PA algorithms.
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Fig. 3. Comparison of the number of updates for four data setsbased on
PAm and PA algorithms.

accumulate examples until current trial. Similar to the PA al-
gorithm, we derived the close forms of updating rules for three
popular loss functions. We tested our proposed method on
seven public available benchmark datasets. The experimental
results show that our method is less sensitive to the input data
order and has a less number of updating than conventional PA
algorithm. Thus, we can have a better performance than PA
algorithm in CPU time. Besides, the similarity of the resulting

classifiers of two consecutive passes is also higher than thePA
algorithm. That means we can have an approximated classifier
in a single pass.

For the future work, one possible extension is to modify the
Algorithm 2. We can use weighted average instead of simple
average. The weights can be determined by each classifier’s
performance on a certain validation set. We also would like
to extend the linear classifier to the nonlinear classifier by
utilizing the reduced kernel trick [17], [18]. Thus, we can
enlarge the hypothesis to deal with more complicated data
pattern.
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