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. INTRODUCTION realizes this concept and enforces a criterion that the new

The online perceptron [1], [2] algorithm is a mistakeclassifier should not jump to far away from current classifier

driven procedure which updates the current classifier wrame COmbining these two purposes together, the PA algorithm
the new arriving data is misclassified. The algorithm can [59/Ves the minimization problem as follows:

interpreted as a stochastic gradient descent method whigh h N T Ct(w- (xt 1
been successfully applied to the learning task with laiges wekn 2HW willz + CEws (', 1), @

data set [3], [4], [5]. How to decide the learning rate becemevhere C' > 0 weights the importance of the loss function.
an important issue in this type learning algorithm [6], [7]we note that if the current classifies® correctly predicts
(8], [9], [10], [11]. The passive and aggressivalgorithm the label ofx’ it will be the optimal solution of (1). The
proposed an updating scheme to determine the new updagRfed update forms of PA algorithm for the squares loss, the
classifier [12], [13], [14]. It suggests that the new classifi hinge loss and the hard margin loss have been derived. This
should not only classify the new arriving data correctly buhakes PA algorithm has been successfully applied to many
also as close to the current classifier as possible. A clased f real applications.
of updating rule was derived even taking the loss function of We extend the PA algorithm’s idea. The new updated
new arriving data into account. classifier should be close to @oximal modelthat provides
Based on the success of PA algorithm [13], [14], we proposge information about the accumulated examples until now.
a new updating rule that will take the class mean informatiapnder the linearly separable assumption, the differenceove
into account. The intuition behind our proposed method & positive mean and negative mean will suggests a good
that under the linearly separable assumption, the diftererproximal classifier[15]. We incorporate this observatiotoi
vector of positive mean and negative mean will suggestso@r optimization model. Thus, we have
good proximal classifier [15]. We incorporate this obseorat 1 ~y s .
by adding a ternj|w — |3 into our new objective function min o [w — w3+ Sllw —mlly + Clw; (", ), (2)
wherem is the difference between positive class mean an ) N
negative class mean of accumulated training data until no nereC > 0 f"md.7 >0 are weighted parameters. The =
As the PA algorithm did, a closed form of updating rule cal*+ — - Which is the difference between positive mean and
be derived. Thus, our proposed method can have the sapggative mean of accumulated examples until now. It is very

computational advantage with PA algorithm. The prelimynareasy_tO update the exf”‘c‘ﬁ of accumulgted _example_s .Wi?hOl.Jt
l&epmg all examples in the pass. We simplify the minimiati

numerical results show that our proposed method is le ) LR
sensitive to the input order of training data. Besides, t)TéOblem (2) and have an equivalent minimization problem as
R

number of mistakes made in a single pass is less than OWS. 1+
PA algorithm. min w3 - (w' +yib, w) + CLw; (x'p2). (3)
weR™

Similar to the PA algorithm, we derive the close form of

) . . ) . updating rules for the hard margin loss (PAm), the hinge loss
Online learning considers an input of streaming of examplgSam-1) and the squares loss (PAm-2) as follows,
(xt,y;) in consecutive trials. In this study, we confined our-

Il. PA ALGORITHM WITH CLASS MEANS

selves within the linear hypothesis spdgethat is defined by witl — L(Wt + 1+ ayext)

H = {hw|lhw(x) = sgr((x,w)),w € R"}. In the ¢ trial, 1+~

we predict the label ofx! based on the current classifiefvhereq is defined as

wt. If the output consists of the label,, we do nothing; loss+ry(1—ys (F,w')) for PAM
otherwise, we update the current classifief to improve w3 o,

its performanceon the examplect. The performanceof the a =< min{C, l"“”(ulv;yufﬁm*w DY for PAM-1
classifier can be measured bylass function/(w; (x*,y)). lossty(1—y (mw") for PAmM-2
If we can correctly predick’ by w, ¢(w;(x!,y;)) = 0. The lwt I3+

ultimate learning goal is to minimize the cumulative losshia and the
whole consecutive trials. The passive and aggressiveitiigor loss =1 — y(x', w').



The details of our proposed method is summarized in AlgoAlgorithm 2: PAm-W Algorithm (keep many latest new

rithm 1. classifiers in a queue)
: _ _ /+ msanples, n: dinmensions,
Algorithm 1: PAm Algorithm (single pass) (X,Y): training set «/
/+ msanpl es, n:dinensions, Input: X e R™MN Yy e RMC >0,v>0
(X,Y):training set */ Output: w

Input: X e RMN Yy e RMC >0,v>0 1 begin

Output: w /+ initialization */
1 begin 2 w!=0,m; =0, m_ =0, Qu,=0, Pm =0,

/+ initialization */ Nm = 0;

N

for t=1:m do

w

w!l=0,m;, =0m_ =0, Pm =0, Nm = 0;

3 fort=1:mdo 4 if y, > 0 then
4 if _ Pm*m++w' .
Y = 0 thPen t 5 my = Pm+1 ’
_ Pmxm 4w
my = —7% 7 6 else
else 7 m_ = 7ij\’;m’+wt;
_ Nmsm_+w' m+1
m- = 8 end
end 9 loss =1 —y,(x", w');
loss =1 — y (xt, wt); 10 if loss > 0 then
10 if loss > 0 then 1 if | Qw | is not full then
/= aggressive * [ 12 Quw = [Qu,w!]
11 m=m,; —m_; 13 else
12 a= [+ Qu is full, FIFO
Losoty oy i) for PAM repl acement «
Xz _ 9. d) t]
. loss+vy(1—y: (m,w' 14 Qw - [Qw( sena), w
min{C, L DY for PAM-1 5 end
l"ssm”(tlngffﬁ’w ) for PAm-2 /= aggressive */
X' ll2T 30 ~ _ .
witl = ﬁ(wt +,th+ aytwt); 16 m_— my —m_;
17 o=
13 else . loss+y(1—y: (h,W,)) for PAMW
[ * paSSI ve */ [EH 5 or FAm
14 witl = w min{C, L= M) for PAMW-1
_oA 2
15 end loss+7£17ytl<ir}y,wq)) for PAMW-2
16 end 41 Hx1||2+ 2C
17 end W= (Wq +ym + ay W),
18 else
[ * passi ve */
If we are allowed to maintain a fixed size queg, so that 19 witl = wt
we can remember many latest new classifiers. We can replace end
w'! by w,, wherew, is the averageclassifier in the queuez; end
Q- Intuitively, we will have more stable model than PAm, end
does. We describe the details in Algorithm 2.
TABLE |
I1l. NUMERICAL RESULT THE STATISTICS FOR4 MEDIUM-SIZE AND 3 LARGE-SCALE DATA SETS.
In order to demonstrate the robustn_ess and efficiency of our Dataset Training  Testing _ Features
methods, we conduct several experiments and compare the svmguidel 3089 4000 4
results with conventional PA algorithm. The datasets that w w3a 4912 44837 300
dinth ical tests come from two sources, LIBSVM ol 35000 91701 22
used In the numerica urces, \ adult 32550 16281 123
library site! and the Pascal Large Scale Learning Challenge in alpha 400000 100000 500
20082. The first source provides 4 moderate size datasets. We delta 188888 iggggg 288
implemented our algorithms in MATLAB and all experiments gamma

were run on a personal computer consisting of a 3.0 GHz
processor and 4 gigabytes RAM. Table | summarizes the S|ze
of benchmark datasets.

In the first part of our experiment, we would like to
investigate the effect of the input order of examples. We ru

a single pass for PA algorithm and PAm algorithm ten times
with different input order at each time. We report the averag
CPU seconds and the average number of updates in a single
pass in Table 1l and Table Il respectively. PAm family has
Lhttp:/ww.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/ much less number of update thus can be finished a single
2http:/flargescale.ml.tu-berlin.de/about/. pass with a shorter CPU time. We note that the less nhumber



of update indicates that less mistakes made in the learningFig. 1. From these results, we observe that PAmM-1 will
process. The average testing error rate and standard ideviahave almost identical classifiers after 3 to 5 epochs. We also
of these ten testing error rates are shown in TABLE IV anobserve the convergency of our proposed methods from the
TABLE V respectively. These results show that PAm familmngle of error rate as well as the number of update within one
has better performance in accuracy. Moreover, PAm famigy hapoch. The baseline of error rate is provided by the smooth
much smaller standard deviation than PA family. That is aupport vector machine (SSVM[16]) which is a batch learning
evidence shows that our proposed method is less sensitivaalgorithm. PAm-1 will approach to SSVM's results after 3
the input order. We also give the best performance of thetge5 epochs orgamma anddel t a datasets. We summarize
methods in Table VI. In summary, the PAm-1, PAm algorithrthese results in Fig. 2. In the batch learning frameworkyéf t
with the hinge loss, outperforms in most of datasets. given dataset is linear non-separable, certain samples lmus
misclassified. We record the number of update in each epoch
and plot the results in Fig. 3. We find that the PA and PAm
go through enough passes the updating times will be almost

TABLE Il
COMPARISON OF AVERAGE RUNNING TIME

Dataset PA  PA1 PA2 PAm PAm-1 PAm-2 fixed. However, the PAm will be fixed to the smaller updating
svmguidel 0.0248 0.0558 0.0276 00215 0.0249 0.0235 ; ; i
w3a 00588 0.0807 0.0461 00800 00673 00666 times than PA. In the other words, the numbers of misclassifie
ijcnnl 0.2466 0.4669 0.2689 0.2138 0.2447 0.2182 samples on PAm are less than PA after enough passes.
adult 0.3286 0.5364 0.4002 0.3083 0.32240.2957
alpha 425299 522090 47.321413.0613 13.8954 13.3054 TABLE VI
delta 25.6031 32.2362 42.4580 26.1802 14.0128.4835 COMPARISON OF MINIMAL TESTING ERROR RATE
gamma |23.0035 26.5207 23.1364 15.21282.7841 13.1756
Dataset PA PA-1 PA-2 PAM PAmM-1 PAmM-2
svmguidel| 0.0458 0.0443 0.0443 0.0438 0.04300.0428
TABLE Il w3a 0.0192 0.0186 0.0189 0.01860.0185 0.0185
COMPARISON OF AVERAGE NUMBER OF UPDATES jcnn 0.0844 0.0823 0.0830 0.07920.0727 0.0765
adult 0.1666 0.1603 0.1582 0.15890.1526 0.1540
alpha 0.2446 0.2452 0.2458 0.24150.2386 0.2400
Dataset PA__PA1l  PA2  PAM PAM-1 PAM-2 4o, 02215 02381 02232 0216902155 0.2158
svmguide] 1053.7 1069.0 1231.9 7379 7283 774.4 gamma 02169 0.2092 0.2051 0202002010 0.2013
w3a 5427 5623 7344 3849 3378  406.7
jcnn 10620.4 10616.8 11912.8 45256 5367.1 5120.3
adult 13020.6 12378.2 17343.3 6436.354850 5565.3
alpha 2617305 261493.7 262013.2200785 129455.3 121121.6 svmguidel
delta 226541.7 226506.0 226853.9 103098.9 889808B953.2
gamma |216626.6 216670.0 217098.8 96354.3 8263982601.6 o 1
£ 0.995
o
TABLE IV £ 099
COMPARISON OF AVERAGE TESTING ERROR RATE 2]
$ 0.985
Dataset PA  PA1I PAZ2 PAm PAm-1 PAm-2 3 * PAl
svmguidel| 0.0788 0.0830 00731 0.0778 0.07160.0712 g 0981 * PA2
w3a 0.0230 0.0239 0.0220 0.02190.0211 0.0220 0975
ijcnn1 0.1055 0.0938 0.0912 0.09750.0803 0.0855 0
adult 0.2013 0.1654 0.1715 0.17880.1606 0.1629
alpha 0.3008 0.3520 0.3367 0.26380.2490 0.2638
delta 0.2936 0.2993 0.2937 0.27130.2161 0.2177 1
gamma 0.2886 0.2845 0.2800 0.24080.2016 0.2021
‘? 0.995
o
TABLE V £ 099 v PaL
COMPARISON OF STANDARD DEVIATION TESTING ERROR RATE 0
T 0.985 # PA2
Dataset PA  PA1I PAZ2 PAm PAm-1 PAm-2 8 ~&-PAMm
svmguidel| 0.0447 0.0644 0.0509 0.0437 0.03620.0238 g 098 —=-PAm1
w3a 0.0048 0.0057 0.0054 0.00190.0015 0.0037 0.975 —<PAmM2
ijcnnl 0.0327 0.0152 0.0095 0.02800.0063 0.0094 1% 5 10 15
adult 0.0329 0.0070 0.0102 0.01410.0062 0.0079 pass
alpha 0.0613 0.0921 0.0715 0.0260 0.0093 0.0274
delta 0.0860 0.0525 0.0535 0.07080.0004 0.0022
gamma 0.0817 0.0555 0.0588 0.05170.0004 0.0009 Fig. 1. Comparison of model similarity between two consieupasses for

the data setsvmguideland adult

In the second part of experiment, we investigate the conver-
gence of PA algorithm and PAm algorithm. We run 20 epochs
for each methods and record the classifier when an epoch is IV. SUMMARY AND FUTURE WORK
complete. For the PAm family, the proximal classifier willtho We incorporate a proximal classifier with the passive and
be changed once the first epoch is finished. We compute tiggressive algorithm to solve the large scale binary dleasi
cosine similarity between two consecutive epoch classifietion problem under the online learning setting. The proxima
We plot the results forsvmgui del and adul t datasets classifier is defined by the difference of class means of the
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Fig. 2. Comparison of error rate convergence for data gatsmaand delta
based on several PAm and PA algorithms.
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Fig. 3. Comparison of the number of updates for four data lsated on
PAm and PA algorithms.

classifiers of two consecutive passes is also higher thaRAhe
algorithm. That means we can have an approximated classifier
in a single pass.

For the future work, one possible extension is to modify the
Algorithm 2. We can use weighted average instead of simple
average. The weights can be determined by each classifier’s
performance on a certain validation set. We also would like
to extend the linear classifier to the nonlinear classifier by
utilizing the reduced kernel trick [17], [18]. Thus, we can
enlarge the hypothesis to deal with more complicated data
pattern.

REFERENCES
(1]

N. Cristianini and J. Shawe-TaylorAn introduction to support Vector
Machines: and other kernel-based learning metho@ambridge Univ
Pr, 2000.

F. Rosenblatt. The perceptron: A probabilistic model fieformation
storage and organization in the bralsychological review65(6):386—
408, 1958.

L. Bottou and Y. Le Cun. On-line learning for very largetalasets.
Applied Stochastic Models in Business and Indysg¥(2):137-151,
2005.

L. Bottou. Online learning and stochastic approximasio On-line
learning in neural networkspages 9—42, 1998.

T. Zhang. Solving large scale linear prediction probdemsing stochastic
gradient descent algorithms. Rroceedings of the twenty-first interna-
tional conference on Machine learningage 116. ACM, 2004.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. A secondeomperceptron
algorithm. InComputational Learning Theorpages 129-140. Springer,
2002.

C.N. Hsu, H.S. Huang, Y.M. Chang, and Y.J. Lee. Periodieps
size adaptation in second-order gradient descent foresipags on-line
structured learningMachine learning 77(2):195-224, 2009.

A. Bordes, L. Bottou, and P. Gallinari. Sgd-gn: Carefulagi-newton
stochastic gradient descefithe Journal of Machine Learning Research
10:1737-1754, 2009.

A. Bordes, L. Bottou, P. Gallinari, J. Chang, and S.A. 8miErratum:
SGDQN is Less Careful than Expectedournal of Machine Learning
Research11:2229-2240, 2010.

SVN Vishwanathan, N.N. Schraudolph, and A.J. Smola.epSsize
adaptation in reproducing kernel Hilbert spa@&e Journal of Machine
Learning Research7:1107-1133, 2006.

C. Angulo and A. Catala. Online Learning with kernelsr fSmart
Adaptive Systems: a reviewProc. European Network for Intelligent
Technologies, Oulu, Finland2003.

M. Dredze, K. Crammer, and F. Pereira. Confidence-viejHinear
classification. InProceedings of the 25th international conference on
Machine learning pages 264-271. ACM, 2008.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, én&inger.
Online passive-aggressive algorithnhie Journal of Machine Learning
Research7:551-585, 2006.

S. Shalev-ShwartzOnline learning: Theory, algorithms, and applica-
tions PhD thesis, Hebrew University, 2007.

B. Scholkopf and A.J. Smola.Learning with kernels volume 64.
Citeseer, 2002.

Y.J. Lee and O.L. Mangasarian. SSVM: A smooth suppodtarema-
chine for classification.Computational optimization and Applicatigns
20(1):5-22, 2001.

YJ. Lee and O.L. Mangasarian. RSVM: Reduced suppordtove
machines. InSIAM International Conference on Data Miningages
00-07. Citeseer, 2001.

(2]

(3]

(4
(5]

(6]

(7]

(8]

El

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

18
accumulate examples until current trial. Similar to the BPA a[ ]

gorithm, we derived the close forms of updating rules foeéhr
popular loss functions. We tested our proposed method on
seven public available benchmark datasets. The experanent
results show that our method is less sensitive to the inpiat da
order and has a less number of updating than conventional PA
algorithm. Thus, we can have a better performance than PA
algorithm in CPU time. Besides, the similarity of the remgt

Y.J. Lee and S.Y. Huang. Reduced support vector mashietatistical
theory. Neural Networks, IEEE Transactions ,008(1):1-13, 2006.



