
Data Structures and Algorithms
(資料結構與演算法)

Lecture 1: Algorithm

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering

National Taiwan University
(國立台灣大學資訊工程系)

Hsuan-Tien Lin (NTU CSIE) Data Structures and Algorithms 0/29

htlin@csie.ntu.edu.tw


Algorithm

Roadmap
1 the one where it all began

Lecture 1: Algorithm
definition of algorithm
pseudo code of algorithm
criteria of algorithm
correctness proof of algorithm

2 the data structures awaken
3 fantastic trees and where to find them
4 the search revolutions
5 sorting: the final frontier

1/29



definition of algorithm



Algorithm definition of algorithm

Name Origin of Algorithm

Muhammad ibn Mūsā al-K
¯
wārizmī on a Soviet Union stamp

figure licensed from public domain via

https://commons.wikimedia.org/wiki/File:1983_CPA_5426.jpg

algorithm
• named after al-K

¯
wārizmı̄ (780–850),

Persian mathematician and father of
algebra
• algebra: rules to calculate with symbols
• algorithm: instructions to compute with

variables

algorithm: recipe-like instructions for computing

3/29

https://commons.wikimedia.org/wiki/File:1983_CPA_5426.jpg


Algorithm definition of algorithm

Recipe for Cooking Dish

a recipe for hamburger on Wikibooks

figure by Gentgeen,

licensed under CC BY-SA 3.0 via Wikimedia Commons

recipe
Wikipedia: a set of instructions that
describes how to prepare or make
something, especially a dish of prepared
food

recipe: instructions to complete a (cooking) task

4/29



Algorithm definition of algorithm

Sheet Music for Playing Instrument
first page of the manuscript of

Bach’s lute suite in G minor

figure licensed

under public domain via Wikimedia Commons

sheet music
Wikipedia: handwritten or printed form of
musical notation ... to indicate the
pitches, rhythms or chords of a song

sheet music: instructions to play instrument (well)

5/29



Algorithm definition of algorithm

Kifu for Playing Go

a Japanese kifu

figure by Velobici,

licensed under CC BY-SA 4.0 via Wikimedia Commons

kifu
go game record of steps that describe
how the game had been played

kifu: instructions to mimic/learn to play go (professionally)

6/29



Algorithm definition of algorithm

Algorithm for Computing
flowchart of Euclid’s algorithm for calculating the greatest common

divisor (g.c.d.) of two numbers

figure by Somepics,

licensed under CC BY-SA 4.0 via Wikimedia Commons

algorithm
Wikipedia: algorithm is a finite sequence of
well-defined, computer-implementable
instructions, typically to solve a class of problems
or to perform a computation

algorithm ∼ computing recipe:
(computable) instructions to solve a computing task

efficiently/correctly

7/29



Algorithm definition of algorithm

Fun Time
Which of the following in the kitchen is the best metaphor for an
algorithm?

1 recipe
2 chef
3 garbage
4 meat

Reference Answer: 1
algorithm ∼ computing recipe:
(computable) instructions to solve a computing
task efficiently/correctly

8/29



Algorithm definition of algorithm

Fun Time
Which of the following in the kitchen is the best metaphor for an
algorithm?

1 recipe
2 chef
3 garbage
4 meat

Reference Answer: 1
algorithm ∼ computing recipe:
(computable) instructions to solve a computing
task efficiently/correctly

8/29



pseudo code of algorithm



Algorithm pseudo code of algorithm

Pseudo Code for GETMININDEX

C Version

/* return index to min. element
in arr[0] ... arr[len-1] */

int getMinIndex
(int arr[], int len){

int i;
int m=0;
for(i=0;i<len;i++){

if (arr[m] > arr[i]){
m = i;

}
}
return m;

}

Pseudo Code Version

GET-MIN-INDEX(A)

1 m = 1
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

pseudo code: spoken language of programming

10/29



Algorithm pseudo code of algorithm

Bad Pseudo Code: Too Detailed

Unnecessarily Detailed

GET-MIN-INDEX(A)

1 m = 1
2 for i = 2 to A. length
3 // update if i-th element smaller
4 Am = A[m]
5 Ai = A[i]
6 if Am > Ai
7 m = i
8 else
9 m = m

10 return m

Concise

GET-MIN-INDEX(A)

1 m = 1
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

goal of pseudo code: communicate efficiently

11/29



Algorithm pseudo code of algorithm

Bad Pseudo Code: Too Mysterious

Unnecessarily Mysterious

GET-MIN-INDEX(A)

1 x = 1
2 for xx = 2 to A. length
3
4 if A[x ] > A[xx ]
5 xx = x
6 return xx

Clear

GET-MIN-INDEX(A)

1 m = 1 // store current min. index
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

goal of pseudo code: communicate correctly

12/29



Algorithm pseudo code of algorithm

Bad Pseudo Code: Too Abstract

Unnecessarily Abstract

GET-MIN-INDEX(A)

1 m = 1 // store current min. index
2 run a loop through A

that updates m in every iteration
3 return m

Concrete

GET-MIN-INDEX(A)

1 m = 1 // store current min. index
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

goal of pseudo code: communicate effectively

13/29



Algorithm pseudo code of algorithm

From GET-MIN-INDEX to SELECTION-SORT

GET-MIN-INDEX(A, `, r)

1 m = ` // store current min. index
2 for i = `+ 1 to r
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

Good Pseudo Code
• modularize, just like coding
• depends on speaker/listener
• usually no formal definition

2
r

r
2

r

r

3
r

r
3

r

r

r

10
r

r
10

r

r

r

r

r

r

r

r

r

r

Q
r

r
Q

r

r

5
r

r
5

r

r

r

r

r

K
r

r
K

r

r

2
r

r
2

r

r

3
r

r
3

r

r

r

5
r

r
5

r

r

r

r

r

Q
r

r
Q

r

r

10
r

r
10

r

r

r

r

r

r

r

r

r

r

K
r

r
K

r

r

SELECTION-SORT(A)

1 for i = 1 to A. length
2 m = GET-MIN-INDEX(A, i,A. length))
3 SWAP(A[i],A[m])
4 return A // which has been sorted in place

follow any textbook if you really need a definition

14/29



Algorithm pseudo code of algorithm

Fun Time
Which of the following can be used to describe good pseudo
code?

1 clear
2 concise
3 concrete
4 all of the above

Reference Answer: 4

Have fun communicating with other
programmers using good pseudo code! :-)

15/29



Algorithm pseudo code of algorithm

Fun Time
Which of the following can be used to describe good pseudo
code?

1 clear
2 concise
3 concrete
4 all of the above

Reference Answer: 4

Have fun communicating with other
programmers using good pseudo code! :-)

15/29



criteria of algorithm



Algorithm criteria of algorithm

Criteria of Recipe

figure by Larry, licensed under CC BY-NC-ND 2.0 via Flickr

Cocktail Recipe:
Screwdriver (from Wikipedia)

inputs: 5 cl vodka, 10 cl orange juice

1 mix inputs in a highball glass with ice

2 garnish with orange slice and serve

output: a glass of delicious cocktail

• input:
ingredients
• definiteness:

clear instructions
• effectiveness:

feasible instructions
• finiteness:

completable instructions
• output:

delicious drink

algorithm ∼ recipe: same five criteria for algorithm
(Knuth, The Art of Computer Programming)

17/29



Algorithm criteria of algorithm

Input of Algorithm

. . . quantities which are given to it initially before the algorithm begins.
These inputs are taken from specified sets of objects. (Knuth, TAOCP)

GET-MIN-INDEX(A)

1 m = 1 // store current min. index
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

one algorithm, many uses (on different legal inputs)

18/29



Algorithm criteria of algorithm

Definiteness of Algorithm

Each step of an algorithm must be precisely defined; the actions to be
carried out must be rigorously & unambiguously specified. (Knuth, TAOCP)

Clear
GET-MIN-INDEX(A)

1 m = 1 // store current min. index
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

Ambiguous
GET-ZERO-INDEX(A)

1
2 for i = 1 to A. length
3
4 if A[m] is almost zero
5 return m
6 // what to return here?

definiteness: clarity of algorithm

19/29



Algorithm criteria of algorithm

Effectiveness of Algorithm

. . . all of the operations to be performed in the algorithm must be
sufficiently basic that they can in principle be done exactly and in a
finite length of time by a man using paper and pencil. (Knuth, TAOCP)

Effective
GET-MIN-INDEX(A)

1 m = 1 // store current min. index
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

Ineffective
GET-SOFT-MIN(A)

1 s = 0 // sum of exponentiated values
2 for i = 1 to A. length
3 s = s + exp(−A[i] · 1126)
4
5
6 return −log(s)/1126

floating point errors may make some steps
ineffective on some computers

20/29



Algorithm criteria of algorithm

Finiteness of Algorithm

An algorithm must always terminate after a finite number of steps . . .
a very finite number, a reasonable number. (Knuth, TAOCP)

GET-MIN-INDEX(A)

1 m = 1 // store current min. index
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

finiteness (& efficiency): often requiring analysis for
sophisticated algorithms (to be taught later)

21/29



Algorithm criteria of algorithm

Output of Algorithm

. . . quantities which have a specified relation to the inputs (Knuth, TAOCP)

GET-MIN-INDEX(A)

1 m = 1 // store current min. index
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

output (correctness): needs proving
with respect to requirements

22/29



Algorithm criteria of algorithm

Fun Time
What best describes the input/output relationship of the
selection sort algorithm below?

SELECTION-SORT(A)

1 for i = 1 to A. length
2 m = GET-MIN-INDEX(A, i,A. length))
3 SWAP(A[i],A[m])
4 return A // which has been sorted in place

1 input: an ascending array;
output: the same array
sorted in descending order

2 input: an arbitrary array;
output: the same array
sorted in descending order

3 input: an arbitrary array;
output: the same array
sorted in ascending order

4 none of the other choices

Reference Answer: 3

The selection sort algorithm re-arranges an
arbitrary array into ascending order.

23/29



Algorithm criteria of algorithm

Fun Time
What best describes the input/output relationship of the
selection sort algorithm below?

SELECTION-SORT(A)

1 for i = 1 to A. length
2 m = GET-MIN-INDEX(A, i,A. length))
3 SWAP(A[i],A[m])
4 return A // which has been sorted in place

1 input: an ascending array;
output: the same array
sorted in descending order

2 input: an arbitrary array;
output: the same array
sorted in descending order

3 input: an arbitrary array;
output: the same array
sorted in ascending order

4 none of the other choices

Reference Answer: 3

The selection sort algorithm re-arranges an
arbitrary array into ascending order.

23/29



correctness proof of algorithm



Algorithm correctness proof of algorithm

Claim

figure by Nick Youngson, licensed CC BY-SA 3.0 via Picpedia.Org

GET-MIN-INDEX(A)

1 m = 1 // store current min. index
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

Correctness of GET-MIN-INDEX

Upon exiting GET-MIN-INDEX(A),

A[m] = min
1≤j≤n

A[j]

with n = A. length

claim: math. statement that declares correctness

25/29



Algorithm correctness proof of algorithm

Invariant

invariants when constructing fractals
figures by Johannes Rössel,

licensed from public domain via Wikipedia

GET-MIN-INDEX(A)

1 m = 1 // store current min. index
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

Correctness of GET-MIN-INDEX

Upon exiting GET-MIN-INDEX(A),

A[m] = min
1≤j≤n

A[j]

with n = A. length

⇑

Invariant within GET-MIN-INDEX

Upon finishing the loop with i = k ,
denote m by mk ,

A[mk ] ≤ A[j] for j = 1,2, . . . , k

(loop) invariant: property that algorithm maintains

26/29



Algorithm correctness proof of algorithm

Proof of Loop Invariant
Mathematical Induction

Base

when i = 2, invariant true because
. . .

• assume invariant true for i = t − 1

• when i = t ,
◦ if A[mt−1] > A[t]⇒ mt = t

A[mt ]
= A[t] ≤ A[t]
< A[mt−1] ≤ A[j] for j < t

◦ if A[mt−1] ≤ A[t]⇒ mt = mt−1

A[mt ]
= A[mt−1] ≤ A[t]
= A[mt−1] ≤ A[j] for j < t

—by mathematical induction,
invariant true for i = 2, 3, . . . , k

⇒

GET-MIN-INDEX(A)

1 m = 1 // store current min. index
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

Correctness of GET-MIN-INDEX

⇑
Invariant within GET-MIN-INDEX

Upon finishing the loop with i = k ,
denote m by mk ,

A[mk ] ≤ A[j] for j = 1, 2, . . . , k

proof of (loop) invariants⇒ correctness claim of algorithm
27/29



Algorithm correctness proof of algorithm

Fun Time
Which of the following is a loop invariant to selection sort?

SELECTION-SORT(A)

1 for i = 1 to A. length
2 m = GET-MIN-INDEX(A, i,A. length))
3 SWAP(A[i],A[m])
4 return A // which has been sorted in place

1 Upon finishing the loop with i = k , A[1] ≥ A[2] ≥ . . . ≥ A[k ].
2 Upon finishing the loop with i = k , A[1] ≤ A[2] ≤ . . . ≤ A[k ].
3 Upon finishing the loop with i = k , A[k + 1] ≥ . . . ≥ A[A. length].
4 Upon finishing the loop with i = k , A[k + 1] ≤ . . . ≤ A[A. length].

Reference Answer: 2
The selection sort algorithm essentially picks
the smallest element, the 2nd-smallest, and so
on, and locate them orderly. You can prove the
loop invariant by mathematical induction.

28/29



Algorithm correctness proof of algorithm

Fun Time
Which of the following is a loop invariant to selection sort?

SELECTION-SORT(A)

1 for i = 1 to A. length
2 m = GET-MIN-INDEX(A, i,A. length))
3 SWAP(A[i],A[m])
4 return A // which has been sorted in place

1 Upon finishing the loop with i = k , A[1] ≥ A[2] ≥ . . . ≥ A[k ].
2 Upon finishing the loop with i = k , A[1] ≤ A[2] ≤ . . . ≤ A[k ].
3 Upon finishing the loop with i = k , A[k + 1] ≥ . . . ≥ A[A. length].
4 Upon finishing the loop with i = k , A[k + 1] ≤ . . . ≤ A[A. length].

Reference Answer: 2
The selection sort algorithm essentially picks
the smallest element, the 2nd-smallest, and so
on, and locate them orderly. You can prove the
loop invariant by mathematical induction.

28/29



Algorithm correctness proof of algorithm

Summary

Lecture 1: Algorithm
definition of algorithm

instructions to complete a task by computer
pseudo code of algorithm
communicate alg. efficiently/correctly/effectively

criteria of algorithm
input, definite, effective, finite, output

correctness proof of algorithm
from (loop) invariants to claims

• next: ‘data structures’ and their connections to algorithms

29/29


	Algorithm
	definition of algorithm
	pseudo code of algorithm
	criteria of algorithm
	correctness proof of algorithm


