### Machine Learning Techniques (機器學習技法)



#### Lecture 16: Finale Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)



### Roadmap

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

#### Lecture 15: Matrix Factorization

linear models of movies on extracted user features (or vice versa) jointly optimized with stochastic gradient descent

#### Lecture 16: Finale

- Feature Exploitation Techniques
- Error Optimization Techniques
- Overfitting Elimination Techniques
- Machine Learning in Practice

#### numerous features within some $\Phi$ :

### Exploiting Numerous Features via Kernel

#### numerous features within some $\Phi$ :

embedded in kernel  $K_{\Phi}$  with inner product operation

#### Polynomial Kernel

'scaled' polynomial transforms

#### numerous features within some $\Phi$ :

| Polynomial Kernel | Gaussian Kernel      |
|-------------------|----------------------|
|                   | infinite-dimensional |
| transforms        | transforms           |

| inale                                                                                                                                           | le Feature Exploitation Techniques                                                                   |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                 | Exploiting Numerous Features via Kernel                                                              |  |  |  |  |  |
| numero                                                                                                                                          | numerous features within some $\Phi$ :<br>embedded in kernel $K_{\Phi}$ with inner product operation |  |  |  |  |  |
| Polync                                                                                                                                          | Polynomial Kernel Gaussian Kernel Stump Kernel                                                       |  |  |  |  |  |
| Polynomial KernelGaussian KernelStump Kernel'scaled' polynomial<br>transformsinfinite-dimensional<br>transformsdecision-stumps as<br>transforms |                                                                                                      |  |  |  |  |  |

#### numerous features within some $\Phi$ :

embedded in kernel  $K_{\Phi}$  with inner product operation

| Polynomial Kernel   | Gaussian Kernel      | Stump Kernel       |
|---------------------|----------------------|--------------------|
| 'scaled' polynomial | infinite-dimensional | decision-stumps as |
| transforms          | transforms           | transforms         |

#### Sum of Kernels

transform union

#### numerous features within some $\Phi$ :

| Polynomial Kernel              | Gaussian Kernel                    | Stump Kernel                  |
|--------------------------------|------------------------------------|-------------------------------|
| 'scaled' polynomial transforms | infinite-dimensional<br>transforms | decision-stumps as transforms |
| Sum of Kernels                 | Product of Kernels                 | 1                             |
| transform union                | transform combination              |                               |

#### numerous features within some $\Phi$ :

| Polynomial Kernel                 | Gaussian Kernel                    | Stump Kernel                  |
|-----------------------------------|------------------------------------|-------------------------------|
| 'scaled' polynomial<br>transforms | infinite-dimensional<br>transforms | decision-stumps as transforms |
|                                   |                                    |                               |
| Sum of Kernels                    | Product of Kernels                 | Mercer Kernels                |

### Exploiting Numerous Features via Kernel

#### numerous features within some $\Phi$ :

| Polynomial Kernel              | Gaussian Kernel                    | Stump Kernel                  |
|--------------------------------|------------------------------------|-------------------------------|
| 'scaled' polynomial transforms | infinite-dimensional<br>transforms | decision-stumps as transforms |
| Sum of Kornolo                 | Product of Kernels                 | Mercer Kernels                |
| Sum of Kernels                 | FIDUUCE OF NEITIEIS                |                               |



### Exploiting Numerous Features via Kernel

#### numerous features within some $\Phi$ :

| Polynomial Kernel              | Gaussian Kernel                    | Stump Kernel                     |
|--------------------------------|------------------------------------|----------------------------------|
| 'scaled' polynomial transforms | infinite-dimensional<br>transforms | decision-stumps as<br>transforms |
| Sum of Kernels                 | Product of Kernels                 | Mercer Kernels                   |
| transform union                | transform combination              | transform implicitly             |
|                                |                                    |                                  |
|                                | kernel ridge<br>regression         | kernel logistic<br>regression    |



#### numerous features within some $\Phi$ :

| Polynomial Kernel                 | Gaussian Kernel                    | Stump Kernel                     |
|-----------------------------------|------------------------------------|----------------------------------|
| 'scaled' polynomial<br>transforms | infinite-dimensional<br>transforms | decision-stumps as<br>transforms |
| Sum of Kernels                    | Product of Kernels                 | Mercer Kernels                   |
| transform union                   | transform combination              | transform implicitly             |
|                                   |                                    |                                  |
|                                   | kernel ridge<br>regression         | kernel logistic<br>regression    |
| SVM                               | <u> </u>                           | Ŭ T                              |
|                                   | regression                         | regression<br>probabilistic SVM  |

Feature Exploitation Techniques

### Exploiting Predictive Features via Aggregation predictive features within some $\Phi$ : $\phi_t(\mathbf{x}) = g_t(\mathbf{x})$

Feature Exploitation Techniques

# Exploiting Predictive Features via Aggregation predictive features within some $\Phi$ :

 $\phi_t(\mathbf{x}) = g_t(\mathbf{x})$ 

**Decision Stump** 

simplest perceptron; simplest DecTree

Feature Exploitation Techniques

### Exploiting Predictive Features via Aggregation

#### predictive features within some $\Phi$ :

 $\phi_t(\mathbf{x}) = g_t(\mathbf{x})$ 

#### Decision Stump

simplest perceptron; simplest DecTree Decision Tree branching (divide) + leaves (conquer)

Feature Exploitation Techniques

## Exploiting Predictive Features via Aggregation

#### predictive features within some **Φ**:

 $\phi_t(\mathbf{x}) = \mathbf{g}_t(\mathbf{x})$ 

| Decision Stump       | Decision Tree        | (Gaussian) RBF       |
|----------------------|----------------------|----------------------|
| simplest perceptron; | branching (divide) + | prototype (center) + |
| simplest DecTree     | leaves (conquer)     | influence            |

Feature Exploitation Techniques

## Exploiting Predictive Features via Aggregation

#### predictive features within some $\Phi$ :

| Decision Stump                           | Decision Tree                            | (Gaussian) RBF                    |
|------------------------------------------|------------------------------------------|-----------------------------------|
| simplest perceptron;<br>simplest DecTree | branching (divide) +<br>leaves (conquer) | prototype (center) +<br>influence |
| Uniform                                  | Non-Uniform                              | Conditional                       |

Feature Exploitation Techniques

## Exploiting Predictive Features via Aggregation

#### predictive features within some $\Phi$ :

 $\phi_t(\mathbf{x}) = g_t(\mathbf{x})$ 

| Decision Stump                           | Decision Tree                            | (Gaussian) RBF                    |
|------------------------------------------|------------------------------------------|-----------------------------------|
| simplest perceptron;<br>simplest DecTree | branching (divide) +<br>leaves (conquer) | prototype (center) +<br>influence |
| Uniform                                  | Non-Uniform                              | Conditional                       |
|                                          |                                          |                                   |

Bagging; Random Forest

Feature Exploitation Techniques

## Exploiting Predictive Features via Aggregation

#### predictive features within some **Φ**:

| Decision Stump                           | Decision Tree                            | (Gaussian) RBF                    |
|------------------------------------------|------------------------------------------|-----------------------------------|
| simplest perceptron;<br>simplest DecTree | branching (divide) +<br>leaves (conquer) | prototype (center) +<br>influence |
| Uniform                                  | Non-Uniform                              | Conditional                       |
|                                          |                                          |                                   |

Feature Exploitation Techniques

## Exploiting Predictive Features via Aggregation

#### predictive features within some **Φ**:

| Decision Stump                           | Decision Tree                            | (Gaussian) RBF                    |
|------------------------------------------|------------------------------------------|-----------------------------------|
| simplest perceptron;<br>simplest DecTree | branching (divide) +<br>leaves (conquer) | prototype (center) +<br>influence |
| Uniform                                  | Non-Uniform                              | Conditional                       |
| Bagging;<br>Random Forest                | AdaBoost;<br>GradientBoost               | Decision Tree;                    |

Feature Exploitation Techniques

## Exploiting Predictive Features via Aggregation

#### predictive features within some **Φ**:

| Decision Stump       | Decision Tree        | (Gaussian) RBF       |
|----------------------|----------------------|----------------------|
| simplest perceptron; | branching (divide) + | prototype (center) + |
| simplest DecTree     | leaves (conquer)     | influence            |
| Uniform              | Non-Uniform          | Conditional          |
| Bagging;             | AdaBoost;            | Decision Tree;       |
| Random Forest        | GradientBoost        | Nearest Neighbor     |

Feature Exploitation Techniques

## Exploiting Predictive Features via Aggregation

#### predictive features within some $\Phi$ :

 $\phi_t(\mathbf{x}) = \mathbf{g}_t(\mathbf{x})$ 

| Decision Stump                           | Decision Tree                            | (Gaussian) RBF                     |
|------------------------------------------|------------------------------------------|------------------------------------|
| simplest perceptron;<br>simplest DecTree | branching (divide) +<br>leaves (conquer) | prototype (center) +<br>influence  |
| Uniform                                  | Non-Uniform                              | Conditional                        |
| Bagging;<br>Random Forest                | AdaBoost;<br>GradientBoost               | Decision Tree;<br>Nearest Neighbor |
|                                          | probabilistic SVM                        |                                    |

Feature Exploitation Techniques

## Exploiting Predictive Features via Aggregation

#### predictive features within some **Φ**.

| Decision St                                                | ump     | Decision Tree                            | (Gaussian) RBF                     |      |
|------------------------------------------------------------|---------|------------------------------------------|------------------------------------|------|
| simplest percessimplest Dec                                | •       | branching (divide) +<br>leaves (conquer) | prototype (center) +<br>influence  |      |
| Uniform                                                    |         | Non-Uniform                              | Conditional                        |      |
| Bagging;<br>Random Fo                                      | rest    | AdaBoost;<br>GradientBoost               | Decision Tree;<br>Nearest Neighbor |      |
|                                                            |         | probabilistic SVM                        | J                                  |      |
| possibly Infinite Ensemble Learning,<br>Decision Tree SVM, |         |                                          |                                    |      |
| Hsuan-Tien Lin (NTI                                        | U CSIE) | Machine Learning T                       | echniques                          | 3/21 |

as hidden variables to be 'jointly' optimized with usual weights

as hidden variables to be 'jointly' optimized with usual weights

as hidden variables to be 'jointly' optimized with usual weights

-possibly with the help of unsupervised learning

Neural Network; Deep Learning

neuron weights

as hidden variables to be 'jointly' optimized with usual weights

| Neural Network;<br>Deep Learning | RBF Network |
|----------------------------------|-------------|
| neuron weights                   | RBF centers |

as hidden variables to be 'jointly' optimized with usual weights

| Neural Network;<br>Deep Learning | RBF Network | Matrix Factorization |
|----------------------------------|-------------|----------------------|
| neuron weights                   | RBF centers | user/movie factors   |

as hidden variables to be 'jointly' optimized with usual weights

| Neural Network;<br>Deep Learning | RBF Network     | Matrix Factorization |
|----------------------------------|-----------------|----------------------|
| neuron weights                   | RBF centers     | user/movie factors   |
|                                  | k-Means         |                      |
|                                  | cluster centers |                      |

as hidden variables to be 'jointly' optimized with usual weights

| Neural Network;<br>Deep Learning | RBF Network | Matrix Factorization |
|----------------------------------|-------------|----------------------|
| neuron weights                   | RBF centers | user/movie factors   |
|                                  |             |                      |
|                                  | k-Means     | Autoencoder;<br>PCA  |

as hidden variables to be 'jointly' optimized with usual weights

| Neural Network;<br>Deep Learning | RBF Network     | Matrix Factorization |
|----------------------------------|-----------------|----------------------|
| neuron weights                   | RBF centers     | user/movie factors   |
| AdaBoost;<br>GradientBoost       | k-Means         | Autoencoder;<br>PCA  |
| $g_t$ parameters                 | cluster centers | 'basis' directions   |

as hidden variables to be 'jointly' optimized with usual weights

-possibly with the help of unsupervised learning

| Neural Network;<br>Deep Learning | RBF Network     | Matrix Factorization |
|----------------------------------|-----------------|----------------------|
| neuron weights                   | RBF centers     | user/movie factors   |
| AdaBoost;<br>GradientBoost       | k-Means         | Autoencoder;<br>PCA  |
| $g_t$ parameters                 | cluster centers | 'basis' directions   |

possibly GradientBoosted Neurons, NNet on Factorized Features,

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Feature Exploitation Techniques

## Exploiting Low-Dim. Features via Compression low-dimensional features within some **Φ**:

compressed from original features

Feature Exploitation Techniques

## Exploiting Low-Dim. Features via Compression low-dimensional features within some **Φ**:

compressed from original features

Decision Stump; DecTree Branching

'best' naïve projection to  $\mathbb R$ 

Feature Exploitation Techniques

## Exploiting Low-Dim. Features via Compression low-dimensional features within some **Φ**:

compressed from original features

| Decision Stump;                          | Random Forest                   |
|------------------------------------------|---------------------------------|
| DecTree Branching                        | Tree Branching                  |
| 'best' naïve projection to ${\mathbb R}$ | 'random' low-dim.<br>projection |

Feature Exploitation Techniques

## Exploiting Low-Dim. Features via Compression low-dimensional features within some **Φ**:

compressed from original features

### Decision Stump; DecTree Branching

'best' naïve projection to  $\mathbb{R}$ 

Random Forest Tree Branching

'random' low-dim. projection

#### Autoencoder;PCA

info.-preserving compression

Feature Exploitation Techniques

### Exploiting Low-Dim. Features via Compression low-dimensional features within some **Φ**:

compressed from original features

#### Decision Stump; DecTree Branching

'best' naïve projection to  $\mathbb{R}$ 

Random Forest Tree Branching

'random' low-dim. projection

#### Autoencoder;PCA

info.-preserving compression

#### Matrix Factorization

projection from abstract to concrete

### Exploiting Low-Dim. Features via Compression low-dimensional features within some **Φ**:

compressed from original features



**Feature Selection** 

'most-helpful' low-dimensional projection

### Exploiting Low-Dim. Features via Compression low-dimensional features within some **Φ**:

compressed from original features



Feature Selection

'most-helpful' low-dimensional projection

#### possibly other 'dimension reduction' models

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

#### Fun Time

Consider running AdaBoost-Stump on a PCA-preprocessed data set. Then, in terms of the original features **x**, what does the final hypothesis  $G(\mathbf{x})$  look like?

- **1** a neural network with  $tanh(\cdot)$  in the hidden neurons
- 2 a neural network with sign( $\cdot$ ) in the hidden neurons
- 3 a decision tree
- 4 a random forest

#### Fun Time

Consider running AdaBoost-Stump on a PCA-preprocessed data set. Then, in terms of the original features **x**, what does the final hypothesis  $G(\mathbf{x})$  look like?

- **1** a neural network with  $tanh(\cdot)$  in the hidden neurons
- 2 a neural network with sign( $\cdot$ ) in the hidden neurons
- 3 a decision tree
- 4 a random forest

#### Reference Answer: (2)

PCA results in a linear transformation of  $\mathbf{x}$ . Then, when applying a decision stump on the transformed data, it is *as if* a perceptron is applied on the original data. So the resulting *G* is simply a linear aggregation of perceptrons.

#### Numerical Optimization via Gradient Descent when $\nabla E$ 'approximately' defined, use it for 1st order approximation:

new variables = old variables –  $\eta \nabla E$ 

# Numerical Optimization via Gradient Descent when $\nabla E$ 'approximately' defined, use it for 1st order approximation:

new variables = old variables –  $\eta \nabla E$ 

#### SGD/Minibatch/GD

(Kernel) LogReg;

- Neural Network [backprop];
- Matrix Factorization;

Linear SVM (maybe)

# Numerical Optimization via Gradient Descent when $\nabla E$ 'approximately' defined, use it for 1st order approximation:

new variables = old variables –  $\eta \nabla E$ 

#### SGD/Minibatch/GD (Kernel) LogReg; Neural Network [backprop]; Matrix Factorization; Linear SVM (maybe)

### Functional GD AdaBoost; GradientBoost

# Numerical Optimization via Gradient Descent when $\nabla E$ 'approximately' defined, use it for 1st order approximation:

new variables = old variables –  $\eta \nabla E$ 

| SGD/Minibatch/GD              | Steepest Descent | Functional GD |
|-------------------------------|------------------|---------------|
| (Kernel) LogReg;              | AdaBoost;        | AdaBoost;     |
| Neural Network<br>[backprop]; | GradientBoost    | GradientBoost |
| Matrix Factorization;         |                  |               |
| Linear SVM (maybe)            |                  |               |

# Numerical Optimization via Gradient Descent when $\nabla E$ 'approximately' defined, use it for 1st order approximation:

new variables = old variables –  $\eta \nabla E$ 

| SGD/Minibatch/GD              | Steepest Descent | Functional GD |
|-------------------------------|------------------|---------------|
| (Kernel) LogReg;              | AdaBoost;        | AdaBoost;     |
| Neural Network<br>[backprop]; | GradientBoost    | GradientBoost |
| Matrix Factorization;         |                  |               |
| Linear SVM (maybe)            |                  |               |

possibly 2nd order techniques, GD under constraints, ....

### when difficult to solve original problem, seek for equivalent solution

#### Indirect Optimization via Equivalent Solution

### when difficult to solve original problem, seek for equivalent solution

#### Dual SVM

equivalence via convex QP

Hsuan-Tien Lin (NTU CSIE)

### when difficult to solve original problem, seek for equivalent solution

| Dual SVM        | Kernel LogReg<br>Kernel RidgeReg |
|-----------------|----------------------------------|
| equivalence via | equivalence via                  |
| convex QP       | representer                      |

when difficult to solve original problem, seek for equivalent solution

| Dual SVM                     | Kernel LogReg<br>Kernel RidgeReg | PCA                         |
|------------------------------|----------------------------------|-----------------------------|
| equivalence via<br>convex QP | equivalence via<br>representer   | equivalence to eigenproblem |

when difficult to solve original problem, seek for equivalent solution

| Dual SVM                     | Kernel LogReg<br>Kernel RidgeReg | PCA                         |
|------------------------------|----------------------------------|-----------------------------|
| equivalence via<br>convex QP | equivalence via<br>representer   | equivalence to eigenproblem |

some other boosting models and modern solvers of kernel models rely on such a technique heavily

#### when difficult to solve original problem, seek for 'easier' sub-problems

#### when difficult to solve original problem, seek for 'easier' sub-problems

#### Multi-Stage

probabilistic SVM;

linear blending;

stacking;

RBF Network;

DeepNet pre-training

### when difficult to solve original problem, seek for 'easier' sub-problems

| Multi-Stage          | Alternating Optim.    |
|----------------------|-----------------------|
| probabilistic SVM;   | <i>k</i> -Means;      |
| linear blending;     | alternating LeastSqr; |
| stacking;            |                       |
| RBF Network;         |                       |
| DeepNet pre-training |                       |

### when difficult to solve original problem, seek for 'easier' sub-problems

| Multi-Stage          | Alternating Optim.    |
|----------------------|-----------------------|
| probabilistic SVM;   | <i>k</i> -Means;      |
| linear blending;     | alternating LeastSqr; |
| stacking;            | (steepest descent)    |
| RBF Network;         |                       |
| DeepNet pre-training |                       |

### Complicated Optimization via Multiple Steps when difficult to solve original problem,

#### seek for 'easier' sub-problems

| Multi-Stage          | Alternating Optim.    | Divide & Conquer |
|----------------------|-----------------------|------------------|
| probabilistic SVM;   | <i>k</i> -Means;      | decision tree;   |
| linear blending;     | alternating LeastSqr; |                  |
| stacking;            | (steepest descent)    |                  |
| RBF Network;         |                       |                  |
| DeepNet pre-training |                       |                  |

#### Complicated Optimization via Multiple Steps when difficult to solve original problem,

#### seek for 'easier' sub-problems

| Multi-Stage          | Alternating Optim.    | Divide & Conquer |
|----------------------|-----------------------|------------------|
| probabilistic SVM;   | <i>k</i> -Means;      | decision tree;   |
| linear blending;     | alternating LeastSqr; |                  |
| stacking;            | (steepest descent)    |                  |
| RBF Network;         |                       |                  |
| DeepNet pre-training |                       |                  |

#### useful for complicated models

#### Fun Time

When running the DeepNet algorithm introduced in Lecture 213 on a PCA-preprocessed data set, which optimization technique is used?

- 1 variants of gradient-descent
- 2 locating equivalent solutions
- 3 multi-stage optimization
- 4 all of the above

#### Fun Time

When running the DeepNet algorithm introduced in Lecture 213 on a PCA-preprocessed data set, which optimization technique is used?

- variants of gradient-descent
- 2 locating equivalent solutions
- 3 multi-stage optimization
- 4 all of the above

#### Reference Answer: (4)

minibatch GD for training; equivalent eigenproblem solution for PCA; multi-stage for pre-training

Overfitting Elimination Techniques

## Overfitting Elimination via Regularization when model too 'powerful':

add brakes somewhere

Overfitting Elimination Techniques

### Overfitting Elimination via Regularization when model too 'powerful':

#### add brakes somewhere



SVM;

AdaBoost (indirectly)

Overfitting Elimination Techniques

## Overfitting Elimination via Regularization when model too 'powerful':

#### add brakes somewhere

| large-margin          | L2                  |
|-----------------------|---------------------|
| SVM;                  | SVR;                |
| AdaBoost (indirectly) | kernel models;      |
|                       | NNet [weight-decay] |

Overfitting Elimination Techniques

## Overfitting Elimination via Regularization when model too 'powerful':

#### add brakes somewhere

| large-margin          | L2                  | voting/averaging  |
|-----------------------|---------------------|-------------------|
| SVM;                  | SVR;                | uniform blending; |
| AdaBoost (indirectly) | kernel models;      | Bagging;          |
|                       | NNet [weight-decay] | Random Forest     |

Overfitting Elimination Techniques

## Overfitting Elimination via Regularization when model too 'powerful':

#### add brakes somewhere

| large-margin          | L2                  | voting/averaging  |
|-----------------------|---------------------|-------------------|
| SVM;                  | SVR;                | uniform blending; |
| AdaBoost (indirectly) | kernel models;      | Bagging;          |
|                       | NNet [weight-decay] | Random Forest     |

#### denoising

autoencoder

Overfitting Elimination Techniques

## Overfitting Elimination via Regularization when model too 'powerful':

#### add brakes somewhere

| large-margin          | L2                  | voting/averaging  |
|-----------------------|---------------------|-------------------|
| SVM;                  | SVR;                | uniform blending; |
| AdaBoost (indirectly) | kernel models;      | Bagging;          |
|                       | NNet [weight-decay] | Random Forest     |

#### denoising

autoencoder

#### pruning

#### decision tree

Overfitting Elimination Techniques

## Overfitting Elimination via Regularization when model too 'powerful':

#### add brakes somewhere

| large-margin          | L2                  | voting/averaging  |
|-----------------------|---------------------|-------------------|
| SVM;                  | SVR;                | uniform blending; |
| AdaBoost (indirectly) | kernel models;      | Bagging;          |
|                       | NNet [weight-decay] | Random Forest     |

| denoising   | weight-elimination |
|-------------|--------------------|
| autoencoder | NNet               |

#### pruning

decision tree

Overfitting Elimination Techniques

## Overfitting Elimination via Regularization when model too 'powerful':

#### add brakes somewhere

| large-margin          | L2                  | voting/averaging  |
|-----------------------|---------------------|-------------------|
| SVM;                  | SVR;                | uniform blending; |
| AdaBoost (indirectly) | kernel models;      | Bagging;          |
|                       | NNet [weight-decay] | Random Forest     |

| denoising   | weight-elimination |
|-------------|--------------------|
| autoencoder | NNet               |

| pruning       | early stopping     |
|---------------|--------------------|
| decision tree | NNet (any GD-like) |

Overfitting Elimination Techniques

## Overfitting Elimination via Regularization when model too 'powerful':

#### add brakes somewhere

| large-margin          | L2                  | voting/averaging  |
|-----------------------|---------------------|-------------------|
| SVM;                  | SVR;                | uniform blending; |
| AdaBoost (indirectly) | kernel models;      | Bagging;          |
|                       | NNet [weight-decay] | Random Forest     |
|                       |                     |                   |
| denoising             | weight-elimination  | constraining      |
|                       |                     |                   |

| autoencoder   | NNet               | autoenc. [weights]; |
|---------------|--------------------|---------------------|
|               |                    | RBF [# centers];    |
| pruning       | early stopping     |                     |
| decision tree | NNet (any GD-like) |                     |

**Overfitting Elimination Techniques** 

#### Overfitting Elimination via Regularization when model too 'powerful':

#### add brakes somewhere

| large-margin          | L2                  | voting/averaging  |
|-----------------------|---------------------|-------------------|
| SVM;                  | SVR;                | uniform blending; |
| AdaBoost (indirectly) | kernel models;      | Bagging;          |
|                       | NNet [weight-decay] | Random Forest     |
|                       |                     |                   |
| denoising             | weight-elimination  | constraining      |

| J             |                    | <b></b>             |
|---------------|--------------------|---------------------|
| autoencoder   | NNet               | autoenc. [weights]; |
|               |                    | RBF [# centers];    |
| pruning       | early stopping     |                     |
| decision tree | NNet (any GD-like) |                     |

arguably most important techniques

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

### Overfitting Elimination via Validation

#### when model too 'powerful':

check performance carefully and honestly

## Overfitting Elimination via Validation when model too 'powerful':

#### check performance carefully and honestly



## Overfitting Elimination via Validation when model too 'powerful':

#### check performance carefully and honestly

| # SV    | OOB           |
|---------|---------------|
| SVM/SVR | Random Forest |
|         |               |

# Overfitting Elimination via Validation when model too 'powerful':

#### check performance carefully and honestly

| # SV    | OOB           | Internal Validation |
|---------|---------------|---------------------|
| SVM/SVR | Random Forest | blending;           |
|         |               | DecTree pruning     |

## Overfitting Elimination via Validation when model too 'powerful':

#### check performance carefully and honestly

| # SV    | OOB           | Internal Validation |
|---------|---------------|---------------------|
| SVM/SVR | Random Forest | blending;           |
|         |               | DecTree pruning     |

simple but necessary

#### Fun Time

What is the major technique for eliminating overfitting in Random Forest?

- voting/averaging
- 2 pruning
- early stopping
- weight-elimination

#### Fun Time

What is the major technique for eliminating overfitting in Random Forest?

- voting/averaging
- 2 pruning
- early stopping
- weight-elimination

#### Reference Answer: (1)

Random Forest, based on uniform blending, relies on voting/averaging for regularization.

Feature engineering and classifier ensemble for KDD Cup 2010, Yu et al., KDDCup 2010

linear blending of

Feature engineering and classifier ensemble for KDD Cup 2010, Yu et al., KDDCup 2010

linear blending of

Logistic Regression + many rawly encoded features

Feature engineering and classifier ensemble for KDD Cup 2010, Yu et al., KDDCup 2010

linear blending of

Logistic Regression + many rawly encoded features Random Forest + human-designed features

Feature engineering and classifier ensemble for KDD Cup 2010, Yu et al., KDDCup 2010

linear blending of

Logistic Regression + many rawly encoded features Random Forest + human-designed features

yes, you've learned everything! :-)

#### NTU KDDCup 2011 Track 1 World Champion Model

A linear ensemble of individual and blended models for music rating prediction, Chen et al., KDDCup 2011

NNet, DecTree-like, and then linear blending of

#### NTU KDDCup 2011 Track 1 World Champion Model

A linear ensemble of individual and blended models for music rating prediction, Chen et al., KDDCup 2011

NNet, DecTree-like, and then linear blending of

Matrix Factorization variants, including probabilistic PCA

A linear ensemble of individual and blended models for music rating prediction, Chen et al., KDDCup 2011

#### NNet, DecTree-like, and then linear blending of

- Matrix Factorization variants, including probabilistic PCA
- Restricted Boltzmann Machines: an 'extended' autoencoder

A linear ensemble of individual and blended models for music rating prediction, Chen et al., KDDCup 2011

#### NNet, DecTree-like, and then linear blending of

- Matrix Factorization variants, including probabilistic PCA
- Restricted Boltzmann Machines: an 'extended' autoencoder
- k Nearest Neighbors

A linear ensemble of individual and blended models for music rating prediction, Chen et al., KDDCup 2011

#### NNet, DecTree-like, and then linear blending of

- Matrix Factorization variants, including probabilistic PCA
- Restricted Boltzmann Machines: an 'extended' autoencoder
- k Nearest Neighbors
- Probabilistic Latent Semantic Analysis:

an extraction model that has 'soft clusters' as hidden variables

A linear ensemble of individual and blended models for music rating prediction, Chen et al., KDDCup 2011

#### NNet, DecTree-like, and then linear blending of

- Matrix Factorization variants, including probabilistic PCA
- Restricted Boltzmann Machines: an 'extended' autoencoder
- k Nearest Neighbors
- Probabilistic Latent Semantic Analysis: an extraction model that has 'soft clusters' as hidden variables
- linear regression, NNet, & GBDT

A linear ensemble of individual and blended models for music rating prediction, Chen et al., KDDCup 2011

#### NNet, DecTree-like, and then linear blending of

- Matrix Factorization variants, including probabilistic PCA
- Restricted Boltzmann Machines: an 'extended' autoencoder
- k Nearest Neighbors
- Probabilistic Latent Semantic Analysis: an extraction model that has 'soft clusters' as hidden variables
- linear regression, NNet, & GBDT

#### yes, you can 'easily' understand everything! :-)

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

A two-stage ensemble of diverse models for advertisement ranking in KDD Cup 2012, Wu et al., KDDCup 2012

NNet, GBDT-like, and then linear blending of

A two-stage ensemble of diverse models for advertisement ranking in KDD Cup 2012, Wu et al., KDDCup 2012

NNet, GBDT-like, and then linear blending of

Linear Regression variants, including linear SVR

A two-stage ensemble of diverse models for advertisement ranking in KDD Cup 2012, Wu et al., KDDCup 2012

NNet, GBDT-like, and then linear blending of

- Linear Regression variants, including linear SVR
- Logistic Regression variants

A two-stage ensemble of diverse models for advertisement ranking in KDD Cup 2012, Wu et al., KDDCup 2012

NNet, GBDT-like, and then linear blending of

- Linear Regression variants, including linear SVR
- Logistic Regression variants
- Matrix Factorization variants

• . . .

A two-stage ensemble of diverse models for advertisement ranking in KDD Cup 2012, Wu et al., KDDCup 2012

NNet, GBDT-like, and then linear blending of

- Linear Regression variants, including linear SVR
- Logistic Regression variants
- Matrix Factorization variants

#### 'key' is to blend properly without overfitting

. . .

Machine Learning in Practice

#### NTU KDDCup 2013 Track 1 World Champion Model

Combination of feature engineering and ranking models for paperauthor identification in KDD Cup 2013, Li et al., KDDCup 2013

linear blending of

Hsuan-Tien Lin (NTU CSIE)

#### NTU KDDCup 2013 Track 1 World Champion Model

Combination of feature engineering and ranking models for paperauthor identification in KDD Cup 2013, Li et al., KDDCup 2013

linear blending of

Random Forest with many many many trees

### NTU KDDCup 2013 Track 1 World Champion Model

Combination of feature engineering and ranking models for paperauthor identification in KDD Cup 2013, Li et al., KDDCup 2013

#### linear blending of

- Random Forest with many many many trees
- GBDT variants

## NTU KDDCup 2013 Track 1 World Champion Model

Combination of feature engineering and ranking models for paperauthor identification in KDD Cup 2013, Li et al., KDDCup 2013

- linear blending of
  - Random Forest with many many many trees
  - GBDT variants

with tons of efforts in designing features

## NTU KDDCup 2013 Track 1 World Champion Model

Combination of feature engineering and ranking models for paperauthor identification in KDD Cup 2013, Li et al., KDDCup 2013

- linear blending of
  - Random Forest with many many many trees
  - GBDT variants

with tons of efforts in designing features

'another key' is to construct features with domain knowledge

## 1 C4.5: another decision tree

Hsuan-Tien Lin (NTU CSIE)

| C4.5: another decision<br>tree |
|--------------------------------|
| 2 k-Means                      |
|                                |
|                                |
|                                |
|                                |
|                                |

- 1 C4.5: another decision tree
- 2 k-Means
- SVM

- 1 C4.5: another decision tree
- 2 k-Means
- 3 SVM
- Apriori: for frequent itemset mining

- C4.5: another decision tree
- 2 k-Means
- 3 SVM
- Apriori: for frequent itemset mining
- 6 EM: 'alternating optimization' algorithm for some models

- 1 C4.5: another decision tree
- 2 k-Means
- 3 SVM
- Apriori: for frequent itemset mining
- EM: 'alternating optimization' algorithm for some models

PageRank: for link-analysis, similar to matrix factorization

- 1 C4.5: another decision tree
- 2 k-Means
- 3 SVM
- Apriori: for frequent itemset mining
- 5 EM: 'alternating optimization' algorithm for some models

- PageRank: for link-analysis, similar to matrix factorization
- AdaBoost

- C4.5: another decision tree
- 2 k-Means
- 3 SVM
- Apriori: for frequent itemset mining
- 5 EM: 'alternating optimization' algorithm for some models

- PageRank: for link-analysis, similar to matrix factorization
- AdaBoost
- 8 k Nearest Neighbor

- 1 C4.5: another decision tree
- 2 k-Means
- 3 SVM
- Apriori: for frequent itemset mining
- EM: 'alternating optimization' algorithm for some models

- PageRank: for link-analysis, similar to matrix factorization
- AdaBoost
- 8 k Nearest Neighbor
- Naive Bayes: a simple linear model with 'weights' decided by data statistics

- C4.5: another decision tree
- 2 k-Means
- 3 SVM
- Apriori: for frequent itemset mining
- EM: 'alternating optimization' algorithm for some models

- PageRank: for link-analysis, similar to matrix factorization
- AdaBoost
- 8 k Nearest Neighbor
- Naive Bayes: a simple linear model with 'weights' decided by data statistics

🕕 C&RT

- 1 C4.5: another decision tree
- 2 k-Means
- 3 SVM
- Apriori: for frequent itemset mining
- 5 EM: 'alternating optimization' algorithm for some models

- PageRank: for link-analysis, similar to matrix factorization
- AdaBoost
- 8 k Nearest Neighbor
- Naive Bayes: a simple linear model with 'weights' decided by data statistics

🕕 C&RT

personal view of five missing ML competitors: LinReg, LogReg, Random Forest, GBDT, NNet

#### Machine Learning Jungle

bagging support vector machine decision tree neural network kernel sparsity autoencoder aggregation functional gradient AdaBoost deep learning nearest neighbor uniform blending decision stump dual SVR quadratic programming prototype kernel LogReg large-margin GBDT matrix factorization Gaussian kernel PCA random forest **RBF network** probabilistic SVM k-means OOB error soft-margin

welcome to the jungle!

#### Fun Time

#### Which of the following is the official lucky number of this class?

- 9876
- 2 1234
- 3 1126
- 4 6211

#### Fun Time

#### Which of the following is the official lucky number of this class?



- 2 1234
- 3 1126
- 4 6211

#### Reference Answer: (3)

May the luckiness always be with you!

#### Summary

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models
- 8 Distilling Implicit Features: Extraction Models

#### Lecture 16: Finale

- Feature Exploitation Techniques
  kernel, aggregation, extraction, low-dimensional
- Error Optimization Techniques

gradient, equivalence, stages

Overfitting Elimination Techniques

(lots of) regularization, validation

• Machine Learning in Practice

welcome to the jungle

next: happy learning!