Lecture 15: Matrix Factorization

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering
National Taiwan University (國立台灣大學資訊工程系)
Matrix Factorization

Roadmap

1. Embedding Numerous Features: Kernel Models
2. Combining Predictive Features: Aggregation Models
3. Distilling Implicit Features: Extraction Models

Lecture 14: Radial Basis Function Network

- Linear aggregation of distance-based similarities using \(k \)-Means clustering for prototype finding

Lecture 15: Matrix Factorization

- Linear Network Hypothesis
- Basic Matrix Factorization
- Stochastic Gradient Descent
- Summary of Extraction Models
Recommender System Revisited

- **data**: how ‘many users’ have rated ‘some movies’
- **skill**: predict how a user would rate an unrated movie
Recommender System Revisited

- **data**: how ‘many users’ have rated ‘some movies’
- **skill**: predict how a user would rate an unrated movie

A Hot Problem

- competition held by Netflix in 2006
 - 100,480,507 ratings that 480,189 users gave to 17,770 movies
 - 10% improvement = 1 million dollar prize
Recommender System Revisited

- **data**: how ‘many users’ have rated ‘some movies’
- **skill**: predict how a user would rate an unrated movie

A Hot Problem

- competition held by Netflix in 2006
 - 100,480,507 ratings that 480,189 users gave to 17,770 movies
 - 10% improvement = 1 million dollar prize
- data D_m for m-th movie:
 $$\{(\tilde{x}_n = (n), y_n = r_{nm}): \text{user } n \text{ rated movie } m\}$$
Recommender System Revisited

data → **ML** → **skill**

- **data**: how ‘many users’ have rated ‘some movies’
- **skill**: predict how a user would rate an unrated movie

A Hot Problem

- competition held by Netflix in 2006
 - 100,480,507 ratings that 480,189 users gave to 17,770 movies
 - 10% improvement = 1 million dollar prize
- data D_m for m-th movie:
 \[\{(\tilde{x}_n = (n), y_n = r_{nm}) : \text{user } n \text{ rated movie } m\} \]
 —abstract feature $\tilde{x}_n = (n)$
Recommender System Revisited

- **Data**: how ‘many users’ have rated ‘some movies’
- **Skill**: predict how a user would rate an unrated movie

A Hot Problem

- Competition held by Netflix in 2006
 - 100,480,507 ratings that 480,189 users gave to 17,770 movies
 - 10% improvement = 1 million dollar prize
- Data D_m for m-th movie:
 \[\{(\tilde{x}_n = (n), y_n = r_{nm}) : \text{user } n \text{ rated movie } m\} \]
 —Abstract feature $\tilde{x}_n = (n)$

How to learn our preferences from data?
Binary Vector Encoding of Categorical Feature

\[\tilde{x}_n = (n) : \text{user IDs, such as 1126, 5566, 6211, \ldots} \]
Binary Vector Encoding of Categorical Feature

\[\tilde{x}_n = (n) : \text{user IDs, such as } 1126, 5566, 6211, \ldots \]
—called \textit{categorical} features
Matrix Factorization

Linear Network Hypothesis

Binary Vector Encoding of Categorical Feature

$$\tilde{x}_n = (n):$$ user IDs, such as 1126, 5566, 6211, . . .—called **categorical** features

- **categorical** features, e.g.
 - IDs
 - blood type: A, B, AB, O
Binary Vector Encoding of Categorical Feature

\[\tilde{x}_n = (n) \]: user IDs, such as 1126, 5566, 6211, ... —called **categorical** features

- **categorical** features, e.g.
 - IDs
 - blood type: A, B, AB, O
 - programming languages: C, C++, Java, Python, ...
Binary Vector Encoding of Categorical Feature

\[\tilde{x}_n = (n) : \text{user IDs, such as 1126, 5566, 6211, \ldots} \]
—called **categorical** features

- **categorical** features, e.g.
 - IDs
 - blood type: A, B, AB, O
 - programming languages: C, C++, Java, Python, \ldots
- many ML models operate on **numerical** features
\[\tilde{x}_n = (n) : \text{user IDs, such as 1126, 5566, 6211, \ldots} \]
—called **categorical** features

- **categorical** features, e.g.
 - IDs
 - blood type: A, B, AB, O
 - programming languages: C, C++, Java, Python, \ldots
- many ML models operate on **numerical** features
 - linear models
Binary Vector Encoding of Categorical Feature

\[\tilde{x}_n = (n) \]: user IDs, such as 1126, 5566, 6211, ... —called \textit{categorical} features

- \textbf{categorical} features, e.g.
 - IDs
 - blood type: A, B, AB, O
 - programming languages: C, C++, Java, Python, ...
- many ML models operate on \textit{numerical} features
 - \textit{linear} models
 - \textit{extended linear} models such as NNet
Binary Vector Encoding of Categorical Feature

\[\tilde{x}_n = (n) \]: user IDs, such as 1126, 5566, 6211, ... —called \textit{categorical} features

- \textit{categorical} features, e.g.
 - IDs
 - blood type: A, B, AB, O
 - programming languages: C, C++, Java, Python, ...

- many ML models operate on \textit{numerical} features
 - linear models
 - extended linear models such as NNet

—except for \textit{decision trees}
Binary Vector Encoding of Categorical Feature

\[\tilde{x}_n = (n) : \text{user IDs, such as 1126, 5566, 6211, \ldots} \]
—called \textit{categorical} features

- \textbf{categorical} features, e.g.
 - IDs
 - \textit{blood type}: A, B, AB, O
 - \textit{programming languages}: C, C++, Java, Python, \ldots
- many ML models operate on \textit{numerical} features
 - \textit{linear} models
 - \textit{extended linear} models such as NNet
—except for \textit{decision trees}
- need: \textit{encoding (transform)} from \textit{categorical} to \textit{numerical}
Binary Vector Encoding of Categorical Feature

\[\tilde{x}_n = (n) \]: user IDs, such as 1126, 5566, 6211, \ldots
—called \textit{categorical} features

- \textit{categorical} features, e.g.
 - IDs
 - blood type: A, B, AB, O
 - programming languages: C, C++, Java, Python, \ldots
- many ML models operate on \textit{numerical} features
 - \textit{linear} models
 - \textit{extended linear} models such as NNet
—except for \textit{decision trees}
- need: \textit{encoding (transform)} from \textit{categorical} to \textit{numerical}

\textbf{binary vector encoding:}

\[
A = [1 \ 0 \ 0 \ 0]^T, \quad B = [0 \ 1 \ 0 \ 0]^T,
AB = [0 \ 0 \ 1 \ 0]^T, \quad O = [0 \ 0 \ 0 \ 1]^T
\]
Feature Extraction from Encoded Vector

Encoded data D_m for m-th movie:

$$\{(x_n = \text{BinaryVectorEncoding}(n), y_n = r_{nm}): \text{user } n \text{ rated movie } m\}$$
Feature Extraction from Encoded Vector

encoded data \mathcal{D}_m for m-th movie:

$$\left\{ (x_n = \text{BinaryVectorEncoding}(n), y_n = r_{nm}) : \text{user } n \text{ rated movie } m \right\}$$

or, joint data \mathcal{D}

$$\left\{ (x_n = \text{BinaryVectorEncoding}(n), y_n = [r_{n1} \ ? \ ? \ r_{n4} \ r_{n5} \ \ldots \ r_{nM}]^T) \right\}$$
encoded data D_m for m-th movie:

$$\left\{ (x_n = \text{BinaryVectorEncoding}(n), y_n = r_{nm}) : \text{user } n \text{ rated movie } m \right\}$$

or, joint data D

$$\left\{ (x_n = \text{BinaryVectorEncoding}(n), y_n = [r_{n1} \ ? \ ? \ r_{n4} \ r_{n5} \ \ldots \ r_{nM}]^T) \right\}$$

idea: try **feature extraction** using $N\tilde{n}-M$ NNet without all $x_0^{(\ell)}$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

$$x_1 \xrightarrow{W_{ni}^{(1)}} \tanh \xrightarrow{W_{im}^{(2)}} y_1 \approx y_1$$

$$x_2 \xrightarrow{W_{ni}^{(1)}} \tanh \xrightarrow{W_{im}^{(2)}} y_2 \approx y_2$$

$$x_3 \xrightarrow{W_{ni}^{(1)}} \tanh \xrightarrow{W_{im}^{(2)}} y_3 \approx y_3$$

$$x_4 \xrightarrow{W_{ni}^{(1)}} \tanh \xrightarrow{W_{im}^{(2)}} y_4 \approx y_4$$

$$\approx y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
Feature Extraction from Encoded Vector

encoded data D_m for m-th movie:

$$\{(x_n = \text{BinaryVectorEncoding}(n), y_n = r_{nm}): \text{user } n \text{ rated movie } m\}$$

or, joint data D

$$\{(x_n = \text{BinaryVectorEncoding}(n), y_n = [r_{n1} \ ? \ ? \ r_{n4} \ r_{n5} \ \ldots \ \ r_{nM}]^T)\}$$

idea: try feature extraction using $N-\tilde{d}-M$ NNet without all $x_0^{(\ell)}$

$$x = \begin{array}{cccc}
 x_1 & W_{ni}^{(1)} & \text{tanh} & \approx y_1 \\
 x_2 & \text{tanh} & W_{im}^{(2)} & \approx y_2 \\
 x_3 & \text{tanh} & \text{y}_3 \\
 x_4 & & & \approx y_3
\end{array}$$

is tanh necessary? :-)}
Matrix Factorization

'Linear Network' Hypothesis

\[
\begin{align*}
\mathbf{x} & = \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
\end{bmatrix} \\
\mathbf{y} & = \begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
\end{bmatrix}
\end{align*}
\]

\[
\mathbf{x} = \text{BinaryVectorEncoding}(n), \mathbf{y} = [r_{n1} \ ? \ ? \ r_{n4} \ r_{n5} \ \ldots \ r_{nM}]^T
\]

Hsuan-Tien Lin (NTU CSIE)
Matrix Factorization

Linear Network Hypothesis

\[\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} w_{ni}^{(1)} \\ w_{im}^{(2)} \end{pmatrix} \approx \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \mathbf{y} \]

\[
\left\{ (\mathbf{x}_n = \text{BinaryVectorEncoding}(n), \mathbf{y}_n = \begin{bmatrix} r_{n1} \\ \vdots \\ r_{n4} \\ r_{n5} \\ \vdots \\ r_{nM} \end{bmatrix}^T) \right\}
\]

- rename: for \(w_{ni}^{(1)} \) and for \(w_{im}^{(2)} \)
‘Linear Network’ Hypothesis

\[\mathbf{X} = \mathbf{V}^T : \mathbf{w}_{ni}^{(1)} \approx y_1 \approx y_2 \approx y_3 = \mathbf{y} \]

\[\{(\mathbf{x}_n = \text{BinaryVectorEncoding}(n), \mathbf{y}_n = [r_{n1} \ ？ \ ？ \ r_{n4} \ r_{n5} \ \ldots \ r_{nM}]^T)\} \]

- rename: \(V^T \) for \(\mathbf{w}_{ni}^{(1)} \) and \(W \) for \(\mathbf{w}_{im}^{(2)} \)
Matrix Factorization

Linear Network Hypothesis

'Linear Network' Hypothesis

\[\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \]

\[\mathbf{V}^T : \mathbf{w}^{(1)}_{ni} \]

\[\mathbf{W} : \mathbf{w}^{(2)}_{im} \]

\[\approx y_1 \]

\[\approx y_2 \]

\[\approx y_3 \]

\[\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \]

\[\{ (\mathbf{x}_n = \text{BinaryVectorEncoding}(n), \mathbf{y}_n = [r_{n1} \ ? \ ? \ r_{n4} \ r_{n5} \ldots \ r_{nM}]^T) \} \]

- rename: \(\mathbf{V}^T \) for \(\mathbf{w}^{(1)}_{ni} \) and \(\mathbf{W} \) for \(\mathbf{w}^{(2)}_{im} \)

- hypothesis: \(h(\mathbf{x}) = \mathbf{x} \)
"Linear Network" Hypothesis

\[\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \]

\[\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \]

\[\mathbf{V}^T : \mathbf{w}_{ni}^{(1)} \]

\[\mathbf{W} : \mathbf{w}_{im}^{(2)} \]

\[\{ (\mathbf{x}_n = \text{BinaryVectorEncoding}(n), \mathbf{y}_n = [r_{n1} \ ? \ ? \ r_{n4} \ r_{n5} \ \ldots \ r_{nM}]^T) \} \]

- rename: \(\mathbf{V}^T \) for \(\mathbf{w}_{ni}^{(1)} \) and \(\mathbf{W} \) for \(\mathbf{w}_{im}^{(2)} \)

- hypothesis: \(\mathbf{h}(\mathbf{x}) = \mathbf{W}^T \mathbf{V} \mathbf{x} \)
‘Linear Network’ Hypothesis

\[\mathbf{x} = \mathbf{V}^T : \mathbf{w}_{ni}^{(1)} \approx \mathbf{y}_1 \]
\[\mathbf{W} : \mathbf{w}_{im}^{(2)} \approx \mathbf{y}_2 = \mathbf{y}_3 \]

\[\left\{ (\mathbf{x}_n = \text{BinaryVectorEncoding}(n), \mathbf{y}_n = [r_{n1} \ ? \ ? \ r_{n4} \ r_{n5} \ \ldots \ r_{nM}]^T) \right\} \]

- rename: \(\mathbf{V}^T \) for \(\mathbf{w}_{ni}^{(1)} \) and \(\mathbf{W} \) for \(\mathbf{w}_{im}^{(2)} \)
- hypothesis: \(h(\mathbf{x}) = \mathbf{W}^T \mathbf{V} \mathbf{x} \)
- per-user output: \(h(\mathbf{x}_n) = \mathbf{W}^T \)
Matrix Factorization

‘Linear Network’ Hypothesis

\[\mathbf{x} = \mathbf{V}^T \mathbf{w}_{ni}^{(1)} \quad \mathbf{W} : \mathbf{w}_{im}^{(2)} \approx \mathbf{y}_1 \approx \mathbf{y}_2 \approx \mathbf{y}_3 = \mathbf{y} \]

\[\left\{ (\mathbf{x}_n = \text{BinaryVectorEncoding}(n), \mathbf{y}_n = [r_{n1}, r_{n4}, r_{n5}, \ldots, r_{nM}]^T) \right\} \]

- rename: \(\mathbf{V}^T \) for \(\mathbf{w}_{ni}^{(1)} \) and \(\mathbf{W} \) for \(\mathbf{w}_{im}^{(2)} \)
- hypothesis: \(\mathbf{h}(\mathbf{x}) = \mathbf{W}^T \mathbf{V} \mathbf{x} \)
- per-user output: \(\mathbf{h}(\mathbf{x}_n) = \mathbf{W}^T \mathbf{v}_n \), where \(\mathbf{v}_n \) is \(n \)-th column of \(\mathbf{V} \)
Matrix Factorization

Linear Network Hypothesis

\[\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \quad \mathbf{v}^T : \mathbf{w}_{ni}^{(1)} \quad \mathbf{W} : \mathbf{w}_{im}^{(2)} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \]

\[\{(\mathbf{x}_n = \text{BinaryVectorEncoding}(n), \mathbf{y}_n = [r_{n1} \ ? \ ? \ r_{n4} \ r_{n5} \ldots \ r_{nM}]^T)\} \]

- rename: \(\mathbf{V}^T \) for \(\mathbf{w}_{ni}^{(1)} \) and \(\mathbf{W} \) for \(\mathbf{w}_{im}^{(2)} \)
- hypothesis: \(\mathbf{h}(\mathbf{x}) = \mathbf{W}^T \mathbf{V} \mathbf{x} \)
- per-user output: \(\mathbf{h}(\mathbf{x}_n) = \mathbf{W}^T \mathbf{v}_n \), where \(\mathbf{v}_n \) is \(n \)-th column of \(\mathbf{V} \)

\textbf{linear network} for recommender system:

\textbf{learn} \(\mathbf{V} \) and \(\mathbf{W} \)
For N users, M movies, and \tilde{d} ‘features’, how many variables need to be used to specify a linear network hypothesis $h(x) = W^T V x$?

1. $N + M + \tilde{d}$
2. $N \cdot M \cdot \tilde{d}$
3. $(N + M) \cdot \tilde{d}$
4. $(N \cdot M) + \tilde{d}$

Reference Answer: 3
For N users, M movies, and $	ilde{d}$ ‘features’, how many variables need to be used to specify a linear network hypothesis $h(x) = W^T V x$?

1. $N + M + \tilde{d}$
2. $N \cdot M \cdot \tilde{d}$
3. $(N + M) \cdot \tilde{d}$
4. $(N \cdot M) + \tilde{d}$

Reference Answer: 3

simply $N \cdot \tilde{d}$ for V^T and $\tilde{d} \cdot M$ for W
Linear Network: Linear Model Per Movie

Linear network:

\[h(x) = W^T \underbrace{\Phi(x)}_{Vx} \]
Matrix Factorization

Linear Network: Linear Model Per Movie

linear network:

\[h(x) = W^T \underbrace{Vx}_{\Phi(x)} \]

—for \(m \)-th movie, just linear model \(h_m(x) = w^T_m \Phi(x) \)

subject to shared transform \(\Phi \)

Hsuan-Tien Lin (NTU CSIE)
Machine Learning Techniques
Linear Network: Linear Model Per Movie

linear network:

\[h(x) = W^T \underbrace{\Phi(x)}_{\text{Vx}} \]

—for \(m \)-th movie, just linear model \(h_m(x) = w_m^T \Phi(x) \)

subject to shared transform \(\Phi \)

• for every \(D_m \), want \(r_{nm} = y_n \approx w_m^T v_n \)
Matrix Factorization

Basic Matrix Factorization

Linear Network: Linear Model Per Movie

linear network:

\[h(x) = W^T \Phi(x) \]

— for \(m \)-th movie, just linear model \(h_m(x) = w_m^T \Phi(x) \)

subject to shared transform \(\Phi \)

- for every \(D_m \), want \(r_{nm} = y_n \approx w_m^T v_n \)
- \(E_{in} \) over all \(D_m \) with squared error measure:

\[
E_{in}(\{w_m\}, \{v_n\}) = \frac{1}{\sum_{m=1}^{M} |D_m|} \sum_{\text{user } n \text{ rated movie } m} (r_{nm} - w_m^T v_n)^2
\]

Hsuan-Tien Lin (NTU CSIE)
Linear Network: Linear Model Per Movie

linear network:
\[h(x) = W^T \Phi(x) \]

— for \(m \)-th movie, just linear model \(h_m(x) = w_m^T \Phi(x) \)
subject to shared transform \(\Phi \)

- for every \(D_m \), want \(r_{nm} = y_n \approx w_m^T v_n \)
- \(E_{in} \) over all \(D_m \) with squared error measure:

\[
E_{in}(\{w_m\}, \{v_n\}) = \frac{1}{\sum_{m=1}^{M} |D_m|} \sum_{\text{user } n \text{ rated movie } m} \left(r_{nm} - w_m^T v_n \right)^2
\]
Linear Network: Linear Model Per Movie

linear network:

\[h(x) = W^T \Phi(x) \]

— for \(m \)-th movie, just linear model \(h_m(x) = W_m^T \Phi(x) \)

subject to shared transform \(\Phi \)

- for every \(D_m \), want \(r_{nm} = y_n \approx W_m^T v_n \)
- \(E_{in} \) over all \(D_m \) with squared error measure:

\[
E_{in}(\{w_m\}, \{v_n\}) = \frac{1}{\sum_{m=1}^M |D_m|} \sum_{\text{user } n \text{ rated movie } m} \left(r_{nm} - W_m^T v_n \right)^2
\]

linear network: transform and linear modelS jointly learned from all \(D_m \)
Matrix Factorization

\[r_{nm} \approx w_m^T v_n = v_n^T w_m \]
Basic Matrix Factorization

Matrix Factorization

Matrix Factorization

Let r_{nm} be the rating predicted for user n on movie m. We can approximate this rating as:

$$ r_{nm} \approx w_m^T v_n = v_n^T w_m $$

Match movie and viewer factors

Predicted rating

- Comedy content
- Action content
- Blockbuster?
- Tom Cruise in it?
- Likes Tom Cruise?
- Prefers blockbusters?
- Likes action?
- Likes comedy?

Movie and viewer contributions

<table>
<thead>
<tr>
<th>R</th>
<th>movie$_1$</th>
<th>movie$_2$</th>
<th>...</th>
<th>movie$_M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>user$_1$</td>
<td>100</td>
<td>80</td>
<td>...</td>
<td>?</td>
</tr>
<tr>
<td>user$_2$</td>
<td>?</td>
<td>70</td>
<td>...</td>
<td>90</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>user$_N$</td>
<td>?</td>
<td>60</td>
<td>...</td>
<td>0</td>
</tr>
</tbody>
</table>

Similar modeling can be used for other abstract features.
Matrix Factorization

\[r_{nm} \approx w_m^T v_n = v_n^T w_m \]

<table>
<thead>
<tr>
<th>R</th>
<th>movie(_1)</th>
<th>movie(_2)</th>
<th>...</th>
<th>movie(_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>user(_1)</td>
<td>100</td>
<td>80</td>
<td>...</td>
<td>?</td>
</tr>
<tr>
<td>user(_2)</td>
<td>?</td>
<td>70</td>
<td>...</td>
<td>90</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>user(_N)</td>
<td>?</td>
<td>60</td>
<td>...</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\approx \]

\[V^T \]

- \(v_1 \)
- \(v_2 \)
- ...
- \(v_N \)
Matrix Factorization

\[r_{nm} \approx w_m^T v_n = v_n^T w_m \]

<table>
<thead>
<tr>
<th>R</th>
<th>movie_1</th>
<th>movie_2</th>
<th>\cdots</th>
<th>movie_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>user_1</td>
<td>100</td>
<td>80</td>
<td>\cdots</td>
<td>?</td>
</tr>
<tr>
<td>user_2</td>
<td>?</td>
<td>70</td>
<td>\cdots</td>
<td>90</td>
</tr>
<tr>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>user_N</td>
<td>?</td>
<td>60</td>
<td>\cdots</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\approx \]

\[V^T \]

\[W \]

\[w_1 \]

\[w_2 \]

\[\cdots \]

\[w_M \]

Match movie and viewer factors

predicted rating

Add contributions from each factor.
Matrix Factorization

\[r_{nm} \approx w_m^T v_n = v_n^T w_m \iff R \approx V^T W \]

<table>
<thead>
<tr>
<th>R</th>
<th>movie_1</th>
<th>movie_2</th>
<th>\cdots</th>
<th>movie_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>user_1</td>
<td>100</td>
<td>80</td>
<td>\cdots</td>
<td>?</td>
</tr>
<tr>
<td>user_2</td>
<td>?</td>
<td>70</td>
<td>\cdots</td>
<td>90</td>
</tr>
<tr>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>user_N</td>
<td>?</td>
<td>60</td>
<td>\cdots</td>
<td>0</td>
</tr>
</tbody>
</table>

\[V^T \]

\[W \]

\[w_1 \]

\[w_2 \]

\[\cdots \]

\[w_M \]
Matrix Factorization

\[r_{nm} \approx w_m^T v_n = v_n^T w_m \iff R \approx V^T W \]

\[\begin{array}{c|cccc}
\hline
 & \text{movie}_1 & \text{movie}_2 & \cdots & \text{movie}_M \\
\hline
\text{user}_1 & 100 & 80 & \cdots & ? \\
\text{user}_2 & ? & 70 & \cdots & 90 \\
\ldots & \ldots & \ldots & \cdots & \ldots \\
\text{user}_N & ? & 60 & \cdots & 0 \\
\hline
\end{array} \]

Matrix Factorization Model

learning:
- known rating
 \[\rightarrow \text{learned factors } v_n \text{ and } w_m \]
- unknown rating prediction

Match movie and viewer factors
add contributions from each factor
predicted rating
Matrix Factorization

\[r_{nm} \approx w_m^T v_n = v_n^T w_m \quad \iff \quad R \approx V^T W \]

Matrix Factorization Model

learning:

- known rating
 \[\rightarrow \text{learned factors } v_n \text{ and } w_m \]
- unknown rating prediction

predicted rating

add contributions from each factor

similar modeling can be used for other abstract features

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques
Matrix Factorization Learning

\[
\min_{\mathbf{W}, \mathbf{V}} E_{\text{in}}(\{\mathbf{w}_m\}, \{\mathbf{v}_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} (r_{nm} - \mathbf{w}_m^T \mathbf{v}_n)^2
\]
Matrix Factorization Learning

\[
\min_{W,V} E_{\text{in}}(\{w_m\}, \{v_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} \left(r_{nm} - w_m^T v_n \right)^2
\]

\[
= \sum_{m=1}^{M} \left(\sum_{(x_n, r_{nm}) \in D_m} \left(r_{nm} - w_m^T v_n \right)^2 \right)
\]
Matrix Factorization Learning

\[
\min_{W,V} E_{\text{in}}(\{w_m\}, \{v_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} \left(r_{nm} - w_m^T v_n \right)^2 \\
= \sum_{m=1}^{M} \left(\sum_{(x_n,r_{nm}) \in \mathcal{D}_m} \left(r_{nm} - w_m^T v_n \right)^2 \right)
\]

- two sets of variables:
Matrix Factorization Learning

\[
\min_{W,V} E_{\text{in}}(\{w_m\}, \{v_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} (r_{nm} - w_m^T v_n)^2
\]

\[
= \sum_{m=1}^{M} \left(\sum_{(x_n,r_{nm}) \in D_m} (r_{nm} - w_m^T v_n)^2 \right)
\]

- two sets of variables:
 - can consider alternating minimization, remember? :-)

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 9/22
Matrix Factorization Learning

\[
\min_{W,V} E_{in}(\{w_m\}, \{v_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} (r_{nm} - w_m^T v_n)^2
\]

\[
= \sum_{m=1}^M \left(\sum_{(x_n, r_{nm}) \in D_m} (r_{nm} - w_m^T v_n)^2 \right)
\]

- two sets of variables:
 - can consider **alternating minimization**, remember? :-)
- when \(v_n\) fixed, minimizing \(w_m\)
Matrix Factorization Learning

\[
\min_{W, V} E_{\text{in}}(\{w_m\}, \{v_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} \left(r_{nm} - w_m^T v_n \right)^2
\]

\[
= \sum_{m=1}^{M} \left(\sum_{(x_n, r_{nm}) \in \mathcal{D}_m} \left(r_{nm} - w_m^T v_n \right)^2 \right)
\]

- two sets of variables: can consider **alternating minimization, remember? :-)**
- when \(v_n \) fixed, minimizing \(w_m \) \(\equiv \) minimize \(E_{\text{in}} \) within \(\mathcal{D}_m \)
Matrix Factorization Learning

\[
\min_{\mathbf{W}, \mathbf{V}} E_{\text{in}}(\{\mathbf{w}_m\}, \{\mathbf{v}_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} (r_{nm} - \mathbf{w}_m^T \mathbf{v}_n)^2 \\
= \sum_{m=1}^{M} \left(\sum_{(x_n, r_{nm}) \in \mathcal{D}_m} (r_{nm} - \mathbf{w}_m^T \mathbf{v}_n)^2 \right)
\]

- two sets of variables:
 can consider alternating minimization, remember? :-)
- when \(\mathbf{v}_n \) fixed, minimizing \(\mathbf{w}_m \equiv \) minimize \(E_{\text{in}} \) within \(\mathcal{D}_m \)
 —simply per-movie (per-\(\mathcal{D}_m \)) linear regression without \(w_0 \)
Matrix Factorization Learning

\[
\min_{W, V} E_{\text{in}}(\{w_m\}, \{v_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} (r_{nm} - w_m^T v_n)^2
\]
\[
= \sum_{m=1}^{M} \left(\sum_{(x_n, r_{nm}) \in D_m} (r_{nm} - w_m^T v_n)^2 \right)
\]

- two sets of variables: can consider alternating minimization, remember? :-)
- when \(v_n \) fixed, minimizing \(w_m \equiv \min E_{\text{in}} \) within \(D_m \) —simply per-movie (per-\(D_m \)) linear regression without \(w_0 \)
- when \(w_m \) fixed, minimizing \(v_n \)?
Matrix Factorization Learning

\[
\min_{W, V} E_{\text{in}}(\{w_m\}, \{v_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} (r_{nm} - w_m^T v_n)^2
\]

\[
= \sum_{m=1}^{M} \left(\sum_{(x_n, r_{nm}) \in D_m} (r_{nm} - w_m^T v_n)^2 \right)
\]

- two sets of variables: can consider alternating minimization, remember? :-)
- when \(v_n \) fixed, minimizing \(w_m \) \(\equiv \) minimize \(E_{\text{in}} \) within \(D_m \) —simply per-movie (per-\(D_m \)) linear regression without \(w_0 \)
- when \(w_m \) fixed, minimizing \(v_n \)?

by symmetry between users/movies
Matrix Factorization Learning

\[
\min_{W,V} E_{in}(\{w_m\}, \{v_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} (r_{nm} - w^T_m v_n)^2 = \sum_{m=1}^M \left(\sum_{(x_n, r_{nm}) \in D_m} (r_{nm} - w^T_m v_n)^2 \right)
\]

- two sets of variables: can consider \textbf{alternating minimization, remember? :-)}
- when \(v_n\) fixed, minimizing \(w_m\) \(\equiv\) minimize \(E_{in}\) within \(D_m\) —simply per-movie (per-\(D_m\)) \textbf{linear regression} without \(w_0\)
- when \(w_m\) fixed, minimizing \(v_n\)? —per-user linear regression \textbf{without} \(v_0\) by \textbf{symmetry} between users/movies
Matrix Factorization Learning

$$\min_{W,V} E_{in}(\{w_m\}, \{v_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} (r_{nm} - w_m^T v_n)^2$$

$$= \sum_{m=1}^{M} \left(\sum_{(x_n,r_{nm}) \in D_m} (r_{nm} - w_m^T v_n)^2 \right)$$

- **two sets** of variables:
 - can consider **alternating minimization**, remember? :-)
- when \(v_n\) fixed, minimizing \(w_m\) \(\equiv\) minimize \(E_{in}\) within \(D_m\)
 —simply per-movie (per-\(D_m\)) **linear regression** without \(w_0\)
- when \(w_m\) fixed, minimizing \(v_n\)?
 —per-user linear regression without \(v_0\)
 by symmetry between users/movies

called **alternating least squares** algorithm
Alternating Least Squares

2. **Alternating optimization** of E_{in}: repeatedly

until converge
Alternating Least Squares

- **alternating optimization** of E_{in}: repeatedly
 1. optimize w_1, w_2, \ldots, w_M:
 update w_m by *m*-th-movie linear regression on $\{(v_n, r_{nm})\}$

until **converge**
Alternating Least Squares

Alternating optimization of E_{in}: repeatedly

1. optimize w_1, w_2, \ldots, w_M:
 update w_m by m-th-movie linear regression on $\{(v_n, r_{nm})\}$

2. optimize v_1, v_2, \ldots, v_N:
 update v_n by n-th-user linear regression on $\{(w_m, r_{nm})\}$

until converge
Alternating Least Squares

1. **initialize** \tilde{d} dimension vectors $\{w_m\}$, $\{v_n\}$

2. **alternating optimization** of E_{in}: repeatedly
 - optimize w_1, w_2, \ldots, w_M:
 - update w_m by m-th-movie linear regression on $\{(v_n, r_{nm})\}$
 - optimize v_1, v_2, \ldots, v_N:
 - update v_n by n-th-user linear regression on $\{(w_m, r_{nm})\}$

until converge

- **initialize**: usually just randomly
Alternating Least Squares

initialize \(\tilde{d} \) dimension vectors \(\{w_m\}, \{v_n\} \)

alternating optimization of \(E_{in} \): repeatedly

1. optimize \(w_1, w_2, \ldots, w_M \):
 update \(w_m \) by \(m \)-th-movie linear regression on \(\{(v_n, r_{nm})\} \)

2. optimize \(v_1, v_2, \ldots, v_N \):
 update \(v_n \) by \(n \)-th-user linear regression on \(\{(w_m, r_{nm})\} \)

until converge

- initialize: usually just randomly
- converge: guaranteed as \(E_{in} \) decreases during alternating minimization
Alternating Least Squares

1. initialize \(\tilde{d} \) dimension vectors \(\{w_m\}, \{v_n\} \)
2. **alternating optimization** of \(E_{\text{in}} \): repeatedly
 1. optimize \(w_1, w_2, \ldots, w_M \):
 update \(w_m \) by \(m\)-th-movie linear regression on \(\{(v_n, r_{nm})\} \)
 2. optimize \(v_1, v_2, \ldots, v_N \):
 update \(v_n \) by \(n\)-th-user linear regression on \(\{(w_m, r_{nm})\} \)

until converge

- **initialize**: usually just randomly
- **converge**: guaranteed as \(E_{\text{in}} \) decreases during alternating minimization

alternating least squares: the ‘tango’ dance between users/movies
Linear Autoencoder versus Matrix Factorization

Matrix Factorization

\[R \approx V^T W \]
Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

\[X \approx W (W^T X) \]

Matrix Factorization

\[R \approx V^T W \]

- **Motivation:** Special - ~d linear NNet
- **Error Measure:** Squared on all \(x_{ni} \)
- **Solution:** Global optimal at eigenvectors of \(X^T X \)
- **Usefulness:** Extract dimension-reduced features

Linear Autoencoder is equivalent to a special matrix factorization of the complete data matrix.
Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

\[X \approx W (W^T X) \]

- **motivation:**
 - special \(d \sim d\)-linear NNet

Matrix Factorization

\[R \approx V^T W \]

- **solution:** local optimal via alternating least squares

- **usefulness:** extract hidden user/movie features

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques
Linear Autoencoder versus Matrix Factorization

<table>
<thead>
<tr>
<th>Linear Autoencoder</th>
<th>Matrix Factorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X \approx W (W^T X)$</td>
<td>$R \approx V^T W$</td>
</tr>
<tr>
<td>• motivation:</td>
<td>• motivation:</td>
</tr>
<tr>
<td>special d-\tilde{d}-d linear NNet</td>
<td>N-\tilde{d}-M linear NNet</td>
</tr>
</tbody>
</table>
Matrix Factorization

Basic Matrix Factorization

Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

\[X \approx W (W^T X) \]

- motivation: special d-\tilde{d}-d linear NNet
- error measure: squared on all x_{ni}

Matrix Factorization

\[R \approx V^T W \]

- motivation: N-\tilde{d}-M linear NNet
Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

\[X \approx W (W^T X) \]

- **motivation:** special \(d \)-\(\tilde{d} \)-\(d \) linear NNet
- **error measure:** squared on all \(x_{ni} \)

Matrix Factorization

\[R \approx V^T W \]

- **motivation:** \(N \)-\(\tilde{d} \)-\(M \) linear NNet
- **error measure:** squared on known \(r_{nm} \)
Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

\[X \approx W (W^T X) \]

- motivation: special \(d - \tilde{d} - d \) linear NNet
- error measure: squared on all \(x_{ni} \)
- solution: global optimal at eigenvectors of \(X^T X \)

Matrix Factorization

\[R \approx V^T W \]

- motivation: \(N - \tilde{d} - M \) linear NNet
- error measure: squared on known \(r_{nm} \)
Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

\[X \approx W (W^T X) \]

- **motivation:** special \(d \)-\(\tilde{d} \)-\(d \) linear NNet
- **error measure:** squared on all \(x_{ni} \)
- **solution:** global optimal at eigenvectors of \(X^T X \)

Matrix Factorization

\[R \approx V^T W \]

- **motivation:** \(N \)-\(\tilde{d} \)-\(M \) linear NNet
- **error measure:** squared on known \(r_{nm} \)
- **solution:** local optimal via alternating least squares

Motivation:

- **Linear Autoencoder**
 - Extracts dimension-reduced features
- **Matrix Factorization**
 - Extracts hidden user/movie features
Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

\[\mathbf{X} \approx \mathbf{W} (\mathbf{W}^T \mathbf{X}) \]

- **motivation:** special \(d\)-\(d\) linear NNet
- **error measure:** squared on all \(x_{ni}\)
- **solution:** global optimal at eigenvectors of \(\mathbf{X}^T \mathbf{X}\)
- **usefulness:** extract dimension-reduced features

Matrix Factorization

\[\mathbf{R} \approx \mathbf{V}^T \mathbf{W} \]

- **motivation:** \(N\)-\(\tilde{d}\)-\(M\) linear NNet
- **error measure:** squared on known \(r_{nm}\)
- **solution:** local optimal via alternating least squares
Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

\[X \approx W (W^T X) \]

- motivation: special \(d\)-\(\tilde{d}\)-\(d\) linear NNet
- error measure: squared on all \(x_{ni}\)
- solution: global optimal at eigenvectors of \(X^T X\)
- usefulness: extract dimension-reduced features

Matrix Factorization

\[R \approx V^T W \]

- motivation: \(N\)-\(\tilde{d}\)-\(M\) linear NNet
- error measure: squared on known \(r_{nm}\)
- solution: local optimal via alternating least squares
- usefulness: extract hidden user/movie features
Linear Autoencoder versus Matrix Factorization

Linear Autoencoder

\[X \approx W (W^T X) \]

- motivation: special \(d \rightarrow \tilde{d} \rightarrow d \) linear NNet
- error measure: squared on all \(x_{ni} \)
- solution: global optimal at eigenvectors of \(X^T X \)
- usefulness: extract dimension-reduced features

Matrix Factorization

\[R \approx V^T W \]

- motivation: \(N \rightarrow \tilde{d} \rightarrow M \) linear NNet
- error measure: squared on known \(r_{nm} \)
- solution: local optimal via alternating least squares
- usefulness: extract hidden user/movie features

linear autoencoder \(\equiv \text{special} \) matrix factorization of complete \(X \)
How many least squares problems does the alternating least squares algorithm needs to solve in one iteration of alternation?

1. number of movies M
2. number of users N
3. $M + N$
4. $M \cdot N$
How many least squares problems does the alternating least squares algorithm needs to solve in one iteration of alternation?

1. number of movies M
2. number of users N
3. $M + N$
4. $M \cdot N$

Reference Answer: 3

simply M per-movie problems and N per-user problems
Another Possibility: Stochastic Gradient Descent

$$E_{in}(\{w_m\}, \{v_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} \left(r_{nm} - w_m^T v_n \right)^2$$
Another Possibility: Stochastic Gradient Descent

\[E_{\text{in}}(\{w_m\}, \{v_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} (r_{nm} - w_m^T v_n)^2 \]

SGD: randomly pick **one example** within the \(\sum \) & update with **gradient to per-example** err, remember? :-)
Another Possibility: Stochastic Gradient Descent

\[E_{\text{in}}(\{w_m\}, \{v_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} \left(r_{nm} - w_m^T v_n \right)^2 \]

SGD: randomly pick one example within the sum & update with gradient to per-example error, remember? :-)

- ‘efficient’ per iteration
Another Possibility: Stochastic Gradient Descent

\[E_{in}(\{w_m\}, \{v_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} (r_{nm} - w_m^T v_n)^2 \]

SGD: randomly pick one example within the sum & update with gradient to per-example err, remember? :-)

- ‘efficient’ per iteration
- simple to implement
Another Possibility: Stochastic Gradient Descent

\[E_{in}(\{w_m\}, \{v_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} \left(r_{nm} - w_m^T v_n \right)^2 \]

SGD: randomly pick one example within the \(\sum \) & update with gradient to per-example err, remember? :-)

- ‘efficient’ per iteration
- simple to implement
- easily extends to other err
Another Possibility: Stochastic Gradient Descent

\[E_{in}(\{w_m\}, \{v_n\}) \propto \sum_{\text{user } n \text{ rated movie } m} (r_{nm} - w_m^T v_n)^2 \]

SGD: randomly pick one example within the \(\sum \) & update with gradient to per-example error, remember? :-)

- ‘efficient’ per iteration
- simple to implement
- easily extends to other error

next: SGD for matrix factorization
Gradient of Per-Example Error Function

\[\text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = \left(\frac{r_{nm} - w^T_m v_n}{2} \right)^2 \]
Gradient of Per-Example Error Function

$$\text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = \left(r_{nm} - w_m^T v_n \right)^2$$
Gradient of Per-Example Error Function

\[
\text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = \left(r_{nm} - w_m^T v_n \right)^2
\]

\[
\nabla_{v_{1126}} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) =
\]
Gradient of Per-Example Error Function

\[\text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = \left(r_{nm} - w_m^T v_n \right)^2 \]

\[\nabla_{v_{1126}} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } n = 1126 \]
Matrix Factorization

Stochastic Gradient Descent

Gradient of Per-Example Error Function

$$\text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = \left(r_{nm} - w_m^T v_n \right)^2$$

\[
\nabla_{v_{1126}} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } n = 1126
\]

\[
\nabla_{w_{6211}} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } m =
\]
Gradient of Per-Example Error Function

\[\text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = \left(r_{nm} - w_m^T v_n \right)^2 \]

\[\nabla v_{1126} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } n = 1126 \]

\[\nabla w_{6211} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } m = 6211 \]
Gradient of Per-Example Error Function

\[
\text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = \left(r_{nm} - w_m^T v_n \right)^2
\]

\[
\nabla_{v_{1126}} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } n = 1126
\]

\[
\nabla_{w_{6211}} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } m = 6211
\]

\[
\nabla_{v_n} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = -2 \left(r_{nm} - w_m^T v_n \right) w_m^T
\]
Matrix Factorization

Stochastic Gradient Descent

Gradient of Per-Example Error Function

\[
\text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = \left(r_{nm} - w_m^T v_n \right)^2
\]

\[
\nabla v_{1126} \quad \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } n = 1126
\]

\[
\nabla w_{6211} \quad \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } m = 6211
\]

\[
\nabla v_n \quad \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = -2 \left(r_{nm} - w_m^T v_n \right) w_m
\]
Gradient of Per-Example Error Function

\[\text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = \left(r_{nm} - \mathbf{w}_m^T \mathbf{v}_n \right)^2 \]

\[\nabla_{\mathbf{v}_{1126}} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } n = 1126 \]
\[\nabla_{\mathbf{w}_{6211}} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } m = 6211 \]
\[\nabla_{\mathbf{v}_n} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = -2 \left(r_{nm} - \mathbf{w}_m^T \mathbf{v}_n \right) \mathbf{w}_m \]
\[\nabla_{\mathbf{w}_m} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = -2 \left(r_{nm} - \mathbf{w}_m^T \mathbf{v}_n \right) \]
Gradient of Per-Example Error Function

\[\text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = \left(r_{nm} - w_m^T v_n \right)^2 \]

\[\nabla_{v_{1126}} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } n = 1126 \]

\[\nabla_{v_{6211}} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } m = 6211 \]

\[\nabla_{v_n} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = -2 \left(r_{nm} - w_m^T v_n \right) w_m \]

\[\nabla_{w_m} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = -2 \left(r_{nm} - w_m^T v_n \right) v_n \]
Gradient of Per-Example Error Function

\[\text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = \left(r_{nm} - w_m^T v_n \right)^2 \]

\[\nabla_{v_{1126}} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } n = 1126 \]
\[\nabla_{w_{6211}} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } m = 6211 \]
\[\nabla_{v_n} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = -2 \left(r_{nm} - w_m^T v_n \right) w_m \]
\[\nabla_{w_m} \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = -2 \left(r_{nm} - w_m^T v_n \right) v_n \]

per-example gradient
\[\propto - (\text{residual}) (\text{the other feature vector}) \]
Gradient of Per-Example Error Function

\[
\text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = \left(r_{nm} - w_m^T v_n \right)^2
\]

\[
\nabla v_{1126} \quad \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } n = 1126
\]

\[
\nabla w_{6211} \quad \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } m = 6211
\]

\[
\nabla v_n \quad \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = -2 \left(r_{nm} - w_m^T v_n \right) w_m
\]

\[
\nabla w_m \quad \text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = -2 \left(r_{nm} - w_m^T v_n \right) v_n
\]

per-example gradient

\[
\propto -\text{(residual)}(\quad)
\]
Gradient of Per-Example Error Function

\[\text{err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = (r_{nm} - w_m^T \mathbf{v}_n)^2 \]

\[\nabla \mathbf{v}_{126} \text{ err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } n = 1126 \]

\[\nabla w_{6211} \text{ err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = 0 \text{ unless } m = 6211 \]

\[\nabla \mathbf{v}_n \text{ err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = -2 \left(r_{nm} - w_m^T \mathbf{v}_n \right) w_m \]

\[\nabla w_m \text{ err}(\text{user } n, \text{ movie } m, \text{ rating } r_{nm}) = -2 \left(r_{nm} - w_m^T \mathbf{v}_n \right) \mathbf{v}_n \]

per-example gradient

\[\propto -\text{(residual)} \text{(the other feature vector)} \]
for $t = 0, 1, \ldots, T$
SGD for Matrix Factorization

for $t = 0, 1, \ldots, T$

1. randomly pick (n, m) within all known r_{nm}
Matrix Factorization
Stochastic Gradient Descent

SGD for Matrix Factorization

for $t = 0, 1, \ldots, T$

1. randomly pick (n, m) within all known r_{nm}
2. calculate residual $\tilde{r}_{nm} = (r_{nm} - w_m^T v_n)$
for $t = 0, 1, \ldots, T$

1. randomly pick (n, m) within all known r_{nm}
2. calculate residual $\tilde{r}_{nm} = (r_{nm} - w_m^T v_n)$
3. SGD-update:

$$v_n^{new} \leftarrow v_n^{old} + \eta \cdot \tilde{r}_{nm}.$$
SGD for Matrix Factorization

for $t = 0, 1, \ldots, T$

1. randomly pick (n, m) within all known r_{nm}
2. calculate residual $\tilde{r}_{nm} = (r_{nm} - w_m^T v_n)$
3. SGD-update:

$$v_n^{\text{new}} \leftarrow v_n^{\text{old}} + \eta \cdot \tilde{r}_{nm} w_m^{\text{old}}$$
for $t = 0, 1, \ldots, T$

1. randomly pick (n, m) within all known r_{nm}
2. calculate residual $\tilde{r}_{nm} = (r_{nm} - w_m^T v_n)$
3. SGD-update:

\[
\begin{align*}
\mathbf{v}_n^{\text{new}} &\leftarrow \mathbf{v}_n^{\text{old}} + \eta \cdot \tilde{r}_{nm} \mathbf{w}_m^{\text{old}} \\
\mathbf{w}_m^{\text{new}} &\leftarrow \mathbf{w}_m^{\text{old}} + \eta \cdot \tilde{r}_{nm}
\end{align*}
\]
for $t = 0, 1, \ldots, T$

1. randomly pick (n, m) within all known r_{nm}
2. calculate residual $\tilde{r}_{nm} = (r_{nm} - w_m^T v_n)$
3. SGD-update:

$$\begin{align*}
 v_n^{\text{new}} &\leftarrow v_n^{\text{old}} + \eta \cdot \tilde{r}_{nm} w_m^{\text{old}} \\
 w_m^{\text{new}} &\leftarrow w_m^{\text{old}} + \eta \cdot \tilde{r}_{nm} v_n^{\text{old}}
\end{align*}$$
SGD for Matrix Factorization

initialize \(\tilde{d} \) dimension vectors \(\{ \mathbf{w}_m \}, \{ \mathbf{v}_n \} \) randomly
for \(t = 0, 1, \ldots, T \)

1. randomly pick \((n, m)\) within all known \(r_{nm} \)
2. calculate residual \(\tilde{r}_{nm} = (r_{nm} - \mathbf{w}_m^T \mathbf{v}_n) \)
3. SGD-update:

\[
\begin{align*}
\mathbf{v}_n^{\text{new}} &\leftarrow \mathbf{v}_n^{\text{old}} + \eta \cdot \tilde{r}_{nm} \mathbf{w}_m^{\text{old}} \\
\mathbf{w}_m^{\text{new}} &\leftarrow \mathbf{w}_m^{\text{old}} + \eta \cdot \tilde{r}_{nm} \mathbf{v}_n^{\text{old}}
\end{align*}
\]
Matrix Factorization

Stochastic Gradient Descent

SGD for Matrix Factorization

initialize \tilde{d} dimension vectors $\{w_m\}, \{v_n\}$ randomly
for $t = 0, 1, \ldots, T$

1. randomly pick (n, m) within all known r_{nm}
2. calculate residual $\tilde{r}_{nm} = (r_{nm} - w_m^T v_n)$
3. SGD-update:

$$v_n^{new} \leftarrow v_n^{old} + \eta \cdot \tilde{r}_{nm} w_m^{old}$$
$$w_m^{new} \leftarrow w_m^{old} + \eta \cdot \tilde{r}_{nm} v_n^{old}$$

SGD: perhaps most popular large-scale matrix factorization algorithm
Matrix Factorization

Stochastic Gradient Descent

SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

specialty of data (application need):
per-user training ratings earlier than test ratings in time

training/test mismatch: typical sampling bias, remember? :-)

want: emphasize latter examples

last T' iterations of SGD: only those T' examples considered - learned $\{w_m\}, \{v_n\}$ favoring those

our idea: time-deterministic SGD that visits latter examples last - consistent improvements of test performance

if you understand the behavior of techniques, easier to modify for your real-world use
KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need):
KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need):
 per-user training ratings **earlier than** test ratings **in time**
SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need): per-user training ratings **earlier than** test ratings **in time**
- training/test mismatch: typical **sampling bias, remember? :-)**
KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need): per-user training ratings earlier than test ratings in time
- training/test mismatch: typical sampling bias, remember? :-)

- want: emphasize latter examples
KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need): per-user training ratings earlier than test ratings in time
- training/test mismatch: typical sampling bias, remember? :-)

- want: emphasize latter examples
- last T' iterations of SGD: only those T' examples considered
KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need): per-user training ratings earlier than test ratings in time
- training/test mismatch: typical sampling bias, remember? :-)

- want: emphasize latter examples
- last T' iterations of SGD: only those T' examples considered—learned $\{w_m\}, \{v_n\}$ favoring those
SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need): per-user training ratings earlier than test ratings in time
- training/test mismatch: typical sampling bias, remember? :-)

- want: emphasize latter examples
- last T' iterations of SGD: only those T' examples considered —learned $\{w_m\}, \{v_n\}$ favoring those
- our idea: time-deterministic SGD that visits latter examples last
SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need): per-user training ratings earlier than test ratings in time
- training/test mismatch: typical sampling bias, remember? :-)

- want: emphasize latter examples
- last T' iterations of SGD: only those T' examples considered —learned $\{w_m\}, \{v_n\}$ favoring those
- our idea: time-deterministic SGD that visits latter examples last —consistent improvements of test performance
SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

- specialty of data (application need): per-user training ratings earlier than test ratings in time
- training/test mismatch: typical sampling bias, remember? :-)

- want: emphasize latter examples
- last T' iterations of SGD: only those T' examples considered —learned $\{w_m\}$, $\{v_n\}$ favoring those
- our idea: time-deterministic SGD that visits latter examples last —consistent improvements of test performance

if you understand the behavior of techniques, easier to modify for your real-world use
If all \(w_m \) and \(v_n \) are initialized to the 0 vector, what will NOT happen in SGD for matrix factorization?

1. all \(w_m \) are always 0
2. all \(v_n \) are always 0
3. every residual \(\tilde{r}_{nm} = \) the original rating \(r_{nm} \)
4. \(E_{in} \) decreases after each SGD update

Reference Answer:

The 0 feature vectors provides a per-example gradient of 0 for every example. So \(E_{in} \) cannot be further decreased.
If all w_m and v_n are initialized to the 0 vector, what will NOT happen in SGD for matrix factorization?

1. All w_m are always 0
2. All v_n are always 0
3. Every residual $\tilde{r}_{nm} = \text{the original rating } r_{nm}$
4. E_{in} decreases after each SGD update

Reference Answer: 4

The 0 feature vectors provides a per-example gradient of 0 for every example. So E_{in} cannot be further decreased.
extraction models: feature transform Φ as hidden variables in addition to linear model
Map of Extraction Models

extraction models: feature transform Φ as hidden variables in addition to linear model
Map of Extraction Models

extraction models: feature transform Φ as hidden variables in addition to linear model

Neural Network/Deep Learning
- weights $w_{ij}^{(\ell)}$
- weights $w_{ij}^{(L)}$

RBF Network
- RBF centers μ_m
- weights β_m
Matrix Factorization

Summary of Extraction Models

Map of Extraction Models

extraction models: feature transform Φ as hidden variables in addition to linear model

Neural Network/Deep Learning
- weights $w_{ij}^{(\ell)}$
- weights $w_{ij}^{(L)}$

RBF Network
- RBF centers μ_m
- weights β_m

Matrix Factorization
- user features v_n
- movie features w_m
Matrix Factorization

Summary of Extraction Models

Map of Extraction Models

extraction models: feature transform Φ as hidden variables in addition to linear model

Adaptive/Gradient Boosting

hypotheses g_t; weights α_t

Neural Network/Deep Learning

weights $w_{ij}^{(\ell)}$; weights $w_{ij}^{(L)}$

RBF Network

RBF centers μ_m; weights β_m

Matrix Factorization

user features v_n; movie features w_m
Matrix Factorization

Summary of Extraction Models

Map of Extraction Models

extraction models: feature transform Φ as hidden variables in addition to linear model

- **Adaptive/Gradient Boosting**
 - hypotheses g_t; weights α_t

- **Neural Network/Deep Learning**
 - weights $w_{ij}^{(\ell)}$; weights $w_{ij}^{(L)}$

- **RBF Network**
 - RBF centers μ_m; weights β_m

- **Matrix Factorization**
 - user features \mathbf{v}_n; movie features \mathbf{w}_m

- **k Nearest Neighbor**
 - x_n-neighbor RBF; weights y_n
Map of Extraction Models

extraction models: feature transform Φ as hidden variables in addition to linear model

Adaptive/Gradient Boosting
- hypotheses g_t; weights α_t

Neural Network/Deep Learning
- weights $w_{ij}^{(\ell)}$
- weights $w_{ij}^{(L)}$

RBF Network
- RBF centers μ_m
- weights β_m

Matrix Factorization
- user features v_n
- movie features w_m

k Nearest Neighbor
- x_n-neighbor RBF
- weights y_n

extraction models: a rich family
Matrix Factorization

Summary of Extraction Models

Map of Extraction Techniques

Adaptive/Gradient Boosting

functional gradient descent
Matrix Factorization

Summary of Extraction Models

Map of Extraction Techniques

Adaptive/Gradient Boosting
- functional gradient descent

Neural Network/Deep Learning
- SGD (backprop)
Map of Extraction Techniques

Adaptive/Gradient Boosting
- functional gradient descent

Neural Network/Deep Learning
- SGD (backprop)
- autoencoder
Map of Extraction Techniques

Adaptive/Gradient Boosting
- functional gradient descent

Neural Network/Deep Learning
- SGD (backprop)
- autoencoder

RBF Network
- k-means clustering
Map of Extraction Techniques

- Adaptive/Gradient Boosting
 - functional gradient descent

- Neural Network/Deep Learning
 - SGD (backprop)
 - autoencoder

- RBF Network
 - k-means clustering

- Matrix Factorization
 - SGD
 - alternating leastSQR
Adaptive/Gradient Boosting
- functional gradient descent

Neural Network/Deep Learning
- SGD (backprop)
- autoencoder

RBF Network
- k-means clustering

Matrix Factorization
- SGD
- alternating leastSQR

k Nearest Neighbor
- lazy learning :-)

Matrix Factorization
Summary of Extraction Models
Map of Extraction Techniques
Map of Extraction Techniques

Adaptive/Gradient Boosting
- functional gradient descent

Neural Network/Deep Learning
- SGD (backprop)
- autoencoder

RBF Network
- k-means clustering

Matrix Factorization
- SGD
- alternating leastSQR

k Nearest Neighbor
- lazy learning :-)

extraction techniques: quite diverse
Pros and Cons of Extraction Models

<table>
<thead>
<tr>
<th>Extraction Models</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neural Network/Deep Learning</td>
<td>• Easy: reduces human burden in designing features</td>
<td>• Hard: non-convex optimization problems in general</td>
</tr>
<tr>
<td>RBF Network</td>
<td>• Powerful: if enough hidden variables considered</td>
<td>• Overfitting: needs proper regularization/validation</td>
</tr>
<tr>
<td>Matrix Factorization</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pros:
- Easy: reduces human burden in designing features.
- Powerful: if enough hidden variables considered.

Cons:
- Hard: non-convex optimization problems in general.
- Overfitting: needs proper regularization/validation.
Pros and Cons of Extraction Models

- **Pros**
 - ‘easy’: reduces human burden in designing features

- **Cons**
 - **hard**: non-convex optimization problems in general
 - overfitting: needs proper regularization/validation

Extraction Models:
- Neural Network/Deep Learning
- RBF Network
- Matrix Factorization
Pros and Cons of Extraction Models

Pros
- *'easy':*
 reduces **human burden** in designing features

Cons
- *'hard':*
 non-convex optimization problems in general
Pros and Cons of Extraction Models

Pros
- `easy`: reduces human burden in designing features
- `powerful`: if enough hidden variables considered

Cons
- `hard`: non-convex optimization problems in general
Pros and Cons of Extraction Models

Pros
- **‘easy’**: reduces human burden in designing features
- **powerful**: if enough hidden variables considered

Cons
- **‘hard’**: non-convex optimization problems in general
- **overfitting**: needs proper regularization/validation
Pros and Cons of Extraction Models

Neural Network/Deep Learning

Pros
- ‘easy’: reduces human burden in designing features
- powerful: if enough hidden variables considered

Cons
- ‘hard’: non-convex optimization problems in general
- overfitting: needs proper regularization/validation

be careful when applying extraction models
Which of the following extraction model extracts Gaussian centers by \textit{k}-means and aggregate the Gaussians linearly?

1. RBF Network
2. Deep Learning
3. Adaptive Boosting
4. Matrix Factorization

\textbf{Reference Answer:} 1
Fun Time

Which of the following extraction model extracts Gaussian centers by \textit{k-means} and aggregate the Gaussians linearly?

1. RBF Network
2. Deep Learning
3. Adaptive Boosting
4. Matrix Factorization

Reference Answer: 1

Congratulations on being an expert in extraction models! :-)

Hsuan-Tien Lin (NTU CSIE)
Summary

1. Embedding Numerous Features: Kernel Models
2. Combining Predictive Features: Aggregation Models
3. Distilling Implicit Features: Extraction Models

Lecture 15: Matrix Factorization

- Linear Network Hypothesis
- feature extraction from binary vector encoding
- Basic Matrix Factorization
- alternating least squares between user/movie
- Stochastic Gradient Descent
- efficient and easily modified for practical use
- Summary of Extraction Models
 - powerful thus need careful use

• next: closing remarks of techniques