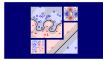
Machine Learning Techniques

(機器學習技法)



Lecture 14: Radial Basis Function Network

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

Lecture 13: Deep Learning

pre-training with denoising autoencoder (non-linear PCA) and fine-tuning with backprop for NNet with many layers

Lecture 14: Radial Basis Function Network

- RBF Network Hypothesis
- RBF Network Learning
- k-Means Algorithm
- k-Means and RBF Network in Action

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_n y_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right) + b\right)$$

Gaussian SVM:

achieve large margin in infinite-dimensional space, remember? :-)

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_n y_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right) + b\right)$$

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_n y_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right) + b\right)$$

Gaussian SVM: find α_n to combine Gaussians centered at \mathbf{x}_n ; achieve large margin in infinite-dimensional space, remember? :-)

· Gaussian kernel: also called Radial Basis Function (RBF) kernel

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_n \mathbf{y}_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right) + b\right)$$

- Gaussian kernel: also called Radial Basis Function (RBF) kernel
 - radial: only depends on distance between x and 'center' x_n

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_n y_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right) + b\right)$$

- Gaussian kernel: also called Radial Basis Function (RBF) kernel
 - radial: only depends on distance between x and 'center' x_n
 - · basis function: to be 'combined'

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_n y_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right) + b\right)$$

- Gaussian kernel: also called Radial Basis Function (RBF) kernel
 - radial: only depends on distance between x and 'center' x_n
 - · basis function: to be 'combined'

• let
$$g_n(\mathbf{x}) = y_n \exp(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2)$$
:
 $g_{\text{SVM}}(\mathbf{x}) = \text{sign}(\sum_{\text{SV}} \alpha_n + b)$

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_n y_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right) + b\right)$$

- Gaussian kernel: also called Radial Basis Function (RBF) kernel
 - radial: only depends on distance between x and 'center' x_n
 - · basis function: to be 'combined'

• let
$$g_n(\mathbf{x}) = y_n \exp(-\gamma ||\mathbf{x} - \mathbf{x}_n||^2)$$
:

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_n g_n(\mathbf{x}) + b\right)$$

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_n y_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right) + b\right)$$

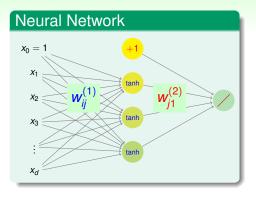
- Gaussian kernel: also called Radial Basis Function (RBF) kernel
 - radial: only depends on distance between x and 'center' x_n
 - · basis function: to be 'combined'
- let $g_n(\mathbf{x}) = y_n \exp(-\gamma \|\mathbf{x} \mathbf{x}_n\|^2)$: $g_{\text{SVM}}(\mathbf{x}) = \text{sign}(\sum_{\text{SV}} \alpha_n g_n(\mathbf{x}) + b)$
 - —linear aggregation of selected radial hypotheses

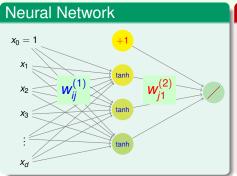
$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_n \mathbf{y}_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right) + b\right)$$

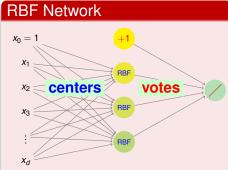
Gaussian SVM: find α_n to combine Gaussians centered at \mathbf{x}_n ; achieve large margin in infinite-dimensional space, remember? :-)

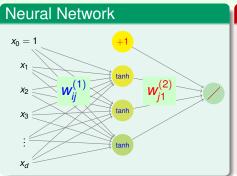
- Gaussian kernel: also called Radial Basis Function (RBF) kernel
 - radial: only depends on distance between x and 'center' x_n
 - · basis function: to be 'combined'
- let $g_n(\mathbf{x}) = y_n \exp(-\gamma \|\mathbf{x} \mathbf{x}_n\|^2)$: $g_{\text{SVM}}(\mathbf{x}) = \text{sign}(\sum_{\text{SV}} \alpha_n g_n(\mathbf{x}) + b)$
 - —linear aggregation of selected radial hypotheses

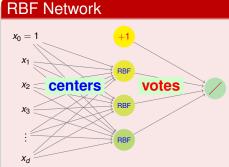
Radial Basis Function (RBF) Network: linear aggregation of radial hypotheses



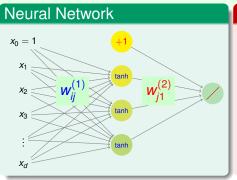


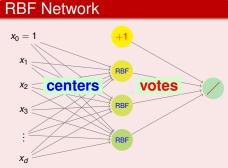




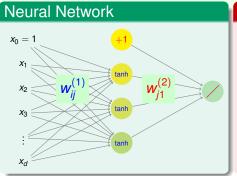


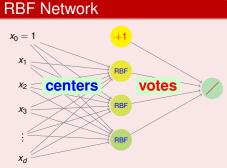
• output layer same: just linear aggregation





- hidden layer different:
 (inner-product + tanh) versus (distance + Gaussian)
- output layer same: just linear aggregation

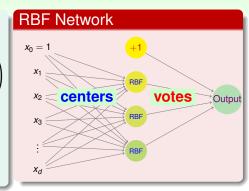




- hidden layer different:
 (inner-product + tanh) versus (distance + Gaussian)
- output layer same: just linear aggregation

RBF Network: historically a type of NNet

$$h(\mathbf{x})$$
= Output $\left(\sum_{m=1}^{M} \beta_m \mathsf{RBF}(\mathbf{x}, \mu_m) + b\right)$

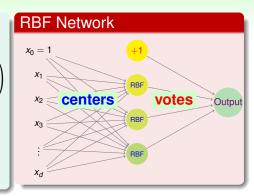


$$h(\mathbf{x})$$

= Output
$$\left(\sum_{m=1}^{M} \frac{\beta_m RBF(\mathbf{x}, \mu_m)}{\beta_m} + b\right)$$

key variables:

centers μ_m ; (signed) votes β_m

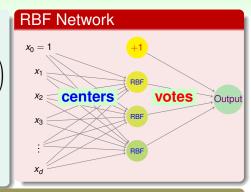


$$h(\mathbf{x})$$

= Output
$$\left(\sum_{m=1}^{M} \frac{\beta_m RBF(\mathbf{x}, \boldsymbol{\mu}_m) + b\right)$$

key variables:

centers μ_m ; (signed) votes β_m



$g_{\scriptscriptstyle \mathsf{SVM}}$ for Gaussian-SVM

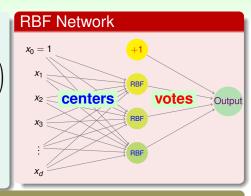
• RBF: Gaussian; Output: sign (binary classification)

$$h(\mathbf{x})$$

= Output
$$\left(\sum_{m=1}^{M} \beta_m RBF(\mathbf{x}, \boldsymbol{\mu}_m) + b\right)$$

key variables:

centers μ_m ; (signed) votes β_m



g_{SVM} for Gaussian-SVM

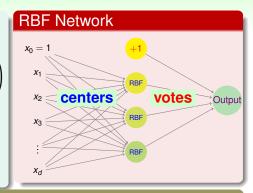
- RBF: Gaussian; Output: sign (binary classification)
- M = #SV; μ_m : SVM SVs \mathbf{x}_m ; β_m : $\alpha_m y_m$ from SVM Dual

$$h(\mathbf{x})$$

= Output
$$\left(\sum_{m=1}^{M} \frac{\beta_m}{\beta_m} RBF(\mathbf{x}, \boldsymbol{\mu}_m) + b\right)$$

key variables:

centers μ_m ; (signed) votes β_m



g_{SVM} for Gaussian-SVM

- RBF: Gaussian; Output: sign (binary classification)
- M = #SV; μ_m : SVM SVs \mathbf{x}_m ; β_m : $\alpha_m y_m$ from SVM Dual

learning: given RBF and Output, decide μ_m and β_m

kernel: similarity via \mathbb{Z} -space inner product —governed by Mercer's condition, remember? :-) Poly(\mathbf{x}, \mathbf{x}') = $(1 + \mathbf{x}^T \mathbf{x}')^2$ Gaussian(\mathbf{x}, \mathbf{x}') = $\exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$

kernel: similarity via \mathcal{Z} -space inner product —governed by Mercer's condition, remember? :-) $Poly(x, x') = (1 + x^T x')^2$

Gaussian(
$$\mathbf{x}, \mathbf{x}'$$
) = exp($-\gamma \|\mathbf{x} - \mathbf{x}'\|^2$)

Truncated(\mathbf{x}, \mathbf{x}') = $\| \| \mathbf{x} - \mathbf{x}' \| \le 1 \| (1 - \| \mathbf{x} - \mathbf{x}' \|)^2$

RBF: similarity via \mathcal{X} -space distance

—often monotonically non-increasing to distance

general similarity function between **x** and **x**':

Neuron(
$$\mathbf{x}, \mathbf{x}'$$
) = tanh($\gamma \mathbf{x}^T \mathbf{x}' + 1$)
DNASim(\mathbf{x}, \mathbf{x}') = EditDistance(\mathbf{x}, \mathbf{x}')

kernel: similarity via \mathbb{Z} -space inner product —governed by Mercer's condition, remember? :-) Poly(\mathbf{x} , \mathbf{x}') = $(1 + \mathbf{x}^T \mathbf{x}')^2$

$$Gaussian(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

Truncated(
$$\mathbf{x}, \mathbf{x}'$$
) = $[\|\mathbf{x} - \mathbf{x}'\| \le 1] (1 - \|\mathbf{x} - \mathbf{x}'\|)^2$

RBF: similarity via \mathcal{X} -space distance

—often monotonically non-increasing to distance

general similarity function between **x** and **x**':

Neuron(
$$\mathbf{x}, \mathbf{x}'$$
) = tanh($\gamma \mathbf{x}^T \mathbf{x}' + 1$)
DNASim(\mathbf{x}, \mathbf{x}') = EditDistance(\mathbf{x}, \mathbf{x}')

kernel: similarity via Z-space inner product

—governed by Mercer's condition, remember?:-)

$$\mathsf{Poly}(\mathbf{x},\mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')^2$$

Gaussian(
$$\mathbf{x}, \mathbf{x}'$$
) = exp($-\gamma \|\mathbf{x} - \mathbf{x}'\|^2$)

$$\mathsf{Truncated}(\boldsymbol{x},\boldsymbol{x}') = \llbracket \|\boldsymbol{x} - \boldsymbol{x}'\| \leq 1 \rrbracket \, (1 - \|\boldsymbol{x} - \boldsymbol{x}'\|)^2$$

RBF: similarity via \mathcal{X} -space distance

—often monotonically non-increasing to distance

RBF Network: distance similarity-to-centers as feature transform

Fun Time

Which of the following is not a radial basis function?

3
$$\phi(\mathbf{X}, \boldsymbol{\mu}) = [\![\mathbf{X} = \boldsymbol{\mu}]\!]$$

Fun Time

Which of the following is not a radial basis function?

3
$$\phi(\mathbf{x}, \boldsymbol{\mu}) = [\![\mathbf{x} = \boldsymbol{\mu}]\!]$$

Reference Answer: (4)

Note that (3) is an extreme case of (1)

(Gaussian) with $\gamma \to \infty$, and (2) contains an

$$\|\mathbf{x} - \boldsymbol{\mu}\|^2$$
 somewhere :-).

$$h(\mathbf{x}) = \text{Output}\left(\sum_{m=1}^{M} \beta_m \text{RBF}(\mathbf{x}, \boldsymbol{\mu}_m)\right)$$

• full RBF Network: M = N and each $\mu_m = \mathbf{x}_m$

$$h(\mathbf{x}) = \text{Output}\left(\sum_{m=1}^{M} \beta_m \text{RBF}(\mathbf{x}, \mu_m)\right)$$

- full RBF Network: M = N and each $\mu_m = \mathbf{x}_m$
- physical meaning: each \mathbf{x}_m influences similar \mathbf{x} by β_m

$$h(\mathbf{x}) = \text{Output}\left(\sum_{m=1}^{M} \beta_m \text{RBF}(\mathbf{x}, \mu_m)\right)$$

- full RBF Network: M = N and each $\mu_m = \mathbf{x}_m$
- physical meaning: each \mathbf{x}_m influences similar \mathbf{x} by β_m
- e.g. uniform influence with $\beta_m = 1 \cdot y_m$ for binary classification

$$g_{\text{uniform}}(\mathbf{x}) = \text{sign}\left(\sum_{m=1}^{N} y_m \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_m\|^2\right)\right)$$

$$h(\mathbf{x}) = \text{Output}\left(\sum_{m=1}^{M} \frac{\beta_m}{\beta_m} \text{RBF}(\mathbf{x}, \mu_m)\right)$$

- full RBF Network: M=N and each $\mu_m=\mathbf{x}_m$
- physical meaning: each \mathbf{x}_m influences similar \mathbf{x} by β_m
- e.g. uniform influence with $\beta_m = 1 \cdot y_m$ for binary classification

$$g_{\text{uniform}}(\mathbf{x}) = \text{sign}\left(\sum_{m=1}^{N} y_m \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_m\|^2\right)\right)$$

—aggregate each example's opinion subject to similarity

$$h(\mathbf{x}) = \text{Output}\left(\sum_{m=1}^{M} \frac{\beta_m}{\beta_m} \text{RBF}(\mathbf{x}, \mu_m)\right)$$

- full RBF Network: M=N and each $\mu_m=\mathbf{x}_m$
- physical meaning: each \mathbf{x}_m influences similar \mathbf{x} by β_m
- e.g. uniform influence with $\beta_m = 1 \cdot y_m$ for binary classification

$$g_{\text{uniform}}(\mathbf{x}) = \text{sign}\left(\sum_{m=1}^{N} y_m \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_m\|^2\right)\right)$$

—aggregate each example's opinion subject to similarity

full RBF Network: lazy way to decide μ_m

$$g_{\text{uniform}}(\mathbf{x}) = \text{sign}\left(\sum_{m=1}^{N} \mathbf{y}_{m} \text{exp}\left(-\gamma \|\mathbf{x} - \mathbf{x}_{m}\|^{2}\right)\right)$$

$$g_{\text{uniform}}(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^{N} \mathbf{y}_{m} \operatorname{exp}\left(-\gamma \|\mathbf{x} - \mathbf{x}_{m}\|^{2}\right)\right)$$

• $\exp(-\gamma \|\mathbf{x} - \mathbf{x}_m\|^2)$: maximum when \mathbf{x} closest to \mathbf{x}_m

$$g_{\text{uniform}}(\mathbf{x}) = \text{sign}\left(\sum_{m=1}^{N} y_{m} \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_{m}\|^{2}\right)\right)$$

• $\exp(-\gamma \|\mathbf{x} - \mathbf{x}_m\|^2)$: maximum when \mathbf{x} closest to \mathbf{x}_m —maximum one often dominates the $\sum_{m=1}^{N}$ term

$$g_{\text{uniform}}(\mathbf{x}) = \text{sign}\left(\sum_{m=1}^{N} y_{m} \text{exp}\left(-\gamma \|\mathbf{x} - \mathbf{x}_{m}\|^{2}\right)\right)$$

- $\exp(-\gamma \|\mathbf{x} \mathbf{x}_m\|^2)$: maximum when \mathbf{x} closest to \mathbf{x}_m —maximum one often dominates the $\sum_{m=1}^{N}$ term
- take y_m of maximum exp(...) instead of voting of all y_m

$$g_{\text{uniform}}(\mathbf{x}) = \text{sign}\left(\sum_{m=1}^{N} y_{m} \text{exp}\left(-\gamma \|\mathbf{x} - \mathbf{x}_{m}\|^{2}\right)\right)$$

- $\exp(-\gamma \|\mathbf{x} \mathbf{x}_m\|^2)$: maximum when \mathbf{x} closest to \mathbf{x}_m —maximum one often dominates the $\sum_{m=1}^{N}$ term
- take y_m of maximum exp(...) instead of voting of all y_m
 —selection instead of aggregation

$$g_{\text{uniform}}(\mathbf{x}) = \text{sign}\left(\sum_{m=1}^{N} y_{m} \text{exp}\left(-\gamma \|\mathbf{x} - \mathbf{x}_{m}\|^{2}\right)\right)$$

- $\exp(-\gamma \|\mathbf{x} \mathbf{x}_m\|^2)$: maximum when \mathbf{x} closest to \mathbf{x}_m —maximum one often dominates the $\sum_{m=1}^{N}$ term
- take y_m of maximum exp(...) instead of voting of all y_m
 —selection instead of aggregation
- · physical meaning:

$$g_{\text{nbor}}(\mathbf{x}) = \mathbf{y}_m$$
 such that \mathbf{x} closest to \mathbf{x}_m

$$g_{\text{uniform}}(\mathbf{x}) = \text{sign}\left(\sum_{m=1}^{N} y_{m} \text{exp}\left(-\gamma \|\mathbf{x} - \mathbf{x}_{m}\|^{2}\right)\right)$$

- $\exp\left(-\gamma \|\mathbf{x} \mathbf{x}_m\|^2\right)$: maximum when \mathbf{x} closest to \mathbf{x}_m —maximum one often dominates the $\sum_{m=1}^N$ term
- take y_m of maximum exp(...) instead of voting of all y_m
 —selection instead of aggregation
- physical meaning:

 $g_{\text{nbor}}(\mathbf{x}) = \mathbf{y}_{m}$ such that \mathbf{x} closest to \mathbf{x}_{m}

—called nearest neighbor model

$$g_{\text{uniform}}(\mathbf{x}) = \text{sign}\left(\sum_{m=1}^{N} y_{m} \text{exp}\left(-\gamma \|\mathbf{x} - \mathbf{x}_{m}\|^{2}\right)\right)$$

- $\exp\left(-\gamma \|\mathbf{x} \mathbf{x}_m\|^2\right)$: maximum when \mathbf{x} closest to \mathbf{x}_m —maximum one often dominates the $\sum_{m=1}^N$ term
- take y_m of maximum exp(...) instead of voting of all y_m
 —selection instead of aggregation
- · physical meaning:

$$g_{\text{nbor}}(\mathbf{x}) = \mathbf{y}_{m}$$
 such that \mathbf{x} closest to \mathbf{x}_{m}

- -called nearest neighbor model
- can uniformly aggregate k neighbors also: k nearest neighbor

$$g_{\text{uniform}}(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^{N} y_{m} \operatorname{exp}\left(-\gamma \|\mathbf{x} - \mathbf{x}_{m}\|^{2}\right)\right)$$

- $\exp(-\gamma \|\mathbf{x} \mathbf{x}_m\|^2)$: maximum when \mathbf{x} closest to \mathbf{x}_m —maximum one often dominates the $\sum_{m=1}^{N}$ term
- take y_m of maximum exp(...) instead of voting of all y_m
 —selection instead of aggregation
- · physical meaning:

$$g_{\text{nbor}}(\mathbf{x}) = \mathbf{y}_{m}$$
 such that \mathbf{x} closest to \mathbf{x}_{m}

- —called nearest neighbor model
- can uniformly aggregate k neighbors also: k nearest neighbor

k nearest neighbor:also lazy but very intuitive

full RBF Network for squared error regression:

$$h(\mathbf{x}) = \text{Output}\left(\sum_{m=1}^{N} \beta_{m} \text{RBF}(\mathbf{x}, \mathbf{x}_{m})\right)$$

full RBF Network for squared error regression:

$$h(\mathbf{x}) = \text{Output}\left(\sum_{m=1}^{N} \beta_{m} \text{RBF}(\mathbf{x}, \mathbf{x}_{m})\right)$$

$$\mathbf{z}_n = [\mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_1), \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_2), \dots, \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_N)]$$

full RBF Network for squared error regression:

$$h(\mathbf{x}) = \text{Output}\left(\sum_{m=1}^{N} \beta_{m} \text{RBF}(\mathbf{x}, \mathbf{x}_{m})\right)$$

just linear regression on RBF-transformed data

$$\mathbf{z}_n = [\mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_1), \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_2), \dots, \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_N)]$$

• optimal β ? $\beta = (Z^TZ)^{-1}Z^Ty$, if Z^TZ invertible, remember? :-)

full RBF Network for squared error regression:

$$h(\mathbf{x}) = \text{Output}\left(\sum_{m=1}^{N} \beta_{m} \text{RBF}(\mathbf{x}, \mathbf{x}_{m})\right)$$

$$\mathbf{z}_n = [\mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_1), \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_2), \dots, \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_N)]$$

- optimal β ? $\beta = (Z^TZ)^{-1}Z^Ty$, if Z^TZ invertible, remember? :-)
- size of Z?

full RBF Network for squared error regression:

$$h(\mathbf{x}) = \text{Output}\left(\sum_{m=1}^{N} \beta_{m} \text{RBF}(\mathbf{x}, \mathbf{x}_{m})\right)$$

$$\mathbf{z}_n = [\mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_1), \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_2), \dots, \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_N)]$$

- optimal β ? $\beta = (Z^TZ)^{-1}Z^Ty$, if Z^TZ invertible, remember? :-)
- size of Z? N (examples) by N (centers)
 —symmetric square matrix

full RBF Network for squared error regression:

$$h(\mathbf{x}) = \text{Output}\left(\sum_{m=1}^{N} \beta_{m} \text{RBF}(\mathbf{x}, \mathbf{x}_{m})\right)$$

$$\mathbf{z}_n = [\mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_1), \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_2), \dots, \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_N)]$$

- optimal β ? $\beta = (Z^TZ)^{-1}Z^Ty$, if Z^TZ invertible, remember? :-)
- size of Z? N (examples) by N (centers)
 —symmetric square matrix
- theoretical fact: if x_n all different, Z with Gaussian RBF invertible

full RBF Network for squared error regression:

$$h(\mathbf{x}) = \text{Output}\left(\sum_{m=1}^{N} \beta_{m} \text{RBF}(\mathbf{x}, \mathbf{x}_{m})\right)$$

just linear regression on RBF-transformed data

$$\mathbf{z}_n = [\mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_1), \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_2), \dots, \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_N)]$$

- optimal β ? $\beta = (Z^TZ)^{-1}Z^Ty$, if Z^TZ invertible, remember? :-)
- size of Z? N (examples) by N (centers)
 —symmetric square matrix
- theoretical fact: if x_n all different, Z with Gaussian RBF invertible

optimal β with invertible $Z: \beta = y$

full RBF Network for squared error regression:

$$h(\mathbf{x}) = \text{Output}\left(\sum_{m=1}^{N} \beta_{m} \text{RBF}(\mathbf{x}, \mathbf{x}_{m})\right)$$

just linear regression on RBF-transformed data

$$\mathbf{z}_n = [\mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_1), \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_2), \dots, \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_N)]$$

- optimal β ? $\beta = (Z^TZ)^{-1}Z^Ty$, if Z^TZ invertible, remember? :-)
- size of Z? N (examples) by N (centers)
 —symmetric square matrix
- theoretical fact: if x_n all different, Z with Gaussian RBF invertible

optimal β with invertible Z: $\beta = Z^{-1}y$

$$g_{\text{RBF}}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 =$$

$$g_{RBF}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 =$$
 (first column of Z)

$$g_{RBF}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} (\text{first column of } \mathbf{Z})$$

$$g_{RBF}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} \text{ (first column of Z)} = \mathbf{y}^T \begin{bmatrix} 0 & \dots & 0 \end{bmatrix}^T$$

$$g_{RBF}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} (\text{first column of Z}) = \mathbf{y}^T \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T$$

$$g_{\text{RBF}}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} (\text{first column of } \mathbf{Z}) = \mathbf{y}^T \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T =$$

$$g_{RBF}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} (\text{first column of } \mathbf{Z}) = \mathbf{y}^T \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T = y_1$$

$$g_{\text{RBF}}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} (\text{first column of } \mathbf{Z}) = \mathbf{y}^T \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T = y_1$$

 $-g_{\text{RBF}}(\mathbf{x}_0) =$,

$$g_{\text{RBF}}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} (\text{first column of } \mathbf{Z}) = \mathbf{y}^T \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T = y_1$$

$$-g_{RBF}(\mathbf{x}_n)=y_n,$$

$$g_{\text{RBF}}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} (\text{first column of } \mathbf{Z}) = \mathbf{y}^T \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T = y_1$$

$$-g_{RBF}(\mathbf{x}_n) = y_n$$
, i.e. $E_{in}(g_{RBF}) =$

$$g_{\text{RBF}}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} (\text{first column of } \mathbf{Z}) = \mathbf{y}^T \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T = y_1$$

$$-g_{RBF}(\mathbf{x}_n) = y_n$$
, i.e. $E_{in}(g_{RBF}) = 0$, yeah!! :-)

full Gaussian RBF Network for regression: $\beta = Z^{-1}y$

$$g_{\text{RBF}}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} \text{ (first column of Z)} = \mathbf{y}^T \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T = y_1$$

 $-g_{\text{RBF}}(\mathbf{x}_n) = y_n, \text{ i.e. } E_{\text{in}}(g_{\text{RBF}}) = 0, \text{ yeah!! :-)}$

called exact interpolation for function approximation

$$g_{\text{RBF}}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} \text{ (first column of Z)} = \mathbf{y}^T \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T = y_1$$

 $-g_{\text{RBF}}(\mathbf{x}_n) = y_n, \text{ i.e. } E_{\text{in}}(g_{\text{RBF}}) = 0, \text{ yeah!! :-)}$

- called exact interpolation for function approximation
- but overfitting for learning? :-(

$$g_{\text{RBF}}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} \text{ (first column of Z)} = \mathbf{y}^T \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T = y_1$$

 $-g_{\text{RBF}}(\mathbf{x}_n) = y_n, \text{ i.e. } E_{\text{in}}(g_{\text{RBF}}) = 0, \text{ yeah!! :-})$

- called exact interpolation for function approximation
- but overfitting for learning? :-(
- how about regularization? e.g. ridge regression for β instead
 —optimal β = (Z^TZ + λI)⁻¹Z^Ty

$$g_{\text{RBF}}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} \text{ (first column of Z)} = \mathbf{y}^T \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T = y_1$$

 $-g_{\text{RBF}}(\mathbf{x}_n) = y_n, \text{ i.e. } E_{\text{in}}(g_{\text{RBF}}) = 0, \text{ yeah!! :-})$

- called exact interpolation for function approximation
- but overfitting for learning? :-(
- how about regularization? e.g. ridge regression for β instead
 —optimal β = (Z^TZ + λI)⁻¹Z^Ty
- seen \mathbb{Z} ? $\mathbb{Z} = [Gaussian(\mathbf{x}_n, \mathbf{x}_m)] =$

$$g_{\text{RBF}}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} \text{ (first column of Z)} = \mathbf{y}^T \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T = y_1$$

 $-g_{\text{RBF}}(\mathbf{x}_n) = y_n, \text{ i.e. } E_{\text{in}}(g_{\text{RBF}}) = 0, \text{ yeah!! :-)}$

- called exact interpolation for function approximation
- but overfitting for learning? :-(
- how about regularization? e.g. ridge regression for β instead
 —optimal β = (Z^TZ + λI)⁻¹Z^Ty
- seen \mathbb{Z} ? $\mathbb{Z} = [\mathsf{Gaussian}(\mathbf{x}_n, \mathbf{x}_m)] = \mathsf{Gaussian}$ kernel matrix \mathbb{K}

full Gaussian RBF Network for regression: $\beta = Z^{-1}y$

$$g_{\text{RBF}}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} \text{ (first column of Z)} = \mathbf{y}^T \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T = y_1$$

 $-g_{\text{RBF}}(\mathbf{x}_n) = y_n, \text{ i.e. } E_{\text{in}}(g_{\text{RBF}}) = 0, \text{ yeah!! :-})$

- called exact interpolation for function approximation
- but overfitting for learning? :-(
- how about regularization? e.g. ridge regression for β instead
 —optimal β = (Z^TZ + λI)⁻¹Z^Ty
- seen \mathbb{Z} ? $\mathbb{Z} = [\mathsf{Gaussian}(\mathbf{x}_n, \mathbf{x}_m)] = \mathsf{Gaussian}$ kernel matrix \mathbb{K}

effect of regularization in different spaces:

regularized full RBFNet:
$$\boldsymbol{\beta} = (\mathbf{Z}^T \mathbf{Z} + \lambda \mathbf{I})^{-1} \mathbf{Z}^T \mathbf{y}$$

full Gaussian RBF Network for regression: $\beta = Z^{-1}y$

$$g_{\text{RBF}}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} \text{ (first column of Z)} = \mathbf{y}^T \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T = y_1$$

 $-g_{\text{RBF}}(\mathbf{x}_n) = y_n, \text{ i.e. } E_{\text{in}}(g_{\text{RBF}}) = 0, \text{ yeah!! :-})$

- called exact interpolation for function approximation
- but overfitting for learning? :-(
- how about regularization? e.g. ridge regression for β instead
 —optimal β = (Z^TZ + λI)⁻¹Z^Ty
- seen \mathbb{Z} ? $\mathbb{Z} = [\mathsf{Gaussian}(\mathbf{x}_n, \mathbf{x}_m)] = \mathsf{Gaussian}$ kernel matrix \mathbb{K}

effect of regularization in different spaces:

kernel ridge regression:
$$\boldsymbol{\beta} = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$
; regularized full RBFNet: $\boldsymbol{\beta} = (\mathbf{Z}^T \mathbf{Z} + \lambda \mathbf{I})^{-1} \mathbf{Z}^T \mathbf{y}$

recall:

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_m y_m \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_m\|^2\right) + b\right)$$

—only ' \ll N' ${\sf SVs}$ needed in 'network'

recall:

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_m y_m \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_m\|^2\right) + b\right)$$

—only ' \ll N' ${\sf SVs}$ needed in 'network'

next: M ≪ N instead of M = N

recall:

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_m y_m \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_m\|^2\right) + b\right)$$

—only '≪ N' SVs needed in 'network'

- next: M

 N instead of M = N
- effect: regularization

by constraining number of centers and voting weights

recall:

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_m y_m \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_m\|^2\right) + b\right)$$

—only '≪ N' SVs needed in 'network'

- next: M

 N instead of M = N
- effect: regularization

by constraining number of centers and voting weights

• physical meaning of centers μ_m : prototypes

recall:

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_m y_m \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_m\|^2\right) + b\right)$$

—only '≪ N' SVs needed in 'network'

- next: M

 N instead of M = N
- effect: regularization

by constraining number of centers and voting weights

• physical meaning of centers μ_m : prototypes

remaining question: how to extract prototypes?

Fun Time

If $\mathbf{x}_1 = \mathbf{x}_2$, what happens in the Z matrix of full Gaussian RBF network?

- 1 the first two rows of the matrix are the same
- the first two columns of the matrix are different
- the matrix is invertible
- 4 the sub-matrix at the intersection of the first two rows and the first two columns contains a constant of 0

Fun Time

If $\mathbf{x}_1 = \mathbf{x}_2$, what happens in the Z matrix of full Gaussian RBF network?

- 1 the first two rows of the matrix are the same
- 2 the first two columns of the matrix are different
- 3 the matrix is invertible
- 4 the sub-matrix at the intersection of the first two rows and the first two columns contains a constant of 0

Reference Answer: (1)

It is easy to see that the first two rows must be the same; so must the first two columns. The two same rows makes the matrix singular; the sub-matrix in 4 contains a constant of $1 = \exp(-0)$ instead of 0.

if $\mathbf{x}_1 \approx \mathbf{x}_2$,

if $\mathbf{x}_1 \approx \mathbf{x}_2$,

 \implies no need both RBF(\mathbf{x}, \mathbf{x}_1) & RBF(\mathbf{x}, \mathbf{x}_2) in RBFNet,

if $\mathbf{x}_1 \approx \mathbf{x}_2$,

- \implies no need both RBF(\mathbf{x}, \mathbf{x}_1) & RBF(\mathbf{x}, \mathbf{x}_2) in RBFNet,
- \Rightarrow cluster \mathbf{x}_1 and \mathbf{x}_2 by one prototype $\mu \approx \mathbf{x}_1 \approx \mathbf{x}_2$

```
if \mathbf{x}_1 \approx \mathbf{x}_2,
```

- \implies no need both RBF(\mathbf{x}, \mathbf{x}_1) & RBF(\mathbf{x}, \mathbf{x}_2) in RBFNet,
- \implies cluster \mathbf{x}_1 and \mathbf{x}_2 by one prototype $\mu \approx \mathbf{x}_1 \approx \mathbf{x}_2$
 - clustering with prototype:

```
if \mathbf{x}_1 \approx \mathbf{x}_2,
```

- \implies no need both RBF(\mathbf{x}, \mathbf{x}_1) & RBF(\mathbf{x}, \mathbf{x}_2) in RBFNet,
- \implies cluster \mathbf{x}_1 and \mathbf{x}_2 by one prototype $\mu \approx \mathbf{x}_1 \approx \mathbf{x}_2$
 - clustering with prototype:
 - partition $\{\mathbf{x}_n\}$ to disjoint sets S_1, S_2, \dots, S_M

```
if \mathbf{x}_1 \approx \mathbf{x}_2,
```

- \implies no need both RBF(\mathbf{x}, \mathbf{x}_1) & RBF(\mathbf{x}, \mathbf{x}_2) in RBFNet,
- \Longrightarrow cluster \mathbf{x}_1 and \mathbf{x}_2 by one prototype $\mu \approx \mathbf{x}_1 \approx \mathbf{x}_2$
 - clustering with prototype:
 - partition $\{x_n\}$ to disjoint sets S_1, S_2, \dots, S_M
 - **choose** μ_m for each S_m

```
if \mathbf{x}_1 \approx \mathbf{x}_2,
```

- \implies no need both RBF(\mathbf{x}, \mathbf{x}_1) & RBF(\mathbf{x}, \mathbf{x}_2) in RBFNet,
- \Longrightarrow cluster \mathbf{x}_1 and \mathbf{x}_2 by one prototype $\mu pprox \mathbf{x}_1 pprox \mathbf{x}_2$
 - clustering with prototype:
 - partition $\{x_n\}$ to disjoint sets S_1, S_2, \dots, S_M
 - choose μ_m for each S_m
 - —hope: $\mathbf{x}_1, \mathbf{x}_2$ both $\in S_m \Leftrightarrow \mu_m \approx \mathbf{x}_1 \approx x_2$

if $\mathbf{x}_1 \approx \mathbf{x}_2$,

- \implies no need both RBF(\mathbf{x}, \mathbf{x}_1) & RBF(\mathbf{x}, \mathbf{x}_2) in RBFNet,
- \Longrightarrow cluster \mathbf{x}_1 and \mathbf{x}_2 by one prototype $\mu \approx \mathbf{x}_1 \approx \mathbf{x}_2$
 - clustering with prototype:
 - partition $\{x_n\}$ to disjoint sets S_1, S_2, \dots, S_M
 - choose μ_m for each S_m
 - —hope: $\mathbf{x}_1, \mathbf{x}_2$ both $\in S_m \Leftrightarrow \mu_m \approx \mathbf{x}_1 \approx x_2$
 - cluster error with squared error measure:

$$E_{\text{in}}(S_1, \dots, S_M; \mu_1, \dots, \mu_M) = \frac{1}{N} \sum_{n=1}^{N} \sum_{m=1}^{M} [[\mathbf{x}_n \in S_m]] |[\mathbf{x}_n - \mu_m]|^2$$

if $\mathbf{x}_1 \approx \mathbf{x}_2$,

- \implies no need both RBF(\mathbf{x}, \mathbf{x}_1) & RBF(\mathbf{x}, \mathbf{x}_2) in RBFNet,
- \Longrightarrow cluster \mathbf{x}_1 and \mathbf{x}_2 by one prototype $\mu \approx \mathbf{x}_1 \approx \mathbf{x}_2$
 - clustering with prototype:
 - partition $\{x_n\}$ to disjoint sets S_1, S_2, \dots, S_M
 - choose μ_m for each S_m
 - —hope: $\mathbf{x}_1, \mathbf{x}_2$ both $\in S_m \Leftrightarrow \mu_m \approx \mathbf{x}_1 \approx x_2$
 - cluster error with squared error measure:

$$E_{\text{in}}(S_1, \dots, S_M; \mu_1, \dots, \mu_M) = \frac{1}{N} \sum_{n=1}^{N} \sum_{m=1}^{M} [[\mathbf{x}_n \in S_m]] |[\mathbf{x}_n - \mu_m]|^2$$

goal: with
$$S_1, \dots, S_M$$
 being a partition of $\{x_n\}$,

$$\min_{\{S_1,\cdots,S_M;\mu_1,\cdots,\mu_M\}} E_{\text{in}}(S_1,\cdots,S_M;\mu_1,\cdots,\mu_M)$$

with S_1, \dots, S_M being a partition of $\{\mathbf{x}_n\}$,

$$\min_{\{\boldsymbol{S}_1,\cdots,\boldsymbol{S}_M;\boldsymbol{\mu}_1,\cdots,\boldsymbol{\mu}_M\}} \sum_{n=1}^N \sum_{m=1}^M [\![\boldsymbol{\mathbf{x}}_n \in \boldsymbol{S}_m]\!] \|\boldsymbol{\mathbf{x}}_n - \boldsymbol{\mu}_m\|^2$$

with S_1, \dots, S_M being a partition of $\{x_n\}$,

$$\min_{\{\boldsymbol{S}_1,\cdots,\boldsymbol{S}_M;\boldsymbol{\mu}_1,\cdots,\boldsymbol{\mu}_M\}} \sum_{n=1}^N \sum_{m=1}^M [\![\boldsymbol{\mathbf{x}}_n \in \boldsymbol{S}_m]\!] \|\boldsymbol{\mathbf{x}}_n - \boldsymbol{\mu}_m\|^2$$

• hard to optimize: joint combinatorial-numerical optimization

with S_1, \dots, S_M being a partition of $\{x_n\}$,

$$\min_{\{S_1, \cdots, S_M; \mu_1, \cdots, \mu_M\}} \sum_{n=1}^{N} \sum_{m=1}^{M} [\![\mathbf{x}_n \in S_m]\!] \|\mathbf{x}_n - \mu_m \|^2$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

with S_1, \dots, S_M being a partition of $\{x_n\}$,

$$\min_{\{\boldsymbol{S}_1,\cdots,\boldsymbol{S}_M;\boldsymbol{\mu}_1,\cdots,\boldsymbol{\mu}_M\}} \sum_{n=1}^N \sum_{m=1}^M [\![\boldsymbol{\mathbf{x}}_n \in \boldsymbol{S}_m]\!] \|\boldsymbol{\mathbf{x}}_n - \boldsymbol{\mu}_m\|^2$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if μ_1, \dots, μ_M fixed, for each \mathbf{x}_n

with S_1, \dots, S_M being a partition of $\{x_n\}$,

$$\min_{\{S_1,\cdots,S_M;\mu_1,\cdots,\mu_M\}} \sum_{n=1}^N \sum_{m=1}^M \llbracket \mathbf{x}_n \in S_m \rrbracket \|\mathbf{x}_n - \mu_m \|^2$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if μ_1, \dots, μ_M fixed, for each \mathbf{x}_n

• $[\mathbf{x}_n \in S_m]$: choose one and only one subset

with S_1, \dots, S_M being a partition of $\{x_n\}$,

$$\min_{\{\boldsymbol{S}_1,\cdots,\boldsymbol{S}_M;\boldsymbol{\mu}_1,\cdots,\boldsymbol{\mu}_M\}} \sum_{n=1}^N \sum_{m=1}^M [\![\boldsymbol{\mathbf{x}}_n \in \boldsymbol{S}_m]\!] \|\boldsymbol{\mathbf{x}}_n - \boldsymbol{\mu}_m\|^2$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if μ_1, \cdots, μ_M fixed, for each \mathbf{x}_n

- $[x_n \in S_m]$: choose one and only one subset
- $\|\mathbf{x}_n \mu_m\|^2$: distance to each prototype

with S_1, \dots, S_M being a partition of $\{x_n\}$,

$$\min_{\left\{\boldsymbol{S}_{1},\cdots,\boldsymbol{S}_{M}:\mu_{1},\cdots,\mu_{M}\right\}}\sum_{n=1}^{N}\sum_{m=1}^{M}\left[\!\left[\boldsymbol{\mathbf{x}}_{n}\in\boldsymbol{S}_{m}\right]\!\right]\!\left\|\boldsymbol{\mathbf{x}}_{n}-\boldsymbol{\mu}_{m}\right\|^{2}$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if μ_1, \cdots, μ_M fixed, for each \mathbf{x}_n

- $[x_n \in S_m]$: choose one and only one subset
- $\|\mathbf{x}_n \boldsymbol{\mu}_m\|^2$: distance to each prototype

optimal chosen subset S_m = the one with

$$\|\mathbf{x}_n - \boldsymbol{\mu}_m\|^2$$

with S_1, \dots, S_M being a partition of $\{x_n\}$,

$$\min_{\{S_1, \cdots, S_M; \mu_1, \cdots, \mu_M\}} \sum_{n=1}^N \sum_{m=1}^M [\![\mathbf{x}_n \in S_m]\!] \|\mathbf{x}_n - \mu_m\|^2$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if μ_1, \dots, μ_M fixed, for each \mathbf{x}_n

- $[x_n \in S_m]$: choose one and only one subset
- $\|\mathbf{x}_n \boldsymbol{\mu}_m\|^2$: distance to each prototype

optimal chosen subset S_m = the one with minimum $\|\mathbf{x}_n - \boldsymbol{\mu}_m\|^2$

with S_1, \dots, S_M being a partition of $\{\mathbf{x}_n\}$,

$$\min_{\{\boldsymbol{S}_1,\cdots,\boldsymbol{S}_M;\boldsymbol{\mu}_1,\cdots,\boldsymbol{\mu}_M\}} \sum_{n=1}^N \sum_{m=1}^M [\![\boldsymbol{\mathbf{x}}_n \in \boldsymbol{S}_m]\!] \|\boldsymbol{\mathbf{x}}_n - \boldsymbol{\mu}_m\|^2$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if μ_1, \dots, μ_M fixed, for each \mathbf{x}_n

- $[x_n \in S_m]$: choose one and only one subset
- $\|\mathbf{x}_n \boldsymbol{\mu}_m\|^2$: distance to each prototype

optimal chosen subset S_m = the one with minimum $\|\mathbf{x}_n - \boldsymbol{\mu}_m\|^2$

for given μ_1, \cdots, μ_M , each \mathbf{x}_n 'optimally partitioned' using its closest μ_m

with S_1, \dots, S_M being a partition of $\{x_n\}$,

$$\min_{\{S_1, \cdots, S_M; \mu_1, \cdots, \mu_M\}} \sum_{n=1}^{N} \sum_{m=1}^{M} [\![\mathbf{x}_n \in S_m]\!] \|\mathbf{x}_n - \mu_m\|^2$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

with S_1, \dots, S_M being a partition of $\{x_n\}$,

$$\min_{\{S_1,\cdots,S_M;\mu_1,\cdots,\mu_M\}} \sum_{n=1}^N \sum_{m=1}^M \llbracket \mathbf{x}_n \in S_m \rrbracket \|\mathbf{x}_n - \mu_m\|^2$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if S_1, \cdots, S_M fixed, just unconstrained optimization for each μ_m

with S_1, \dots, S_M being a partition of $\{x_n\}$,

$$\min_{\left\{\mathcal{S}_{1},\cdots,\mathcal{S}_{M};\mu_{1},\cdots,\mu_{M}\right\}}\sum_{n=1}^{N}\sum_{m=1}^{M}\left[\!\left[\mathbf{x}_{n}\in\mathcal{S}_{m}\right]\!\right]\!\left\|\mathbf{x}_{n}-\mu_{m}\right\|^{2}$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if S_1,\cdots,S_M fixed, just unconstrained optimization for each μ_m

$$\nabla_{\boldsymbol{\mu}_{m}} \boldsymbol{E}_{\mathsf{in}} = -2 \sum_{n=1}^{N} \left[\mathbf{x}_{n} \in \boldsymbol{S}_{m} \right]$$

with S_1, \dots, S_M being a partition of $\{x_n\}$,

$$\min_{\left\{\mathcal{S}_{1},\cdots,\mathcal{S}_{M};\mu_{1},\cdots,\mu_{M}\right\}}\sum_{n=1}^{N}\sum_{m=1}^{M}\left[\!\left[\mathbf{x}_{n}\in\mathcal{S}_{m}\right]\!\right]\!\left\|\mathbf{x}_{n}-\mu_{m}\right\|^{2}$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if S_1, \cdots, S_M fixed, just unconstrained optimization for each μ_m

$$\nabla_{\boldsymbol{\mu}_{m}} \boldsymbol{E}_{\mathsf{in}} = -2 \sum_{n=1}^{N} [\![\mathbf{x}_{n} \in \boldsymbol{S}_{m}]\!] (\mathbf{x}_{n} - \boldsymbol{\mu}_{m})$$

with S_1, \dots, S_M being a partition of $\{\mathbf{x}_n\}$,

$$\min_{\left\{\mathcal{S}_{1},\cdots,\mathcal{S}_{M};\mu_{1},\cdots,\mu_{M}\right\}}\sum_{n=1}^{N}\sum_{m=1}^{M}\left[\!\left[\mathbf{x}_{n}\in\mathcal{S}_{m}\right]\!\right]\!\left\|\mathbf{x}_{n}-\mu_{m}\right\|^{2}$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if $\mathcal{S}_1,\cdots,\mathcal{S}_M$ fixed, just unconstrained optimization for each μ_m

$$\nabla_{\boldsymbol{\mu}_{m}} E_{\text{in}} = -2 \sum_{n=1}^{N} [\mathbf{x}_{n} \in S_{m}] (\mathbf{x}_{n} - \boldsymbol{\mu}_{m}) = -2 \left(\left(\sum_{\mathbf{x}_{n} \in S_{m}} \mathbf{x}_{n} \right) - \boldsymbol{\mu}_{m} \right)$$

with S_1, \dots, S_M being a partition of $\{\mathbf{x}_n\}$,

$$\min_{\left\{\mathcal{S}_{1},\cdots,\mathcal{S}_{M};\mu_{1},\cdots,\mu_{M}\right\}}\sum_{n=1}^{N}\sum_{m=1}^{M}\left[\!\left[\mathbf{x}_{n}\in\mathcal{S}_{m}\right]\!\right]\!\left\|\mathbf{x}_{n}-\mu_{m}\right\|^{2}$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if $\mathcal{S}_1,\cdots,\mathcal{S}_M$ fixed, just unconstrained optimization for each μ_m

$$\nabla_{\boldsymbol{\mu}_{m}} \boldsymbol{E}_{\text{in}} = -2 \sum_{n=1}^{N} [\![\boldsymbol{x}_{n} \in \boldsymbol{S}_{m}]\!] (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{m}) = -2 \left(\left(\sum_{\boldsymbol{x}_{n} \in \boldsymbol{S}_{m}} \boldsymbol{x}_{n} \right) - |\boldsymbol{S}_{m}| \boldsymbol{\mu}_{m} \right)$$

with S_1, \dots, S_M being a partition of $\{x_n\}$,

$$\min_{\left\{\boldsymbol{S}_{1},\cdots,\boldsymbol{S}_{M};\boldsymbol{\mu}_{1},\cdots,\boldsymbol{\mu}_{M}\right\}}\sum_{n=1}^{N}\sum_{m=1}^{M}\left[\!\left[\boldsymbol{\mathbf{x}}_{n}\in\boldsymbol{S}_{m}\right]\!\right]\!\left\|\boldsymbol{\mathbf{x}}_{n}-\boldsymbol{\mu}_{m}\right\|^{2}$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if $\mathcal{S}_1,\cdots,\mathcal{S}_M$ fixed, just unconstrained optimization for each μ_m

$$\nabla_{\boldsymbol{\mu}_{m}} \boldsymbol{E}_{\text{in}} = -2 \sum_{n=1}^{N} [\![\boldsymbol{x}_{n} \in \boldsymbol{S}_{m}]\!] (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{m}) = -2 \left(\left(\sum_{\boldsymbol{x}_{n} \in \boldsymbol{S}_{m}} \boldsymbol{x}_{n} \right) - |\boldsymbol{S}_{m}| \boldsymbol{\mu}_{m} \right)$$

optimal prototype $\mu_m =$

of \mathbf{x}_n within \mathbf{S}_m

with S_1, \dots, S_M being a partition of $\{\mathbf{x}_n\}$,

$$\min_{\{\mathcal{S}_1,\cdots,\mathcal{S}_M;\mu_1,\cdots,\mu_M\}} \sum_{n=1}^N \sum_{m=1}^M [\![\mathbf{x}_n \in \mathcal{S}_m]\!] \|\mathbf{x}_n - \boldsymbol{\mu}_m\|^2$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if $\mathcal{S}_1,\cdots,\mathcal{S}_M$ fixed, just unconstrained optimization for each μ_m

$$\nabla_{\boldsymbol{\mu}_{m}} \boldsymbol{E}_{\text{in}} = -2 \sum_{n=1}^{N} [\![\boldsymbol{x}_{n} \in \boldsymbol{S}_{m}]\!] (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{m}) = -2 \left(\left(\sum_{\boldsymbol{x}_{n} \in \boldsymbol{S}_{m}} \boldsymbol{x}_{n} \right) - |\boldsymbol{S}_{m}| \boldsymbol{\mu}_{m} \right)$$

optimal prototype $\mu_m = \text{average of } \mathbf{x}_n \text{ within } S_m$

with S_1, \dots, S_M being a partition of $\{x_n\}$,

$$\min_{\{\boldsymbol{S}_1,\cdots,\boldsymbol{S}_M:\mu_1,\cdots,\mu_M\}} \sum_{n=1}^N \sum_{m=1}^M [\![\boldsymbol{x}_n \in \boldsymbol{S}_m]\!] \|\boldsymbol{x}_n - \boldsymbol{\mu}_m\|^2$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if $\mathcal{S}_1,\cdots,\mathcal{S}_M$ fixed, just unconstrained optimization for each μ_m

$$\nabla_{\boldsymbol{\mu}_{m}} \boldsymbol{E}_{\text{in}} = -2 \sum_{n=1}^{N} [\![\mathbf{x}_{n} \in \boldsymbol{S}_{m}]\!] (\mathbf{x}_{n} - \boldsymbol{\mu}_{m}) = -2 \left(\left(\sum_{\mathbf{x}_{n} \in \boldsymbol{S}_{m}} \mathbf{x}_{n} \right) - |\boldsymbol{S}_{m}| \boldsymbol{\mu}_{m} \right)$$

optimal prototype $\mu_m = \text{average of } \mathbf{x}_n \text{ within } \mathbf{S}_m$

for given S_1, \dots, S_M , each μ_n 'optimally computed' as **consensus** within S_m

use k prototypes instead of M historically

use *k* **prototypes** instead of *M* historically (different from *k* nearest neighbor, though)

use k **prototypes** instead of M historically (different from k nearest neighbor, though)

k-Means Algorithm

- 2 alternating optimization of E_{in} : repeatedly
 - optimize $S_1, S_2, ..., S_k$: each \mathbf{x}_n 'optimally partitioned' using its closest μ_i

use k **prototypes** instead of M historically (different from k nearest neighbor, though)

k-Means Algorithm

- 2 alternating optimization of E_{in} : repeatedly
 - 1 optimize $S_1, S_2, ..., S_k$: each \mathbf{x}_n 'optimally partitioned' using its closest μ_i
 - 2 optimize $\mu_1, \mu_2, \dots, \mu_k$: each μ_n 'optimally computed' as consensus within S_m

use k **prototypes** instead of M historically (different from k nearest neighbor, though)

k-Means Algorithm

- 1 initialize $\mu_1, \mu_2, \ldots, \mu_k$:
- 2 alternating optimization of E_{in} : repeatedly
 - 1 optimize $S_1, S_2, ..., S_k$: each \mathbf{x}_n 'optimally partitioned' using its closest μ_i
 - 2 optimize $\mu_1, \mu_2, \dots, \mu_k$: each μ_n 'optimally computed' as consensus within S_m

use k **prototypes** instead of M historically (different from k nearest neighbor, though)

k-Means Algorithm

- $oldsymbol{0}$ initialize μ_1,μ_2,\ldots,μ_k : say, as k randomly chosen $oldsymbol{\mathsf{x}}_n$
- 2 alternating optimization of E_{in}: repeatedly
 - 1 optimize $S_1, S_2, ..., S_k$: each \mathbf{x}_n 'optimally partitioned' using its closest μ_i
 - 2 optimize $\mu_1, \mu_2, \dots, \mu_k$: each μ_n 'optimally computed' as consensus within S_m

use k **prototypes** instead of M historically (different from k nearest neighbor, though)

k-Means Algorithm

- 1 initialize $\mu_1, \mu_2, \dots, \mu_k$: say, as k randomly chosen \mathbf{x}_n
- 2 alternating optimization of E_{in}: repeatedly
 - 1 optimize $S_1, S_2, ..., S_k$: each \mathbf{x}_n 'optimally partitioned' using its closest μ_i
 - 2 optimize $\mu_1, \mu_2, \dots, \mu_k$: each μ_n 'optimally computed' as consensus within S_m

until converge

converge: no change of S_1, S_2, \dots, S_k anymore

k-Means Algorithm

use k **prototypes** instead of M historically (different from k nearest neighbor, though)

k-Means Algorithm

- 1 initialize $\mu_1, \mu_2, \dots, \mu_k$: say, as k randomly chosen \mathbf{x}_n
- 2 alternating optimization of E_{in}: repeatedly
 - 1 optimize $S_1, S_2, ..., S_k$: each \mathbf{x}_n 'optimally partitioned' using its closest μ_i
 - 2 optimize $\mu_1, \mu_2, \dots, \mu_k$: each μ_n 'optimally computed' as consensus within S_m

until converge

converge: no change of S_1, S_2, \dots, S_k anymore —guaranteed as E_{in} decreases during alternating minimization

k-Means Algorithm

use *k* **prototypes** instead of *M* historically (different from *k* nearest neighbor, though)

k-Means Algorithm

- 1 initialize $\mu_1, \mu_2, \dots, \mu_k$: say, as k randomly chosen \mathbf{x}_n
- 2 alternating optimization of E_{in} : repeatedly
 - 1 optimize $S_1, S_2, ..., S_k$: each \mathbf{x}_n 'optimally partitioned' using its closest μ_i
 - 2 optimize $\mu_1, \mu_2, \dots, \mu_k$: each μ_n 'optimally computed' as consensus within S_m

until converge

converge: no change of $S_1, S_2, ..., S_k$ anymore —guaranteed as E_{in} decreases during alternating minimization

k-Means: the most popular **clustering** algorithm through **alternating minimization**

RBF Network Using k-Means

1 run k-Means with k = M to get $\{\mu_m\}$

- 1 run k-Means with k = M to get $\{\mu_m\}$
- $oldsymbol{2}$ construct transform $oldsymbol{\Phi}(\mathbf{x})$ from RBF (say, Gaussian) at $oldsymbol{\mu}_m$

$$\mathbf{\Phi}(\mathbf{x}) = [\mathsf{RBF}(\mathbf{x}, \boldsymbol{\mu}_1), \mathsf{RBF}(\mathbf{x}, \boldsymbol{\mu}_2), \dots, \mathsf{RBF}(\mathbf{x}, \boldsymbol{\mu}_M)]$$

RBF Network Using k-Means

- 1 run k-Means with k = M to get $\{\mu_m\}$
- $oldsymbol{2}$ construct transform $oldsymbol{\Phi}(\mathbf{x})$ from RBF (say, Gaussian) at $oldsymbol{\mu}_m$

$$\textcolor{red}{\Phi(\textbf{x})} = [\mathsf{RBF}(\textbf{x}, \textcolor{red}{\mu_1}), \mathsf{RBF}(\textbf{x}, \textcolor{red}{\mu_2}), \dots, \mathsf{RBF}(\textbf{x}, \textcolor{red}{\mu_M})]$$

3 run linear model on $\{(\Phi(\mathbf{x}_n), y_n)\}$ to get β

- 1 run k-Means with k = M to get $\{\mu_m\}$
- $oldsymbol{2}$ construct transform $oldsymbol{\Phi}(\mathbf{x})$ from RBF (say, Gaussian) at $oldsymbol{\mu}_m$

$$\boldsymbol{\Phi}(\boldsymbol{x}) = [\mathsf{RBF}(\boldsymbol{x}, \boldsymbol{\mu}_1), \mathsf{RBF}(\boldsymbol{x}, \boldsymbol{\mu}_2), \dots, \mathsf{RBF}(\boldsymbol{x}, \boldsymbol{\mu}_M)]$$

- 3 run linear model on $\{(\Phi(\mathbf{x}_n), y_n)\}$ to get β
- **4** return $g_{RBFNET}(\mathbf{x}) = LinearHypothesis (\boldsymbol{\beta}, \boldsymbol{\Phi}(\mathbf{x}))$

- 1 run k-Means with k = M to get $\{\mu_m\}$
- $oldsymbol{2}$ construct transform $oldsymbol{\Phi}(\mathbf{x})$ from RBF (say, Gaussian) at $oldsymbol{\mu}_m$

$$\mathbf{\Phi}(\mathbf{x}) = [\mathsf{RBF}(\mathbf{x}, \boldsymbol{\mu}_1), \mathsf{RBF}(\mathbf{x}, \boldsymbol{\mu}_2), \dots, \mathsf{RBF}(\mathbf{x}, \boldsymbol{\mu}_M)]$$

- 3 run linear model on $\{(\Phi(\mathbf{x}_n), y_n)\}$ to get $\boldsymbol{\beta}$
- **4** return $g_{RBFNET}(\mathbf{x}) = LinearHypothesis(\mathbf{\beta}, \mathbf{\Phi}(\mathbf{x}))$
 - using unsupervised learning (k-Means) to assist feature transform

- 1 run k-Means with k = M to get $\{\mu_m\}$
- 2 construct transform $\Phi(x)$ from RBF (say, Gaussian) at μ_m

$$\mathbf{\Phi}(\mathbf{x}) = [\mathsf{RBF}(\mathbf{x}, \boldsymbol{\mu}_1), \mathsf{RBF}(\mathbf{x}, \boldsymbol{\mu}_2), \dots, \mathsf{RBF}(\mathbf{x}, \boldsymbol{\mu}_M)]$$

- 3 run linear model on $\{(\Phi(\mathbf{x}_n), y_n)\}$ to get β
- **4** return $g_{RBFNET}(\mathbf{x}) = LinearHypothesis (\boldsymbol{\beta}, \boldsymbol{\Phi}(\mathbf{x}))$
 - using unsupervised learning (k-Means) to assist feature transform—like autoencoder

- 1 run k-Means with k = M to get $\{\mu_m\}$
- 2 construct transform $\Phi(\mathbf{x})$ from RBF (say, Gaussian) at μ_m

$$\mathbf{\Phi}(\mathbf{x}) = [\mathsf{RBF}(\mathbf{x}, \boldsymbol{\mu}_1), \mathsf{RBF}(\mathbf{x}, \boldsymbol{\mu}_2), \dots, \mathsf{RBF}(\mathbf{x}, \boldsymbol{\mu}_M)]$$

- 3 run linear model on $\{(\Phi(\mathbf{x}_n), y_n)\}$ to get $\boldsymbol{\beta}$
- **4** return $g_{RBFNET}(\mathbf{x}) = LinearHypothesis(\mathbf{\beta}, \mathbf{\Phi}(\mathbf{x}))$
 - using unsupervised learning (k-Means) to assist feature transform—like autoencoder
 - parameters: M (prototypes), RBF (such as γ of Gaussian)

RBF Network Using k-Means

- 1 run k-Means with k = M to get $\{\mu_m\}$
- $oldsymbol{2}$ construct transform $oldsymbol{\Phi}(\mathbf{x})$ from RBF (say, Gaussian) at $oldsymbol{\mu}_m$

$$\mathbf{\Phi}(\mathbf{x}) = [\mathsf{RBF}(\mathbf{x}, \boldsymbol{\mu}_1), \mathsf{RBF}(\mathbf{x}, \boldsymbol{\mu}_2), \dots, \mathsf{RBF}(\mathbf{x}, \boldsymbol{\mu}_M)]$$

- 3 run linear model on $\{(\Phi(\mathbf{x}_n), y_n)\}$ to get $\boldsymbol{\beta}$
- **4** return $g_{RBFNET}(\mathbf{x}) = Linear Hypothesis (\beta, \Phi(\mathbf{x}))$
 - using unsupervised learning (k-Means) to assist feature transform—like autoencoder
 - parameters: M (prototypes), RBF (such as γ of Gaussian)

RBF Network: a simple (old-fashioned) model

Fun Time

For k-Means, consider examples $\mathbf{x}_n \in \mathbb{R}^2$ such that all $x_{n,1}$ and $x_{n,2}$ are non-zero. When fixing two prototypes $\mu_1 = [1,1]$ and $\mu_2 = [-1,1]$, which of the following set is the optimal S_1 ?

- 1 $\{\mathbf{x}_n: x_{n,1} > 0\}$
- **2** $\{\mathbf{x}_n: x_{n,1} < 0\}$
- **3** $\{\mathbf{x}_n: x_{n,2} > 0\}$
- **4** $\{\mathbf{x}_n: x_{n,2} < 0\}$

Fun Time

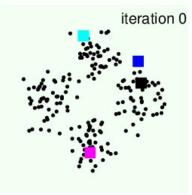
For k-Means, consider examples $\mathbf{x}_n \in \mathbb{R}^2$ such that all $x_{n,1}$ and $x_{n,2}$ are non-zero. When fixing two prototypes $\mu_1 = [1,1]$ and $\mu_2 = [-1,1]$, which of the following set is the optimal S_1 ?

- 1 $\{x_n: x_{n,1} > 0\}$
- **2** $\{\mathbf{x}_n: x_{n,1} < 0\}$
- **3** $\{\mathbf{x}_n: x_{n,2} > 0\}$
- **4** $\{\mathbf{x}_n: x_{n,2} < 0\}$

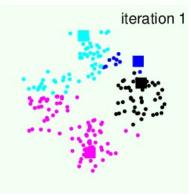
Reference Answer: 1

Note that S_1 contains examples that are closer to μ_1 than μ_2 .

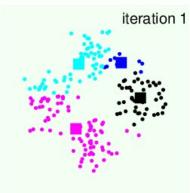
$$k = 4$$



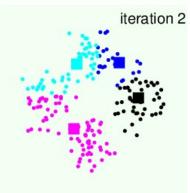
$$k = 4$$



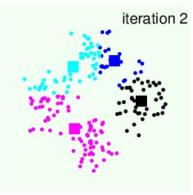
$$k = 4$$



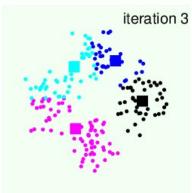
$$k = 4$$



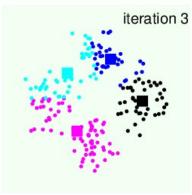
$$k = 4$$



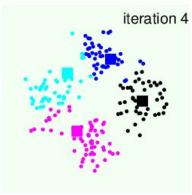
$$k = 4$$



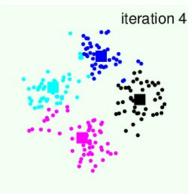
$$k = 4$$



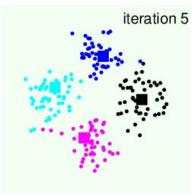
$$k = 4$$



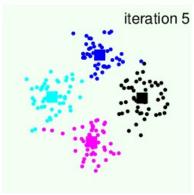
$$k = 4$$



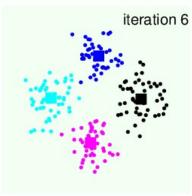
$$k = 4$$



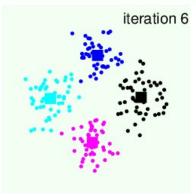
$$k = 4$$



$$k = 4$$



$$k = 4$$



usually works well with proper k and initialization

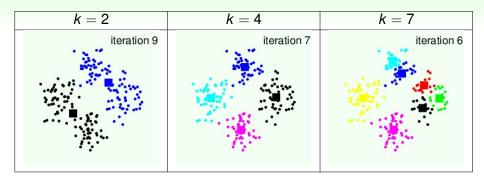
Difficulty of *k*-Means



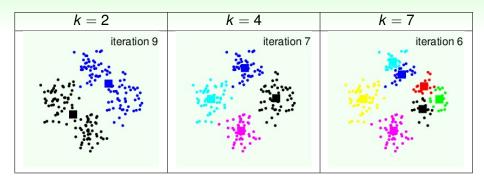
Difficulty of *k*-Means

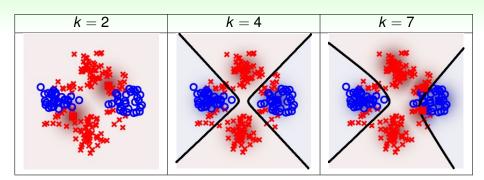


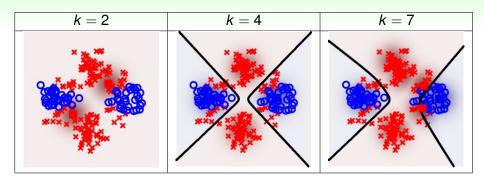
Difficulty of k-Means



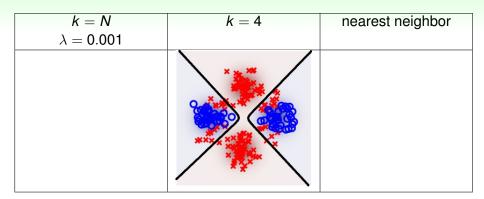
'sensitive' to k and initialization

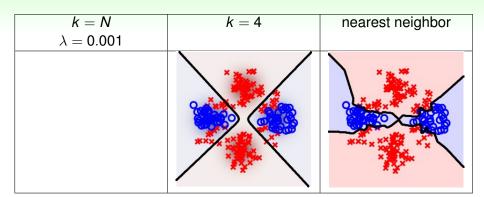


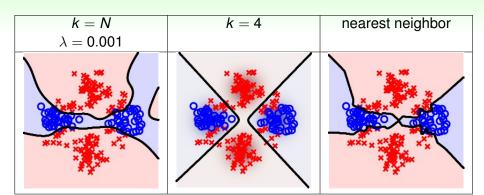


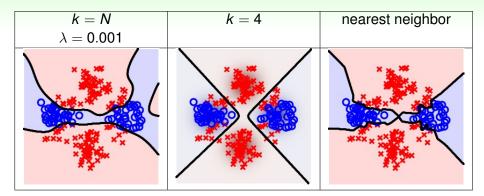


reasonable performance with proper centers









full RBF Network: generally less useful

Fun Time

When coupled with ridge linear regression, which of the following RBF Network is 'most regularized'?

- **1** small M and small λ
- **2** small M and large λ
- 3 large M and small λ
- 4 large M and large λ

Fun Time

When coupled with ridge linear regression, which of the following RBF Network is 'most regularized'?

- $lue{1}$ small M and small λ
- **2** small M and large λ
- \odot large M and small λ
- 4 large M and large λ

Reference Answer: 2

small M: fewer weights and more regularized; large λ : shorter β more and more regularized.

Summary

- 1 Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

Lecture 14: Radial Basis Function Network

- RBF Network Hypothesis prototypes instead of neurons as transform
- RBF Network Learning linear aggregation of prototype 'hypotheses'
- k-Means Algorithm clustering with alternating optimization
- k-Means and RBF Network in Action
 proper choice of # prototypes important
- next: extracting features from abstract data