Machine Learning Techniques (機器學習技法)

Lecture 13: Deep Learning

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

Lecture 12: Neural Network

automatic pattern feature extraction from layers of neurons with backprop for GD/SGD

Lecture 13: Deep Learning

- Deep Neural Network
- Autoencoder
- Denoising Autoencoder
- Principal Component Analysis

• each layer: pattern feature extracted from data, remember? :-)

- each layer: pattern feature extracted from data, remember? :-)
- how many neurons? how many layers?

- each layer: pattern feature extracted from data, remember? :-)
- how many neurons? how many layers? —more generally, what structure?

- each layer: pattern feature extracted from data, remember? :-)
- how many neurons? how many layers? —more generally, what structure?
 - subjectively, your design!

- each layer: pattern feature extracted from data, remember? :-)
- how many neurons? how many layers? —more generally, what structure?
 - subjectively, your design!
 - objectively, validation, maybe?

- each layer: pattern feature extracted from data, remember? :-)
- how many neurons? how many layers? —more generally, what structure?
 - subjectively, your design!
 - objectively, validation, maybe?

structural decisions: key issue for applying NNet

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Deep Neural Network

Shallow versus Deep Neural Networks shallow: few (hidden) layers; deep: many layers

Deep Neural Network

Shallow versus Deep Neural Networks shallow: few (hidden) layers; deep: many layers

Shallow NNet

more efficient to train (
)

Hsuan-Tien Lin (NTU CSIE)

Deep Neural Network

Shallow versus Deep Neural Networks shallow: few (hidden) layers; deep: many layers

Shallow NNet

- more efficient to train (
)
- simpler structural decisions (○)

Deep Neural Network

Shallow versus Deep Neural Networks shallow: few (hidden) layers; deep: many layers

Shallow NNet

- more efficient to train (○)
- simpler structural decisions (○)
- theoretically powerful enough (())

Deep Neural Network

Shallow versus Deep Neural Networks shallow: few (hidden) layers; deep: many layers

Shallow NNet	Deep NNet
 more efficient to train (○) 	
 simpler structural decisions () 	
 theoretically powerful enough (()) 	

Deep Neural Network

Shallow versus Deep Neural Networks shallow: few (hidden) layers; deep: many layers

Shallow NNet

- more efficient to train (
)
- simpler structural decisions (○)
- theoretically powerful enough (())

Deep NNet

• challenging to train (×)

Deep Neural Network

Shallow versus Deep Neural Networks shallow: few (hidden) layers; deep: many layers

Shallow NNet

- more efficient to train (○)
- simpler structural decisions (○)
- theoretically powerful enough (())

Deep NNet

- challenging to train (×)
- sophisticated structural decisions (×)

Deep Neural Network

Shallow versus Deep Neural Networks shallow: few (hidden) layers; deep: many layers

Shallow NNet

- more efficient to train (○)
- simpler structural decisions (○)
- theoretically powerful enough (())

Deep NNet

- challenging to train (×)
- sophisticated structural decisions (×)
- 'arbitrarily' powerful (())

Deep Neural Network

Shallow versus Deep Neural Networks shallow: few (hidden) layers; deep: many layers

Shallow NNet

- more efficient to train (○)
- simpler structural decisions (○)
- theoretically powerful enough (())

Deep NNet

- challenging to train (×)
- sophisticated structural decisions (×)
- 'arbitrarily' powerful (())
- more 'meaningful'? (see next slide)

Deep Neural Network

Shallow versus Deep Neural Networks shallow: few (hidden) layers; deep: many layers

Shallow NNet

- more efficient to train (○)
- simpler structural decisions (())
- theoretically powerful enough (○)

Deep NNet

- challenging to train (×)
- sophisticated structural decisions (×)
- 'arbitrarily' powerful (())
- more 'meaningful'? (see next slide)

deep NNet (deep learning) gaining attention in recent years

'less burden' for each layer: simple to complex features

- 'less burden' for each layer: simple to complex features
- natural for difficult learning task with raw features, like vision

- 'less burden' for each layer: simple to complex features
- natural for difficult learning task with raw features, like vision

deep NNet: currently popular in vision/speech/...

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Deep Neural Network

Challenges and Key Techniques for Deep Learning

• difficult structural decisions:

Deep Neural Network

Challenges and Key Techniques for Deep Learning

difficult structural decisions:

• high model complexity:

Deep Neural Network

Challenges and Key Techniques for Deep Learning

difficult structural decisions:

• high model complexity:

hard optimization problem:

Deep Neural Network

Challenges and Key Techniques for Deep Learning

difficult structural decisions:

high model complexity:

hard optimization problem:

huge computational complexity

٠

Deep Neural Network

Challenges and Key Techniques for Deep Learning

- difficult structural decisions:
 - subjective with domain knowledge: like convolutional NNet for images
- high model complexity:

• hard optimization problem:

huge computational complexity

Deep Neural Network

Challenges and Key Techniques for Deep Learning

- difficult structural decisions:
 - subjective with domain knowledge: like convolutional NNet for images
- high model complexity:
 - no big worries if big enough data

• hard optimization problem:

• huge computational complexity (worsen with big data):

Deep Neural Network

- difficult structural decisions:
 - subjective with domain knowledge: like convolutional NNet for images
- high model complexity:
 - no big worries if big enough data
 - regularization towards noise-tolerant: like

- hard optimization problem:
- huge computational complexity (worsen with big data):

- difficult structural decisions:
 - subjective with domain knowledge: like convolutional NNet for images
- high model complexity:
 - no big worries if big enough data
 - regularization towards noise-tolerant: like
 - dropout (tolerant when network corrupted)
- hard optimization problem:
- huge computational complexity (worsen with big data):

- difficult structural decisions:
 - subjective with domain knowledge: like convolutional NNet for images
- high model complexity:
 - no big worries if big enough data
 - regularization towards noise-tolerant: like
 - dropout (tolerant when network corrupted)
 - denoising (tolerant when input corrupted)
- hard optimization problem:
- huge computational complexity (worsen with big data):

- difficult structural decisions:
 - subjective with domain knowledge: like convolutional NNet for images
- high model complexity:
 - no big worries if big enough data
 - regularization towards noise-tolerant: like
 - dropout (tolerant when network corrupted)
 - denoising (tolerant when input corrupted)
- hard optimization problem:
 - careful initialization to avoid bad local minimum:
- huge computational complexity (worsen with big data):

- difficult structural decisions:
 - subjective with domain knowledge: like convolutional NNet for images
- high model complexity:
 - no big worries if big enough data
 - regularization towards noise-tolerant: like
 - dropout (tolerant when network corrupted)
 - denoising (tolerant when input corrupted)
- hard optimization problem:
 - careful initialization to avoid bad local minimum: called pre-training
- huge computational complexity (worsen with big data):

- difficult structural decisions:
 - subjective with domain knowledge: like convolutional NNet for images
- high model complexity:
 - no big worries if big enough data
 - regularization towards noise-tolerant: like
 - dropout (tolerant when network corrupted)
 - denoising (tolerant when input corrupted)
- hard optimization problem:
 - careful initialization to avoid bad local minimum: called pre-training
- huge computational complexity (worsen with big data):
 - novel hardware/architecture: like mini-batch with GPU

- difficult structural decisions:
 - subjective with domain knowledge: like convolutional NNet for images
- high model complexity:
 - no big worries if big enough data
 - regularization towards noise-tolerant: like
 - dropout (tolerant when network corrupted)
 - denoising (tolerant when input corrupted)
- hard optimization problem:
 - careful initialization to avoid bad local minimum: called pre-training
- huge computational complexity (worsen with big data):
 - novel hardware/architecture: like mini-batch with GPU

IMHO, careful **regularization** and **initialization** are key techniques

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

2 train with backprop on pre-trained NNet to fine-tune all $\left\{ w_{ii}^{(\ell)} \right\}$

2 train with backprop on pre-trained NNet to fine-tune all $\left\{ w_{ii}^{(\ell)} \right\}$

will focus on simplest pre-training technique along with regularization

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Fun Time

For a deep NNet for written character recognition from raw pixels, which type of features are more likely extracted after the first hidden layer?

- pixels
- 2 strokes
- 3 parts
- digits

Fun Time

For a deep NNet for written character recognition from raw pixels, which type of features are more likely extracted after the first hidden layer?

- pixels
- 2 strokes
- 8 parts
- digits

Reference Answer: (2)

Simple strokes are likely the 'next-level' features that can be extracted from raw pixels.

Autoencoder

Information-Preserving Encoding

• weights: feature transform, i.e. encoding

Hsuan-Tien Lin (NTU CSIE)

Autoencoder

Information-Preserving Encoding

- weights: feature transform, i.e. encoding
- **good weights**: information-preserving encoding —next layer same info. with different representation

Autoencoder

Information-Preserving Encoding

- weights: feature transform, i.e. encoding
- good weights: information-preserving encoding —next layer same info. with different representation
- information-preserving:

decode accurately after encoding

Autoencoder

Information-Preserving Encoding

- weights: feature transform, i.e. encoding
- good weights: information-preserving encoding —next layer same info. with different representation
- information-preserving:

decode accurately after encoding

idea: pre-train weights towards information-preserving encoding

 $d - \tilde{d} - d$ NNet with goal $g_i(\mathbf{x}) \approx x_i$

Hsuan-Tien Lin (NTU CSIE)

• autoencoder: $d = \tilde{d} = d$ NNet with goal $g_i(\mathbf{x}) \approx x_i$

• autoencoder: $d - \tilde{d} - d$ NNet with goal $g_i(\mathbf{x}) \approx x_i$ —learning to approximate identity function

 autoencoder: d—d —d NNet with goal g_i(x) ≈ x_i —learning to approximate identity function
 w⁽¹⁾_{ii}: encoding weights; w⁽²⁾_{ii}: decoding weights

Hsuan-Tien Lin (NTU CSIE)

 autoencoder: d—d —d NNet with goal g_i(x) ≈ x_i —learning to approximate identity function
 w⁽¹⁾_{ii}: encoding weights; w⁽²⁾_{ii}: decoding weights

why approximating identity function?

Hsuan-Tien Lin (NTU CSIE)

Deep Learning

Machine Learning Techniques

Usefulness of Approximating Identity Function

if $\mathbf{g}(\mathbf{x}) \approx \mathbf{x}$ using some hidden structures on the observed data \mathbf{x}_n

• for supervised learning:

Autoencoder

Usefulness of Approximating Identity Function

- for supervised learning:
 - hidden structure (essence) of x can be used as reasonable transform $\Phi(x)$

Autoencoder

Usefulness of Approximating Identity Function

if $\mathbf{g}(\mathbf{x}) \approx \mathbf{x}$ using some hidden structures on the observed data \mathbf{x}_n

- for supervised learning:
 - hidden structure (essence) of x can be used as reasonable transform $\Phi(x)$

-learning 'informative' representation of data

Autoencoder

Usefulness of Approximating Identity Function

- for supervised learning:
 - hidden structure (essence) of x can be used as reasonable transform $\Phi(x)$
 - -learning 'informative' representation of data
- for unsupervised learning:

Autoencoder

Usefulness of Approximating Identity Function

- for supervised learning:
 - hidden structure (essence) of x can be used as reasonable transform $\Phi(x)$
 - -learning 'informative' representation of data
- for unsupervised learning:
 - density estimation: larger (structure match) when $\mathbf{g}(\mathbf{x}) \approx \mathbf{x}$

Autoencoder

Usefulness of Approximating Identity Function

- for supervised learning:
 - hidden structure (essence) of x can be used as reasonable transform $\Phi(x)$
 - -learning 'informative' representation of data
- for unsupervised learning:
 - density estimation: larger (structure match) when $\mathbf{g}(\mathbf{x}) \approx \mathbf{x}$
 - outlier detection: those **x** where $\mathbf{g}(\mathbf{x}) \not\approx \mathbf{x}$

Autoencoder

Usefulness of Approximating Identity Function

if $\mathbf{g}(\mathbf{x}) \approx \mathbf{x}$ using some hidden structures on the observed data \mathbf{x}_n

- for supervised learning:
 - hidden structure (essence) of x can be used as reasonable transform $\Phi(x)$
 - -learning 'informative' representation of data
- for unsupervised learning:
 - density estimation: larger (structure match) when $\mathbf{g}(\mathbf{x}) \approx \mathbf{x}$
 - outlier detection: those **x** where $\mathbf{g}(\mathbf{x}) \not\approx \mathbf{x}$

-learning 'typical' representation of data

Autoencoder

Usefulness of Approximating Identity Function

if $\mathbf{g}(\mathbf{x}) \approx \mathbf{x}$ using some hidden structures on the observed data \mathbf{x}_n

- for supervised learning:
 - hidden structure (essence) of x can be used as reasonable transform $\Phi(x)$
 - -learning 'informative' representation of data
- for unsupervised learning:
 - density estimation: larger (structure match) when $\mathbf{g}(\mathbf{x}) \approx \mathbf{x}$
 - outlier detection: those **x** where $\mathbf{g}(\mathbf{x}) \not\approx \mathbf{x}$
 - -learning 'typical' representation of data

autoencoder: representation-learning through approximating identity function

Basic Autoencoder

basic autoencoder:

$$d - \tilde{d} - d$$
 NNet with error function $\sum_{i=1}^{d} (g_i(\mathbf{x}) - x_i)^2$

Basic Autoencoder

basic autoencoder:

 $d - \tilde{d} - d$ NNet with error function $\sum_{i=1}^{d} (g_i(\mathbf{x}) - x_i)^2$

backprop easily applies; shallow and easy to train

Hsuan-Tien Lin (NTU CSIE)

Basic Autoencoder

basic autoencoder:

- backprop easily applies; shallow and easy to train
- usually *d* < d: compressed representation

Basic Autoencoder

basic autoencoder:

- backprop easily applies; shallow and easy to train
- usually $\tilde{d} < d$: **compressed** representation
- data: $\{(\mathbf{x}_1, \mathbf{y}_1 = \mathbf{x}_1), (\mathbf{x}_2, \mathbf{y}_2 = \mathbf{x}_2), \dots, (\mathbf{x}_N, \mathbf{y}_N = \mathbf{x}_N)\}$

basic autoencoder:

- backprop easily applies; shallow and easy to train
- usually *d* < d: compressed representation
- data: {(x₁, y₁ = x₁), (x₂, y₂ = x₂), ..., (x_N, y_N = x_N)}
 —often categorized as unsupervised learning technique

basic autoencoder:

 $d - \tilde{d} - d$ NNet with error function $\sum_{i=1}^{d} (g_i(\mathbf{x}) - x_i)^2$

- backprop easily applies; shallow and easy to train
- usually $\tilde{d} < d$: **compressed** representation
- data: {(x₁, y₁ = x₁), (x₂, y₂ = x₂), ..., (x_N, y_N = x_N)}
 —often categorized as unsupervised learning technique

• sometimes constrain $w_{ij}^{(1)} = w_{ji}^{(2)}$ as regularization

basic autoencoder:

- backprop easily applies; shallow and easy to train
- usually $\tilde{d} < d$: **compressed** representation
- data: {(x₁, y₁ = x₁), (x₂, y₂ = x₂), ..., (x_N, y_N = x_N)}
 —often categorized as unsupervised learning technique
- sometimes constrain $w_{ij}^{(1)} = w_{ji}^{(2)}$ as regularization —more sophisticated in calculating gradient

basic autoencoder:

 $d - \tilde{d} - d$ NNet with error function $\sum_{i=1}^{d} (g_i(\mathbf{x}) - x_i)^2$

- backprop easily applies; shallow and easy to train
- usually $\tilde{d} < d$: **compressed** representation
- data: {(x₁, y₁ = x₁), (x₂, y₂ = x₂), ..., (x_N, y_N = x_N)}
 —often categorized as unsupervised learning technique
- sometimes constrain $w_{ij}^{(1)} = w_{ji}^{(2)}$ as regularization —more sophisticated in calculating gradient

basic **autoencoder** in basic deep learning: $\left\{w_{ij}^{(1)}\right\}$ taken as shallowly pre-trained weights

2 train with backprop on pre-trained NNet to fine-tune all $\left\{ w_{ii}^{(\ell)} \right\}$

many successful pre-training techniques take 'fancier' autoencoders with different architectures and regularization schemes

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Fun Time

Suppose training a $d \cdot \tilde{d} \cdot d$ autoencoder with backprop takes approximately $c \cdot d \cdot \tilde{d}$ seconds. Then, what is the total number of seconds needed for pre-training a $d \cdot d^{(1)} \cdot d^{(2)} \cdot d^{(3)} \cdot 1$ deep NNet?

1
$$c (d + d^{(1)} + d^{(2)} + d^{(3)} + 1)$$

2 $c (d \cdot d^{(1)} \cdot d^{(2)} \cdot d^{(3)} \cdot 1)$
3 $c (dd^{(1)} + d^{(1)}d^{(2)} + d^{(2)}d^{(3)} + d^{(3)})$
4 $c (dd^{(1)} \cdot d^{(1)}d^{(2)} \cdot d^{(2)}d^{(3)} \cdot d^{(3)})$

Fun Time

Suppose training a $d \cdot \tilde{d} \cdot d$ autoencoder with backprop takes approximately $c \cdot d \cdot \tilde{d}$ seconds. Then, what is the total number of seconds needed for pre-training a $d \cdot d^{(1)} \cdot d^{(2)} \cdot d^{(3)} \cdot 1$ deep NNet?

$$\begin{array}{l} \bullet c \left(d + d^{(1)} + d^{(2)} + d^{(3)} + 1 \right) \\ \bullet c \left(d \cdot d^{(1)} \cdot d^{(2)} \cdot d^{(3)} \cdot 1 \right) \\ \bullet c \left(dd^{(1)} + d^{(1)}d^{(2)} + d^{(2)}d^{(3)} + d^{(3)} \right) \\ \bullet c \left(dd^{(1)} \cdot d^{(1)}d^{(2)} \cdot d^{(2)}d^{(3)} \cdot d^{(3)} \right) \end{array}$$

Reference Answer: (3)

Each $c \cdot d^{(\ell-1)} \cdot d^{(\ell)}$ represents the time for pre-training with one autoencoder to determine one layer of the weights.

Denoising Autoencoder

Regularization in Deep Learning

Deep Learning Denoising Autoencoder Regularization in Deep Learning $x_0 = 1$ +1 +1

watch out for overfitting, remember? :-)

Hsuan-Tien Lin (NTU CSIE)

watch out for overfitting, remember? :-)

high model complexity:

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

watch out for overfitting, remember? :-)

high model complexity: regularization needed

watch out for overfitting, remember? :-)

high model complexity: regularization needed

structural decisions/constraints

watch out for overfitting, remember? :-)

high model complexity: regularization needed

- structural decisions/constraints
- weight decay or weight elimination regularizers

watch out for overfitting, remember? :-)

high model complexity: regularization needed

- structural decisions/constraints
- weight decay or weight elimination regularizers
- early stopping

watch out for overfitting, remember? :-)

high model complexity: regularization needed

- structural decisions/constraints
- weight decay or weight elimination regularizers
- early stopping

next: another regularization technique

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Reasons of Overfitting Revisited

Reasons of Overfitting Revisited

how to deal with noise?

Hsuan-Tien Lin (NTU CSIE)

Denoising Autoencoder

Dealing with Noise

• direct possibility: data cleaning/pruning, remember? :-)

- direct possibility: data cleaning/pruning, remember? :-)
- a wild possibility: adding noise to data?

- direct possibility: data cleaning/pruning, remember? :-)
- a wild possibility: adding noise to data?
- idea: robust autoencoder should

- direct possibility: data cleaning/pruning, remember? :-)
- a wild possibility: adding noise to data?
- idea: robust autoencoder should not only let $g(x) \approx x$ but also allow $g(\tilde{x}) \approx x$ even when \tilde{x} slightly different from x

- direct possibility: data cleaning/pruning, remember? :-)
- a wild possibility: adding noise to data?
- idea: robust autoencoder should not only let $g(x) \approx x$ but also allow $g(\tilde{x}) \approx x$ even when \tilde{x} slightly different from x
- denoising autoencoder:

Dealing with Noise

- direct possibility: data cleaning/pruning, remember? :-)
- a wild possibility: adding noise to data?
- idea: robust autoencoder should not only let $g(x) \approx x$ but also allow $g(\tilde{x}) \approx x$ even when \tilde{x} slightly different from x
- denoising autoencoder:

run basic autoencoder with data $\{(\tilde{\mathbf{x}}_1, \mathbf{y}_1 = \mathbf{x}_1), (\tilde{\mathbf{x}}_2, \mathbf{y}_2 = \mathbf{x}_2), \dots, (\tilde{\mathbf{x}}_N, \mathbf{y}_N = \mathbf{x}_N)\},\$ where $\tilde{\mathbf{x}}_n = \mathbf{x}_n + \text{artificial noise}$

Dealing with Noise

- direct possibility: data cleaning/pruning, remember? :-)
- a wild possibility: adding noise to data?
- idea: robust autoencoder should not only let $g(x) \approx x$ but also allow $g(\tilde{x}) \approx x$ even when \tilde{x} slightly different from x
- denoising autoencoder:

run basic autoencoder with data $\{(\tilde{\mathbf{x}}_1, \mathbf{y}_1 = \mathbf{x}_1), (\tilde{\mathbf{x}}_2, \mathbf{y}_2 = \mathbf{x}_2), \dots, (\tilde{\mathbf{x}}_N, \mathbf{y}_N = \mathbf{x}_N)\},\$ where $\tilde{\mathbf{x}}_n = \mathbf{x}_n + \text{artificial noise}$

-often used instead of basic autoencoder in deep learning

Dealing with Noise

- direct possibility: data cleaning/pruning, remember? :-)
- a wild possibility: adding noise to data?
- idea: robust autoencoder should not only let $g(x) \approx x$ but also allow $g(\tilde{x}) \approx x$ even when \tilde{x} slightly different from x
- denoising autoencoder:

run basic autoencoder with data $\{(\tilde{\mathbf{x}}_1, \mathbf{y}_1 = \mathbf{x}_1), (\tilde{\mathbf{x}}_2, \mathbf{y}_2 = \mathbf{x}_2), \dots, (\tilde{\mathbf{x}}_N, \mathbf{y}_N = \mathbf{x}_N)\},\$ where $\tilde{\mathbf{x}}_n = \mathbf{x}_n + \text{artificial noise}$

-often used instead of basic autoencoder in deep learning

useful for data/image processing: g(x̃) a denoised version of x̃

Dealing with Noise

- direct possibility: data cleaning/pruning, remember? :-)
- a wild possibility: adding noise to data?
- idea: robust autoencoder should not only let $g(x) \approx x$ but also allow $g(\tilde{x}) \approx x$ even when \tilde{x} slightly different from x
- denoising autoencoder:

run basic autoencoder with data $\{(\tilde{\mathbf{x}}_1, \mathbf{y}_1 = \mathbf{x}_1), (\tilde{\mathbf{x}}_2, \mathbf{y}_2 = \mathbf{x}_2), \dots, (\tilde{\mathbf{x}}_N, \mathbf{y}_N = \mathbf{x}_N)\},\$ where $\tilde{\mathbf{x}}_n = \mathbf{x}_n + \text{artificial noise}$

-often used instead of basic autoencoder in deep learning

- useful for data/image processing: $g(\tilde{x})$ a denoised version of \tilde{x}
- effect: 'constrain/regularize' g towards noise-tolerant denoising

Dealing with Noise

- direct possibility: data cleaning/pruning, remember? :-)
- a wild possibility: adding noise to data?
- idea: robust autoencoder should not only let $g(x) \approx x$ but also allow $g(\tilde{x}) \approx x$ even when \tilde{x} slightly different from x
- denoising autoencoder:

run basic autoencoder with data $\{(\tilde{\mathbf{x}}_1, \mathbf{y}_1 = \mathbf{x}_1), (\tilde{\mathbf{x}}_2, \mathbf{y}_2 = \mathbf{x}_2), \dots, (\tilde{\mathbf{x}}_N, \mathbf{y}_N = \mathbf{x}_N)\},\$ where $\tilde{\mathbf{x}}_n = \mathbf{x}_n + \text{artificial noise}$

-often used instead of basic autoencoder in deep learning

- useful for data/image processing: $g(\tilde{x})$ a denoised version of \tilde{x}
- effect: 'constrain/regularize' g towards noise-tolerant denoising

artificial noise/hint as regularization! —practically also useful for other NNet/models

Hsuan-Tien Lin (NTU CSIE)

Fun Time

Which of the following cannot be viewed as a regularization technique?

- 1 hint the model with artificially-generated noisy data
- 2 stop gradient descent early
- 3 add a weight elimination regularizer
- 4 all the above are regularization techniques

Fun Time

Which of the following cannot be viewed as a regularization technique?

- hint the model with artificially-generated noisy data
- 2 stop gradient descent early
- 3 add a weight elimination regularizer
- 4 all the above are regularization techniques

Reference Answer: (4)

Principal Component Analysis

Linear Autoencoder Hypothesis

nonlinear autoencoder linear autoencoder sophisticated simple linear: more efficient? less overfitting?

linear hypothesis for *k*-th component $h_k(\mathbf{x}) = \sum_{j=0}^{a} \mathbf{w}_{jk}^{(2)} \tanh\left(\sum_{i=0}^{a} \mathbf{w}_{ij}^{(1)} x_i\right)$

consider three special conditions:

• exclude x₀: range of *i* same as range of *k*

linear hypothesis for *k*-th component $h_k(\mathbf{x}) = \sum_{i=0}^d \mathbf{w}_{jk}^{(2)} \left(\sum_{i=1}^d \mathbf{w}_{ij}^{(1)} x_i \right)$

consider three special conditions:

• exclude x₀: range of *i* same as range of *k*

linear hypothesis for *k*-th component $h_k(\mathbf{x}) = \sum_{i=0}^{a} \mathbf{w}_{jk}^{(2)} \left(\sum_{i=1}^{a} \mathbf{w}_{ij}^{(1)} x_i \right)$

consider three special conditions:

- exclude x₀: range of *i* same as range of *k*
- constrain $w_{ij}^{(1)} = w_{ji}^{(2)} = w_{ij}$: regularization

linear hypothesis for *k*-th component $h_k(\mathbf{x}) = \sum_{i=0}^d \mathbf{w}_{ki} \left(\sum_{i=1}^d \mathbf{w}_{ij} x_i \right)$

consider three special conditions:

- exclude x₀: range of *i* same as range of *k*
- constrain $w_{ij}^{(1)} = w_{ji}^{(2)} = w_{ij}$: regularization

linear hypothesis for *k*-th component $h_k(\mathbf{x}) = \sum_{j=0}^{d} \mathbf{w}_{kj} \left(\sum_{i=1}^{d} \mathbf{w}_{ij} x_i \right)$

consider three special conditions:

- exclude x₀: range of *i* same as range of *k*
- constrain $w_{ij}^{(1)} = w_{ji}^{(2)} = w_{ij}$: regularization

• assume $\tilde{d} < d$: ensure **non-trivial** solution

linear hypothesis for *k*-th component $h_k(\mathbf{x}) = \sum_{j=0}^{d} \mathbf{w}_{kj} \left(\sum_{i=1}^{d} \mathbf{w}_{ij} x_i \right)$ consider three special conditions:

- exclude x₀: range of *i* same as range of *k*
- constrain w⁽¹⁾_{ij} = w⁽²⁾_{ji} = w_{ij}: regularization
 —denote W = [w_{ij}] of size d × d̃
- assume $\tilde{d} < d$: ensure **non-trivial** solution

linear hypothesis for *k*-th component $h_k(\mathbf{x}) = \sum_{i=0}^{d} \mathbf{w}_{kj} \left(\sum_{i=1}^{d} \mathbf{w}_{ij} x_i \right)$

consider three special conditions:

- exclude x₀: range of *i* same as range of *k*
- constrain $w_{ij}^{(1)} = w_{ji}^{(2)} = w_{ij}$: regularization —denote W = $[w_{ij}]$ of size $d \times \tilde{d}$
- assume $\tilde{d} < d$: ensure **non-trivial** solution

linear autoencoder hypothesis: $\mathbf{h}(\mathbf{x}) = \mathbf{W}\mathbf{W}^{T}\mathbf{x}$

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Principal Component Analysis

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \mathbf{W} \mathbf{W}^T \mathbf{x}_n \right\|^2 \text{ with } d \times \tilde{d} \text{ matrix } \mathbf{W}$$

Principal Component Analysis

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \mathbf{W} \mathbf{W}^T \mathbf{x}_n \right\|^2 \text{ with } d \times \tilde{d} \text{ matrix W}$$

-analytic solution to minimize E_{in} ? but 4-th order polynomial of w_{ij}

Principal Component Analysis

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \mathbf{W} \mathbf{W}^T \mathbf{x}_n \right\|^2 \text{ with } d \times \tilde{d} \text{ matrix } \mathbf{W}$$

-analytic solution to minimize E_{in} ? but 4-th order polynomial of w_{ji}

let's familiarize the problem with linear algebra (be brave! :-))

Principal Component Analysis

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \mathbf{W} \mathbf{W}^T \mathbf{x}_n \right\|^2 \text{ with } d \times \tilde{d} \text{ matrix } \mathbf{W}$$

-analytic solution to minimize E_{in} ? but 4-th order polynomial of w_{ii}

let's familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose $WW^T = V\Gamma V^T$

Principal Component Analysis

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \mathbf{W} \mathbf{W}^T \mathbf{x}_n \right\|^2 \text{ with } d \times \tilde{d} \text{ matrix } \mathbf{W}$$

-analytic solution to minimize E_{in} ? but 4-th order polynomial of w_{ii}

let's familiarize the problem with linear algebra (be brave! :-))

- eigen-decompose $WW^T = V\Gamma V^T$
 - $d \times d$ matrix V orthogonal: $VV^T = V^TV =$

Principal Component Analysis

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \mathbf{W} \mathbf{W}^T \mathbf{x}_n \right\|^2 \text{ with } d \times \tilde{d} \text{ matrix } \mathbf{W}$$

-analytic solution to minimize E_{in} ? but 4-th order polynomial of w_{ii}

let's familiarize the problem with linear algebra (be brave! :-))

- eigen-decompose $WW^T = V\Gamma V^T$
 - $d \times d$ matrix V orthogonal: $VV^T = V^T V = I_d$

Principal Component Analysis

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \mathbf{W} \mathbf{W}^T \mathbf{x}_n \right\|^2 \text{ with } d \times \tilde{d} \text{ matrix W}$$

-analytic solution to minimize E_{in} ? but 4-th order polynomial of

let's familiarize the problem with linear algebra (be brave! :-))

- eigen-decompose $WW^T = V\Gamma V^T$
 - $d \times d$ matrix V orthogonal: $VV^T = V^TV = I_d$
 - $d \times d$ matrix Γ diagonal with \leq non-zero

Wii
Principal Component Analysis

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \mathbf{W} \mathbf{W}^T \mathbf{x}_n \right\|^2 \text{ with } d \times \tilde{d} \text{ matrix W}$$

-analytic solution to minimize E_{in} ? but 4-th order polynomial of

let's familiarize the problem with linear algebra (be brave! :-))

- eigen-decompose $WW^T = V\Gamma V^T$
 - $d \times d$ matrix V orthogonal: $VV^T = V^T V = I_d$
 - $d \times d$ matrix Γ diagonal with $\leq \tilde{d}$ non-zero

Principal Component Analysis

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \mathbf{W} \mathbf{W}^T \mathbf{x}_n \right\|^2 \text{ with } d \times \tilde{d} \text{ matrix W}$$

-analytic solution to minimize E_{in} ? but 4-th order polynomial of

let's familiarize the problem with linear algebra (be brave! :-))

- eigen-decompose $WW^T = V\Gamma V^T$
 - $d \times d$ matrix V orthogonal: $VV^T = V^T V = I_d$
 - $d \times d$ matrix Γ diagonal with $\leq \tilde{d}$ non-zero

•
$$\mathbf{W}\mathbf{W}^T\mathbf{x}_n = \mathbf{x}_n$$

Principal Component Analysis

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \mathbf{W} \mathbf{W}^T \mathbf{x}_n \right\|^2 \text{ with } d \times \tilde{d} \text{ matrix W}$$

-analytic solution to minimize E_{in} ? but 4-th order polynomial of

let's familiarize the problem with linear algebra (be brave! :-))

- eigen-decompose $WW^T = V\Gamma V^T$
 - $d \times d$ matrix V orthogonal: $VV^T = V^TV = I_d$
 - $d \times d$ matrix Γ diagonal with $\leq \tilde{d}$ non-zero
- $\mathbf{W}\mathbf{W}^T\mathbf{x}_n = \mathbf{V}\Gamma\mathbf{V}^T\mathbf{x}_n$

Principal Component Analysis

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \mathbf{W} \mathbf{W}^T \mathbf{x}_n \right\|^2 \text{ with } d \times \tilde{d} \text{ matrix W}$$

-analytic solution to minimize E_{in} ? but 4-th order polynomial of

let's familiarize the problem with linear algebra (be brave! :-))

- eigen-decompose $WW^T = V\Gamma V^T$
 - $d \times d$ matrix V orthogonal: $VV^T = V^TV = I_d$
 - $d \times d$ matrix Γ diagonal with $\leq \tilde{d}$ non-zero
- $\mathbf{W}\mathbf{W}^T\mathbf{x}_n = \mathbf{V}\Gamma\mathbf{V}^T\mathbf{x}_n$
 - V^T(**x**_n): change of orthonormal basis (**rotate** or reflect)

Principal Component Analysis

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \mathbf{W} \mathbf{W}^T \mathbf{x}_n \right\|^2 \text{ with } d \times \tilde{d} \text{ matrix W}$$

-analytic solution to minimize E_{in} ? but 4-th order polynomial of

let's familiarize the problem with linear algebra (be brave! :-))

- eigen-decompose $WW^T = V\Gamma V^T$
 - $d \times d$ matrix V orthogonal: $VV^T = V^T V = I_d$
 - $d \times d$ matrix Γ diagonal with $\leq \tilde{d}$ non-zero
- $\mathbf{W}\mathbf{W}^T\mathbf{x}_n = \mathbf{V}\Gamma\mathbf{V}^T\mathbf{x}_n$
 - $V^{T}(\mathbf{x}_{n})$: change of orthonormal basis (rotate or reflect)
 - $\Gamma(\cdots)$: set $\geq d \tilde{d}$ components to 0, and scale others

Principal Component Analysis

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \mathbf{W} \mathbf{W}^T \mathbf{x}_n \right\|^2 \text{ with } d \times \tilde{d} \text{ matrix W}$$

-analytic solution to minimize E_{in} ? but 4-th order polynomial of

let's familiarize the problem with linear algebra (be brave! :-))

- eigen-decompose $WW^T = V\Gamma V^T$
 - $d \times d$ matrix V orthogonal: $VV^T = V^T V = I_d$
 - $d \times d$ matrix Γ diagonal with $\leq \tilde{d}$ non-zero
- $\mathbf{W}\mathbf{W}^T\mathbf{x}_n = \mathbf{V}\Gamma\mathbf{V}^T\mathbf{x}_n$
 - V^T(**x**_n): change of orthonormal basis (rotate or reflect)
 - $\Gamma(\cdots)$: set $\geq d \tilde{d}$ components to 0, and scale others
 - V(···): reconstruct by coefficients and basis (back-rotate)

Principal Component Analysis

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \mathbf{W} \mathbf{W}^T \mathbf{x}_n \right\|^2 \text{ with } d \times \tilde{d} \text{ matrix } \mathbf{W}$$

-analytic solution to minimize E_{in} ? but 4-th order polynomial of w_{ij}

let's familiarize the problem with linear algebra (be brave! :-))

- eigen-decompose $WW^T = V\Gamma V^T$
 - $d \times d$ matrix V orthogonal: $VV^T = V^T V = I_d$
 - $d \times d$ matrix Γ diagonal with $\leq \tilde{d}$ non-zero
- $\mathbf{W}\mathbf{W}^T\mathbf{x}_n = \mathbf{V}\Gamma\mathbf{V}^T\mathbf{x}_n$
 - $V^{T}(\mathbf{x}_{n})$: change of orthonormal basis (rotate or reflect)
 - $\Gamma(\cdots)$: set $\geq d \tilde{d}$ components to 0, and scale others
 - V(···): reconstruct by coefficients and basis (back-rotate)
- $\mathbf{x}_n = \mathbf{VIV}^T \mathbf{x}_n$: rotate and back-rotate cancel out

Principal Component Analysis

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \mathbf{W} \mathbf{W}^T \mathbf{x}_n \right\|^2 \text{ with } d \times \tilde{d} \text{ matrix } \mathbf{W}$$

-analytic solution to minimize E_{in} ? but 4-th order polynomial of w_{ii}

let's familiarize the problem with linear algebra (be brave! :-))

- eigen-decompose $WW^T = V\Gamma V^T$
 - $d \times d$ matrix V orthogonal: $VV^T = V^T V = I_d$
 - $d \times d$ matrix Γ diagonal with $\leq \tilde{d}$ non-zero
- $\mathbf{W}\mathbf{W}^T\mathbf{x}_n = \mathbf{V}\Gamma\mathbf{V}^T\mathbf{x}_n$
 - $V^{T}(\mathbf{x}_{n})$: change of orthonormal basis (rotate or reflect)
 - $\Gamma(\cdots)$: set $\geq d \tilde{d}$ components to 0, and scale others
 - $V(\cdots)$: reconstruct by coefficients and basis (back-rotate)
- $\mathbf{x}_n = \mathbf{VIV}^T \mathbf{x}_n$: rotate and back-rotate cancel out

next: minimize E_{in} by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE)

Principal Component Analysis

The Optimal **F**

$$\min_{\mathbf{V}} \min_{\Gamma} \frac{1}{N} \sum_{n=1}^{N} \left\| \underbrace{\mathbf{V} \mathbf{I} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n}}_{\mathbf{x}_{n}} - \underbrace{\mathbf{V} \mathbf{\Gamma} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n}}_{\mathbf{W} \mathbf{W}^{\mathsf{T}} \mathbf{x}_{n}} \right\|^{2}$$

back-rotate not affecting length: X

Principal Component Analysis

The Optimal Γ

$$\min_{\mathbf{V}} \min_{\Gamma} \frac{1}{N} \sum_{n=1}^{N} \left\| \underbrace{\mathbf{V} \mathbf{I} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n}}_{\mathbf{x}_{n}} - \underbrace{\mathbf{V} \Gamma \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n}}_{\mathbf{W} \mathbf{W}^{\mathsf{T}} \mathbf{x}_{n}} \right\|^{2}$$

- back-rotate not affecting length: X
- $min_{\Gamma} \sum \|(I \Gamma)(some \ vector)\|^2$: want many within $(I \Gamma)$

Principal Component Analysis

The Optimal Γ

$$\min_{\mathbf{V}} \min_{\Gamma} \frac{1}{N} \sum_{n=1}^{N} \left\| \underbrace{\mathbf{V} \mathbf{I} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n}}_{\mathbf{x}_{n}} - \underbrace{\mathbf{V} \Gamma \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n}}_{\mathbf{W} \mathbf{W}^{\mathsf{T}} \mathbf{x}_{n}} \right\|^{2}$$

- back-rotate not affecting length: X
- min_{Γ} $\sum ||(I \Gamma)(\text{some vector})||^2$: want many 0 within $(I \Gamma)$

Principal Component Analysis

The Optimal Γ

$$\min_{\mathbf{V}} \min_{\Gamma} \frac{1}{N} \sum_{n=1}^{N} \left\| \underbrace{\mathbf{V} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n}}_{\mathbf{x}_{n}} - \underbrace{\mathbf{V} \Gamma \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n}}_{\mathbf{W} \mathbf{W}^{\mathsf{T}} \mathbf{x}_{n}} \right\|^{2}$$

- back-rotate not affecting length: X
- min_{Γ} $\sum \|(I \Gamma)(\text{some vector})\|^2$: want many 0 within $(I \Gamma)$
- optimal diagonal Γ with rank $\leq \tilde{d}$:

d **diagonal components** other components

Principal Component Analysis

The Optimal Γ

$$\min_{\mathbf{V}} \min_{\Gamma} \frac{1}{N} \sum_{n=1}^{N} \left\| \underbrace{\mathbf{V} \mathbf{I} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n}}_{\mathbf{x}_{n}} - \underbrace{\mathbf{V} \Gamma \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n}}_{\mathbf{W} \mathbf{W}^{\mathsf{T}} \mathbf{x}_{n}} \right\|^{2}$$

- back-rotate not affecting length: X
- min_{Γ} $\sum \|(I \Gamma)(\text{some vector})\|^2$: want many 0 within $(I \Gamma)$
- optimal diagonal Γ with rank $\leq \tilde{d}$:

```
d diagonal components 1
other components 0
```

Principal Component Analysis

The Optimal Γ

$$\min_{\mathbf{V}} \min_{\Gamma} \frac{1}{N} \sum_{n=1}^{N} \left\| \underbrace{\mathbf{V} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n}}_{\mathbf{x}_{n}} - \underbrace{\mathbf{V} \Gamma \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n}}_{\mathbf{W} \mathbf{W}^{\mathsf{T}} \mathbf{x}_{n}} \right\|^{2}$$

- back-rotate not affecting length: X
- min_{Γ} $\sum \|(I \Gamma)(\text{some vector})\|^2$: want many 0 within $(I \Gamma)$
- optimal diagonal Γ with rank $\leq \tilde{d}$:

$$\left\{\begin{array}{c} \tilde{d} \text{ diagonal components 1} \\ \text{other components 0} \end{array}\right\} \implies \text{without loss of gen.} \left[\begin{array}{c} I_{\tilde{d}} & 0 \\ 0 & 0 \end{array}\right]$$

Principal Component Analysis

The Optimal Γ

$$\min_{\mathbf{V}} \min_{\Gamma} \frac{1}{N} \sum_{n=1}^{N} \left\| \underbrace{\mathbf{V} \mathbf{I} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n}}_{\mathbf{x}_{n}} - \underbrace{\mathbf{V} \Gamma \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n}}_{\mathbf{W} \mathbf{W}^{\mathsf{T}} \mathbf{x}_{n}} \right\|^{2}$$

- back-rotate not affecting length: X
- min_{Γ} $\sum \|(I \Gamma)(\text{some vector})\|^2$: want many 0 within $(I \Gamma)$
- optimal diagonal Γ with rank $\leq \tilde{d}$:

$$\left\{\begin{array}{c} \tilde{d} \text{ diagonal components 1} \\ \text{other components 0} \end{array}\right\} \implies \text{without loss of gen.} \left[\begin{array}{c} I_{\tilde{d}} & 0 \\ 0 & 0 \end{array}\right]$$

next:
$$\min_{\mathbf{V}} \sum_{n=1}^{N} \left\| \underbrace{\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d-\tilde{d}} \end{bmatrix}}_{\mathbf{I}-\text{optimal }\Gamma} \mathbf{V}^{T} \mathbf{x}_{n} \right\|^{2}$$

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

The Optimal V

$$\min_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d-\tilde{d}} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2} \equiv \max_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d-\tilde{d}} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2}$$

The Optimal V

$$\min_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} 0 & 0 \\ 0 & I_{d-\tilde{d}} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2} \equiv \max_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} I_{\tilde{d}} & 0 \\ 0 & 0 \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2}$$

The Optimal V

$$\min_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{I}_{d-\tilde{d}} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2} \equiv \max_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{I}_{\tilde{d}} & 0 \\ 0 & 0 \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2}$$

• $\tilde{d} = 1$: only first row \mathbf{v}^T of \mathbf{v}^T matters

The Optimal V

$$\min_{\mathbf{V}} \sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d-\tilde{d}} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2} \equiv \max_{\mathbf{V}} \sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{I}_{\tilde{d}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2}$$

The Optimal V

$$\min_{\mathbf{V}} \sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d-\tilde{d}} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2} \equiv \max_{\mathbf{V}} \sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{I}_{\tilde{d}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2}$$

• $\tilde{d} = 1$: only first row \mathbf{v}^T of \mathbf{V}^T matters $\max_{\mathbf{v}} \sum_{n=1}^{N} \mathbf{v}^T \mathbf{x}_n \mathbf{x}_n^T \mathbf{v}$ subject to $\mathbf{v}^T \mathbf{v} = 1$

Hsuan-Tien Lin (NTU CSIE)

The Optimal V

$$\min_{\mathbf{V}} \sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d-\tilde{d}} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2} \equiv \max_{\mathbf{V}} \sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{I}_{\tilde{d}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2}$$

• optimal **v** satisfies
$$\sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^T \mathbf{v} = \lambda \mathbf{v}$$

The Optimal V

$$\min_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d-\tilde{d}} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2} \equiv \max_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{I}_{\tilde{d}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2}$$

• $\tilde{d} = 1$: only first row \mathbf{v}^T of \mathbf{V}^T matters $\max_{\mathbf{v}} \sum_{n=1}^{N} \mathbf{v}^T \mathbf{x}_n \mathbf{x}_n^T \mathbf{v}$ subject to $\mathbf{v}^T \mathbf{v} = 1$

Hsuan-Tien Lin (NTU CSIE)

The Optimal V

$$\min_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d-\tilde{d}} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2} \equiv \max_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{I}_{\tilde{d}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2}$$

- optimal v satisfies Σ^N_{n=1} x_nx^T_nv = λv
 —using Lagrange multiplier λ, remember? :-)
- optimal **v**: eigenvector of $X^T X$

The Optimal V

$$\min_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d-\tilde{d}} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2} \equiv \max_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{I}_{\tilde{d}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2}$$

- optimal v satisfies Σ^N_{n=1} x_nx^T_nv = λv
 —using Lagrange multiplier λ, remember? :-)
- optimal v: 'topmost' eigenvector of X^TX

The Optimal V

$$\min_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d-\tilde{d}} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2} \equiv \max_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{I}_{\tilde{d}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2}$$

- optimal **v** satisfies $\sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^T \mathbf{v} = \lambda \mathbf{v}$ —using Lagrange multiplier λ , remember? :-)
- optimal **v**: 'topmost' eigenvector of $X^T X$
- general \tilde{d} : $\{\mathbf{v}_j\}_{j=1}^{\tilde{d}}$ 'topmost' eigenvector**S** of $X^T X$

The Optimal V

$$\min_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d-\tilde{d}} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2} \equiv \max_{\mathbf{V}}\sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{I}_{\tilde{d}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2}$$

- optimal **v** satisfies $\sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^T \mathbf{v} = \lambda \mathbf{v}$ —using Lagrange multiplier λ , remember? :-)
- optimal **v**: 'topmost' eigenvector of $X^T X$
- general *α*: {**v**_j}^{*δ*}_{j=1} 'topmost' eigenvectorS of X^TX
 —optimal {**w**_j} = {**v**_j with [[γ_j = 1]]} = top eigenvectors

The Optimal V

$$\min_{\mathbf{V}} \sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d-\tilde{d}} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2} \equiv \max_{\mathbf{V}} \sum_{n=1}^{N} \left\| \begin{bmatrix} \mathbf{I}_{\tilde{d}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2}$$

• $\tilde{d} = 1$: only first row \mathbf{v}^T of \mathbf{V}^T matters $\max_{\mathbf{v}} \sum_{n=1}^{N} \mathbf{v}^T \mathbf{x}_n \mathbf{x}_n^T \mathbf{v}$ subject to $\mathbf{v}^T \mathbf{v} = 1$

- optimal v satisfies $\sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^T \mathbf{v} = \lambda \mathbf{v}$ —using Lagrange multiplier λ , remember? :-)
- optimal v: 'topmost' eigenvector of X^TX

general *d*̃: {v_j}^{*d*}_{j=1} 'topmost' eigenvectorS of X^TX
 —optimal {w_j} = {v_j with [[γ_j = 1]]} = top eigenvectors

linear autoencoder: projecting to orthogonal patterns **w**_j that 'matches' {**x**_n} most

Principal Component Analysis

Linear Autoencoder

2 calculate \tilde{d} top eigenvectors $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{\tilde{d}}$ of $X^T X$

 linear autoencoder: maximize ∑(maginitude after projection)²

Principal Component Analysis

Linear Autoencoder

- 2 calculate *d* top eigenvectors **w**₁, **w**₂,..., **w**_{*d*} of X^TX
 3 return feature transform **Φ**(**x**) = W(**x**)
 - linear autoencoder: maximize ∑(maginitude after projection)²

Principal Component Analysis

Linear Autoencoder

- 2 calculate \$\tilde{d}\$ top eigenvectors \$\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_{\tilde{d}}\$ of \$X^T X\$
 3 return feature transform \$\Phi(\mathbf{x}) = W(\mathbf{x})\$
 - linear autoencoder: maximize ∑(maginitude after projection)²
 - principal component analysis (PCA) from statistics: maximize ∑(variance after projection)

Principal Component Analysis

Principal Component Analysis

Linear Autoencoder or PCA

- 1 let $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$, and let $\mathbf{x}_n \leftarrow \mathbf{x}_n \bar{\mathbf{x}}$
- **2** calculate \tilde{d} top eigenvectors $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{\tilde{d}}$ of $X^T X$
- **3** return feature transform $\mathbf{\Phi}(\mathbf{x}) = W(\mathbf{x})$
 - linear autoencoder: maximize ∑(maginitude after projection)²
 - principal component analysis (PCA) from statistics: maximize ∑(variance after projection)

Principal Component Analysis

Principal Component Analysis

Linear Autoencoder or PCA

- 1 let $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$, and let $\mathbf{x}_n \leftarrow \mathbf{x}_n \bar{\mathbf{x}}$
- **2** calculate \tilde{d} top eigenvectors $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{\tilde{d}}$ of $X^T X$
- **3** return feature transform $\Phi(\mathbf{x}) = W(\mathbf{x} \overline{\mathbf{x}})$
 - linear autoencoder: maximize ∑(maginitude after projection)²
 - principal component analysis (PCA) from statistics: maximize ∑(variance after projection)

Principal Component Analysis

Principal Component Analysis

Linear Autoencoder or PCA

- 1 let $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$, and let $\mathbf{x}_n \leftarrow \mathbf{x}_n \bar{\mathbf{x}}$
- **2** calculate \tilde{d} top eigenvectors $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{\tilde{d}}$ of $X^T X$
- **3** return feature transform $\Phi(\mathbf{x}) = W(\mathbf{x} \overline{\mathbf{x}})$
 - linear autoencoder: maximize ∑(maginitude after projection)²
 - principal component analysis (PCA) from statistics: maximize ∑(variance after projection)
 - both useful for linear dimension reduction

though PCA more popular

Principal Component Analysis

Principal Component Analysis

Linear Autoencoder or PCA

- 1 let $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$, and let $\mathbf{x}_n \leftarrow \mathbf{x}_n \bar{\mathbf{x}}$
- **2** calculate \tilde{d} top eigenvectors $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{\tilde{d}}$ of $X^T X$
- **3** return feature transform $\Phi(\mathbf{x}) = W(\mathbf{x} \overline{\mathbf{x}})$
 - linear autoencoder: maximize ∑(maginitude after projection)²
 - principal component analysis (PCA) from statistics: maximize ∑(variance after projection)
 - both useful for linear dimension reduction

though PCA more popular

linear dimension reduction: useful for data processing

Fun Time

When solving the optimization problem

$$\max_{\mathbf{v}} \sum_{n=1}^{N} \mathbf{v}^{\mathsf{T}} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathsf{T}} \mathbf{v} \text{ subject to } \mathbf{v}^{\mathsf{T}} \mathbf{v} = \mathbf{1},$$

we know that the optimal \mathbf{v} is the 'topmost' eigenvector that corresponds to the 'topmost' eigenvalue λ of $X^T X$. Then, what is the optimal objective value of the optimization problem?

Fun Time

When solving the optimization problem

$$\max_{\mathbf{v}} \sum_{n=1}^{N} \mathbf{v}^{\mathsf{T}} \mathbf{x}_n \mathbf{x}_n^{\mathsf{T}} \mathbf{v}$$
 subject to $\mathbf{v}^{\mathsf{T}} \mathbf{v} = \mathbf{1}$,

we know that the optimal **v** is the 'topmost' eigenvector that corresponds to the 'topmost' eigenvalue λ of $X^T X$. Then, what is the optimal objective value of the optimization problem?

Reference Answer: (1)

The objective value of the optimization problem is simply $\mathbf{v}^T X^T X \mathbf{v}$, which is $\lambda \mathbf{v}^T \mathbf{v}$ and you know what $\mathbf{v}^T \mathbf{v}$ must be.

Hsuan-Tien Lin (NTU CSIE)
Summary

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

Lecture 13: Deep Learning

- Deep Neural Network
- difficult hierarchical feature extraction problem
 - Autoencoder
 - unsupervised NNet learning of representation
 - Denoising Autoencoder
 - using noise as hints for regularization
 - Principal Component Analysis

linear autoencoder variant for data processing

• next: extracting 'prototype' instead of pattern