
Machine Learning Techniques
(機器學習技法)

Lecture 13: Deep Learning

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering

National Taiwan University
(國立台灣大學資訊工程系)

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 0/24

htlin@csie.ntu.edu.tw

Deep Learning

Roadmap

1 Embedding Numerous Features: Kernel Models
2 Combining Predictive Features: Aggregation Models
3 Distilling Implicit Features: Extraction Models

Lecture 12: Neural Network
automatic pattern feature extraction from layers of

neurons with backprop for GD/SGD

Lecture 13: Deep Learning
Deep Neural Network
Autoencoder
Denoising Autoencoder
Principal Component Analysis

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 1/24

Deep Learning Deep Neural Network

Physical Interpretation of NNet Revisited

x0 = 1

x1

x2

...
xd

+1

tanh

tanh

w (1)
ij w (2)

jk w (3)
kq

+1

tanh

tanh

tanhs(2)
3 x (2)

3

• each layer: pattern feature extracted from data, remember? :-)

• how many neurons? how many layers?

—more generally, what structure?

• subjectively, your design!
• objectively, validation, maybe?

structural decisions:
key issue for applying NNet

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 2/24

Deep Learning Deep Neural Network

Physical Interpretation of NNet Revisited

x0 = 1

x1

x2

...
xd

+1

tanh

tanh

w (1)
ij w (2)

jk w (3)
kq

+1

tanh

tanh

tanhs(2)
3 x (2)

3

• each layer: pattern feature extracted from data, remember? :-)
• how many neurons? how many layers?

—more generally, what structure?

• subjectively, your design!
• objectively, validation, maybe?

structural decisions:
key issue for applying NNet

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 2/24

Deep Learning Deep Neural Network

Physical Interpretation of NNet Revisited

x0 = 1

x1

x2

...
xd

+1

tanh

tanh

w (1)
ij w (2)

jk w (3)
kq

+1

tanh

tanh

tanhs(2)
3 x (2)

3

• each layer: pattern feature extracted from data, remember? :-)
• how many neurons? how many layers?

—more generally, what structure?

• subjectively, your design!
• objectively, validation, maybe?

structural decisions:
key issue for applying NNet

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 2/24

Deep Learning Deep Neural Network

Physical Interpretation of NNet Revisited

x0 = 1

x1

x2

...
xd

+1

tanh

tanh

w (1)
ij w (2)

jk w (3)
kq

+1

tanh

tanh

tanhs(2)
3 x (2)

3

• each layer: pattern feature extracted from data, remember? :-)
• how many neurons? how many layers?

—more generally, what structure?
• subjectively, your design!

• objectively, validation, maybe?

structural decisions:
key issue for applying NNet

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 2/24

Deep Learning Deep Neural Network

Physical Interpretation of NNet Revisited

x0 = 1

x1

x2

...
xd

+1

tanh

tanh

w (1)
ij w (2)

jk w (3)
kq

+1

tanh

tanh

tanhs(2)
3 x (2)

3

• each layer: pattern feature extracted from data, remember? :-)
• how many neurons? how many layers?

—more generally, what structure?
• subjectively, your design!
• objectively, validation, maybe?

structural decisions:
key issue for applying NNet

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 2/24

Deep Learning Deep Neural Network

Physical Interpretation of NNet Revisited

x0 = 1

x1

x2

...
xd

+1

tanh

tanh

w (1)
ij w (2)

jk w (3)
kq

+1

tanh

tanh

tanhs(2)
3 x (2)

3

• each layer: pattern feature extracted from data, remember? :-)
• how many neurons? how many layers?

—more generally, what structure?
• subjectively, your design!
• objectively, validation, maybe?

structural decisions:
key issue for applying NNet

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 2/24

Deep Learning Deep Neural Network

Shallow versus Deep Neural Networks
shallow: few (hidden) layers; deep: many layers

Shallow NNet

• more efficient to train (©)
• simpler structural

decisions (©)
• theoretically powerful

enough (©)

Deep NNet

• challenging to train (×)
• sophisticated structural

decisions (×)
• ‘arbitrarily’ powerful (©)
• more ‘meaningful’? (see

next slide)

deep NNet (deep learning)
gaining attention in recent years

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 3/24

Deep Learning Deep Neural Network

Shallow versus Deep Neural Networks
shallow: few (hidden) layers; deep: many layers

Shallow NNet
• more efficient to train (©)

• simpler structural
decisions (©)

• theoretically powerful
enough (©)

Deep NNet

• challenging to train (×)
• sophisticated structural

decisions (×)
• ‘arbitrarily’ powerful (©)
• more ‘meaningful’? (see

next slide)

deep NNet (deep learning)
gaining attention in recent years

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 3/24

Deep Learning Deep Neural Network

Shallow versus Deep Neural Networks
shallow: few (hidden) layers; deep: many layers

Shallow NNet
• more efficient to train (©)
• simpler structural

decisions (©)

• theoretically powerful
enough (©)

Deep NNet

• challenging to train (×)
• sophisticated structural

decisions (×)
• ‘arbitrarily’ powerful (©)
• more ‘meaningful’? (see

next slide)

deep NNet (deep learning)
gaining attention in recent years

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 3/24

Deep Learning Deep Neural Network

Shallow versus Deep Neural Networks
shallow: few (hidden) layers; deep: many layers

Shallow NNet
• more efficient to train (©)
• simpler structural

decisions (©)
• theoretically powerful

enough (©)

Deep NNet

• challenging to train (×)
• sophisticated structural

decisions (×)
• ‘arbitrarily’ powerful (©)
• more ‘meaningful’? (see

next slide)

deep NNet (deep learning)
gaining attention in recent years

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 3/24

Deep Learning Deep Neural Network

Shallow versus Deep Neural Networks
shallow: few (hidden) layers; deep: many layers

Shallow NNet
• more efficient to train (©)
• simpler structural

decisions (©)
• theoretically powerful

enough (©)

Deep NNet

• challenging to train (×)
• sophisticated structural

decisions (×)
• ‘arbitrarily’ powerful (©)
• more ‘meaningful’? (see

next slide)

deep NNet (deep learning)
gaining attention in recent years

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 3/24

Deep Learning Deep Neural Network

Shallow versus Deep Neural Networks
shallow: few (hidden) layers; deep: many layers

Shallow NNet
• more efficient to train (©)
• simpler structural

decisions (©)
• theoretically powerful

enough (©)

Deep NNet
• challenging to train (×)

• sophisticated structural
decisions (×)

• ‘arbitrarily’ powerful (©)
• more ‘meaningful’? (see

next slide)

deep NNet (deep learning)
gaining attention in recent years

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 3/24

Deep Learning Deep Neural Network

Shallow versus Deep Neural Networks
shallow: few (hidden) layers; deep: many layers

Shallow NNet
• more efficient to train (©)
• simpler structural

decisions (©)
• theoretically powerful

enough (©)

Deep NNet
• challenging to train (×)
• sophisticated structural

decisions (×)

• ‘arbitrarily’ powerful (©)
• more ‘meaningful’? (see

next slide)

deep NNet (deep learning)
gaining attention in recent years

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 3/24

Deep Learning Deep Neural Network

Shallow versus Deep Neural Networks
shallow: few (hidden) layers; deep: many layers

Shallow NNet
• more efficient to train (©)
• simpler structural

decisions (©)
• theoretically powerful

enough (©)

Deep NNet
• challenging to train (×)
• sophisticated structural

decisions (×)
• ‘arbitrarily’ powerful (©)

• more ‘meaningful’? (see
next slide)

deep NNet (deep learning)
gaining attention in recent years

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 3/24

Deep Learning Deep Neural Network

Shallow versus Deep Neural Networks
shallow: few (hidden) layers; deep: many layers

Shallow NNet
• more efficient to train (©)
• simpler structural

decisions (©)
• theoretically powerful

enough (©)

Deep NNet
• challenging to train (×)
• sophisticated structural

decisions (×)
• ‘arbitrarily’ powerful (©)
• more ‘meaningful’? (see

next slide)

deep NNet (deep learning)
gaining attention in recent years

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 3/24

Deep Learning Deep Neural Network

Shallow versus Deep Neural Networks
shallow: few (hidden) layers; deep: many layers

Shallow NNet
• more efficient to train (©)
• simpler structural

decisions (©)
• theoretically powerful

enough (©)

Deep NNet
• challenging to train (×)
• sophisticated structural

decisions (×)
• ‘arbitrarily’ powerful (©)
• more ‘meaningful’? (see

next slide)

deep NNet (deep learning)
gaining attention in recent years

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 3/24

Deep Learning Deep Neural Network

Meaningfulness of Deep Learning

,

is it a ‘1’? ✲ ✛ is it a ‘5’?

✻

z1 z5

φ1
φ2 φ3 φ4 φ5 φ6

positive weight

negative weight

• ‘less burden’ for each layer: simple to complex features
• natural for difficult learning task with raw features, like vision

deep NNet: currently popular in
vision/speech/. . .

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 4/24

Deep Learning Deep Neural Network

Meaningfulness of Deep Learning

,

is it a ‘1’? ✲ ✛ is it a ‘5’?

✻

z1 z5

φ1
φ2 φ3 φ4 φ5 φ6

positive weight

negative weight

• ‘less burden’ for each layer: simple to complex features

• natural for difficult learning task with raw features, like vision

deep NNet: currently popular in
vision/speech/. . .

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 4/24

Deep Learning Deep Neural Network

Meaningfulness of Deep Learning

,

is it a ‘1’? ✲ ✛ is it a ‘5’?

✻

z1 z5

φ1
φ2 φ3 φ4 φ5 φ6

positive weight

negative weight

• ‘less burden’ for each layer: simple to complex features
• natural for difficult learning task with raw features, like vision

deep NNet: currently popular in
vision/speech/. . .

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 4/24

Deep Learning Deep Neural Network

Meaningfulness of Deep Learning

,

is it a ‘1’? ✲ ✛ is it a ‘5’?

✻

z1 z5

φ1
φ2 φ3 φ4 φ5 φ6

positive weight

negative weight

• ‘less burden’ for each layer: simple to complex features
• natural for difficult learning task with raw features, like vision

deep NNet: currently popular in
vision/speech/. . .

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 4/24

Deep Learning Deep Neural Network

Challenges and Key Techniques for Deep Learning
• difficult structural decisions:

• subjective with domain knowledge: like convolutional NNet for
images

• high model complexity:

• no big worries if big enough data
• regularization towards noise-tolerant: like

• dropout (tolerant when network corrupted)
• denoising (tolerant when input corrupted)

• hard optimization problem:

• careful initialization to avoid bad local minimum:

called pre-training

• huge computational complexity

(worsen with big data)

:

• novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and
initialization are key techniques

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/24

Deep Learning Deep Neural Network

Challenges and Key Techniques for Deep Learning
• difficult structural decisions:

• subjective with domain knowledge: like convolutional NNet for
images

• high model complexity:

• no big worries if big enough data
• regularization towards noise-tolerant: like

• dropout (tolerant when network corrupted)
• denoising (tolerant when input corrupted)

• hard optimization problem:

• careful initialization to avoid bad local minimum:

called pre-training

• huge computational complexity

(worsen with big data)

:

• novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and
initialization are key techniques

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/24

Deep Learning Deep Neural Network

Challenges and Key Techniques for Deep Learning
• difficult structural decisions:

• subjective with domain knowledge: like convolutional NNet for
images

• high model complexity:

• no big worries if big enough data
• regularization towards noise-tolerant: like

• dropout (tolerant when network corrupted)
• denoising (tolerant when input corrupted)

• hard optimization problem:

• careful initialization to avoid bad local minimum:

called pre-training

• huge computational complexity

(worsen with big data)

:

• novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and
initialization are key techniques

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/24

Deep Learning Deep Neural Network

Challenges and Key Techniques for Deep Learning
• difficult structural decisions:

• subjective with domain knowledge: like convolutional NNet for
images

• high model complexity:

• no big worries if big enough data
• regularization towards noise-tolerant: like

• dropout (tolerant when network corrupted)
• denoising (tolerant when input corrupted)

• hard optimization problem:

• careful initialization to avoid bad local minimum:

called pre-training

• huge computational complexity

(worsen with big data)

:

• novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and
initialization are key techniques

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/24

Deep Learning Deep Neural Network

Challenges and Key Techniques for Deep Learning
• difficult structural decisions:

• subjective with domain knowledge: like convolutional NNet for
images

• high model complexity:

• no big worries if big enough data
• regularization towards noise-tolerant: like

• dropout (tolerant when network corrupted)
• denoising (tolerant when input corrupted)

• hard optimization problem:

• careful initialization to avoid bad local minimum:

called pre-training

• huge computational complexity

(worsen with big data)

:

• novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and
initialization are key techniques

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/24

Deep Learning Deep Neural Network

Challenges and Key Techniques for Deep Learning
• difficult structural decisions:

• subjective with domain knowledge: like convolutional NNet for
images

• high model complexity:
• no big worries if big enough data

• regularization towards noise-tolerant: like

• dropout (tolerant when network corrupted)
• denoising (tolerant when input corrupted)

• hard optimization problem:

• careful initialization to avoid bad local minimum:

called pre-training

• huge computational complexity (worsen with big data):

• novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and
initialization are key techniques

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/24

Deep Learning Deep Neural Network

Challenges and Key Techniques for Deep Learning
• difficult structural decisions:

• subjective with domain knowledge: like convolutional NNet for
images

• high model complexity:
• no big worries if big enough data
• regularization towards noise-tolerant: like

• dropout (tolerant when network corrupted)
• denoising (tolerant when input corrupted)

• hard optimization problem:

• careful initialization to avoid bad local minimum:

called pre-training

• huge computational complexity (worsen with big data):

• novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and
initialization are key techniques

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/24

Deep Learning Deep Neural Network

Challenges and Key Techniques for Deep Learning
• difficult structural decisions:

• subjective with domain knowledge: like convolutional NNet for
images

• high model complexity:
• no big worries if big enough data
• regularization towards noise-tolerant: like

• dropout (tolerant when network corrupted)

• denoising (tolerant when input corrupted)

• hard optimization problem:

• careful initialization to avoid bad local minimum:

called pre-training

• huge computational complexity (worsen with big data):

• novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and
initialization are key techniques

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/24

Deep Learning Deep Neural Network

Challenges and Key Techniques for Deep Learning
• difficult structural decisions:

• subjective with domain knowledge: like convolutional NNet for
images

• high model complexity:
• no big worries if big enough data
• regularization towards noise-tolerant: like

• dropout (tolerant when network corrupted)
• denoising (tolerant when input corrupted)

• hard optimization problem:

• careful initialization to avoid bad local minimum:

called pre-training

• huge computational complexity (worsen with big data):

• novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and
initialization are key techniques

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/24

Deep Learning Deep Neural Network

Challenges and Key Techniques for Deep Learning
• difficult structural decisions:

• subjective with domain knowledge: like convolutional NNet for
images

• high model complexity:
• no big worries if big enough data
• regularization towards noise-tolerant: like

• dropout (tolerant when network corrupted)
• denoising (tolerant when input corrupted)

• hard optimization problem:
• careful initialization to avoid bad local minimum:

called pre-training

• huge computational complexity (worsen with big data):

• novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and
initialization are key techniques

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/24

Deep Learning Deep Neural Network

Challenges and Key Techniques for Deep Learning
• difficult structural decisions:

• subjective with domain knowledge: like convolutional NNet for
images

• high model complexity:
• no big worries if big enough data
• regularization towards noise-tolerant: like

• dropout (tolerant when network corrupted)
• denoising (tolerant when input corrupted)

• hard optimization problem:
• careful initialization to avoid bad local minimum:

called pre-training
• huge computational complexity (worsen with big data):

• novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and
initialization are key techniques

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/24

Deep Learning Deep Neural Network

Challenges and Key Techniques for Deep Learning
• difficult structural decisions:

• subjective with domain knowledge: like convolutional NNet for
images

• high model complexity:
• no big worries if big enough data
• regularization towards noise-tolerant: like

• dropout (tolerant when network corrupted)
• denoising (tolerant when input corrupted)

• hard optimization problem:
• careful initialization to avoid bad local minimum:

called pre-training
• huge computational complexity (worsen with big data):

• novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and
initialization are key techniques

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/24

Deep Learning Deep Neural Network

Challenges and Key Techniques for Deep Learning
• difficult structural decisions:

• subjective with domain knowledge: like convolutional NNet for
images

• high model complexity:
• no big worries if big enough data
• regularization towards noise-tolerant: like

• dropout (tolerant when network corrupted)
• denoising (tolerant when input corrupted)

• hard optimization problem:
• careful initialization to avoid bad local minimum:

called pre-training
• huge computational complexity (worsen with big data):

• novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and
initialization are key techniques

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/24

Deep Learning Deep Neural Network

A Two-Step Deep Learning Framework
Simple Deep Learning

1 for ` = 1, . . . ,L, pre-train
{

w (`)
ij

}
assuming w (1)

∗ , . . . w (`−1)
∗ fixed

(a) (b) (c) (d)

2 train with backprop on pre-trained NNet to fine-tune all
{

w (`)
ij

}

will focus on simplest pre-training technique
along with regularization

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 6/24

Deep Learning Deep Neural Network

A Two-Step Deep Learning Framework
Simple Deep Learning

1 for ` = 1, . . . ,L, pre-train
{

w (`)
ij

}
assuming w (1)

∗ , . . . w (`−1)
∗ fixed

(a) (b) (c) (d)

2 train with backprop on pre-trained NNet to fine-tune all
{

w (`)
ij

}

will focus on simplest pre-training technique
along with regularization

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 6/24

Deep Learning Deep Neural Network

A Two-Step Deep Learning Framework
Simple Deep Learning

1 for ` = 1, . . . ,L, pre-train
{

w (`)
ij

}
assuming w (1)

∗ , . . . w (`−1)
∗ fixed

(a) (b) (c) (d)

2 train with backprop on pre-trained NNet to fine-tune all
{

w (`)
ij

}

will focus on simplest pre-training technique
along with regularization

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 6/24

Deep Learning Deep Neural Network

Fun Time

For a deep NNet for written character recognition from raw pixels,
which type of features are more likely extracted after the first hidden
layer?

1 pixels
2 strokes
3 parts
4 digits

Reference Answer: 2

Simple strokes are likely the ‘next-level’
features that can be extracted from raw pixels.

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 7/24

Deep Learning Deep Neural Network

Fun Time

For a deep NNet for written character recognition from raw pixels,
which type of features are more likely extracted after the first hidden
layer?

1 pixels
2 strokes
3 parts
4 digits

Reference Answer: 2

Simple strokes are likely the ‘next-level’
features that can be extracted from raw pixels.

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 7/24

Deep Learning Autoencoder

Information-Preserving Encoding

• weights: feature transform, i.e. encoding

• good weights: information-preserving encoding
—next layer same info. with different representation

• information-preserving:
decode accurately after encoding

,

is it a ‘1’? ✲ ✛ is it a ‘5’?

✻

z1 z5

φ1
φ2 φ3 φ4 φ5 φ6

positive weight

negative weight

(a) (b) (c) (d)

idea: pre-train weights towards
information-preserving encoding

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 8/24

Deep Learning Autoencoder

Information-Preserving Encoding

• weights: feature transform, i.e. encoding
• good weights: information-preserving encoding

—next layer same info. with different representation

• information-preserving:
decode accurately after encoding

,

is it a ‘1’? ✲ ✛ is it a ‘5’?

✻

z1 z5

φ1
φ2 φ3 φ4 φ5 φ6

positive weight

negative weight

(a) (b) (c) (d)

idea: pre-train weights towards
information-preserving encoding

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 8/24

Deep Learning Autoencoder

Information-Preserving Encoding

• weights: feature transform, i.e. encoding
• good weights: information-preserving encoding

—next layer same info. with different representation
• information-preserving:

decode accurately after encoding

,

is it a ‘1’? ✲ ✛ is it a ‘5’?

✻

z1 z5

φ1
φ2 φ3 φ4 φ5 φ6

positive weight

negative weight

(a) (b) (c) (d)

idea: pre-train weights towards
information-preserving encoding

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 8/24

Deep Learning Autoencoder

Information-Preserving Encoding

• weights: feature transform, i.e. encoding
• good weights: information-preserving encoding

—next layer same info. with different representation
• information-preserving:

decode accurately after encoding

,

is it a ‘1’? ✲ ✛ is it a ‘5’?

✻

z1 z5

φ1
φ2 φ3 φ4 φ5 φ6

positive weight

negative weight

(a) (b) (c) (d)

idea: pre-train weights towards
information-preserving encoding

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 8/24

Deep Learning Autoencoder

Information-Preserving Neural Network
x0 = 1

x1

x2

x3

...

xd

+1

tanh

tanh

tanh

≈ x1

≈ x2

≈ x3

...

≈ xd

w (1)
ij w (2)

ji

• autoencoder:

d—d̃—d NNet with goal gi(x) ≈ xi

—learning to approximate identity function

• w (1)
ij : encoding weights; w (2)

ji : decoding weights

why approximating identity function?

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 9/24

Deep Learning Autoencoder

Information-Preserving Neural Network
x0 = 1

x1

x2

x3

...

xd

+1

tanh

tanh

tanh

≈ x1

≈ x2

≈ x3

...

≈ xd

w (1)
ij w (2)

ji

• autoencoder: d—d̃—d NNet with goal gi(x) ≈ xi

—learning to approximate identity function

• w (1)
ij : encoding weights; w (2)

ji : decoding weights

why approximating identity function?

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 9/24

Deep Learning Autoencoder

Information-Preserving Neural Network
x0 = 1

x1

x2

x3

...

xd

+1

tanh

tanh

tanh

≈ x1

≈ x2

≈ x3

...

≈ xd

w (1)
ij w (2)

ji

• autoencoder: d—d̃—d NNet with goal gi(x) ≈ xi
—learning to approximate identity function

• w (1)
ij : encoding weights; w (2)

ji : decoding weights

why approximating identity function?

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 9/24

Deep Learning Autoencoder

Information-Preserving Neural Network
x0 = 1

x1

x2

x3

...

xd

+1

tanh

tanh

tanh

≈ x1

≈ x2

≈ x3

...

≈ xd

w (1)
ij w (2)

ji

• autoencoder: d—d̃—d NNet with goal gi(x) ≈ xi
—learning to approximate identity function

• w (1)
ij : encoding weights; w (2)

ji : decoding weights

why approximating identity function?

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 9/24

Deep Learning Autoencoder

Information-Preserving Neural Network
x0 = 1

x1

x2

x3

...

xd

+1

tanh

tanh

tanh

≈ x1

≈ x2

≈ x3

...

≈ xd

w (1)
ij w (2)

ji

• autoencoder: d—d̃—d NNet with goal gi(x) ≈ xi
—learning to approximate identity function

• w (1)
ij : encoding weights; w (2)

ji : decoding weights

why approximating identity function?
Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 9/24

Deep Learning Autoencoder

Usefulness of Approximating Identity Function

if g(x) ≈ x using some hidden structures on the observed data xn

• for supervised learning:

• hidden structure (essence) of x can be used as reasonable
transform Φ(x)

—learning ‘informative’ representation of data

• for unsupervised learning:

• density estimation: larger (structure match) when g(x) ≈ x
• outlier detection: those x where g(x) 6≈ x

—learning ‘typical’ representation of data

autoencoder:
representation-learning through
approximating identity function

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 10/24

Deep Learning Autoencoder

Usefulness of Approximating Identity Function

if g(x) ≈ x using some hidden structures on the observed data xn

• for supervised learning:
• hidden structure (essence) of x can be used as reasonable

transform Φ(x)

—learning ‘informative’ representation of data

• for unsupervised learning:

• density estimation: larger (structure match) when g(x) ≈ x
• outlier detection: those x where g(x) 6≈ x

—learning ‘typical’ representation of data

autoencoder:
representation-learning through
approximating identity function

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 10/24

Deep Learning Autoencoder

Usefulness of Approximating Identity Function

if g(x) ≈ x using some hidden structures on the observed data xn

• for supervised learning:
• hidden structure (essence) of x can be used as reasonable

transform Φ(x)

—learning ‘informative’ representation of data

• for unsupervised learning:

• density estimation: larger (structure match) when g(x) ≈ x
• outlier detection: those x where g(x) 6≈ x

—learning ‘typical’ representation of data

autoencoder:
representation-learning through
approximating identity function

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 10/24

Deep Learning Autoencoder

Usefulness of Approximating Identity Function

if g(x) ≈ x using some hidden structures on the observed data xn

• for supervised learning:
• hidden structure (essence) of x can be used as reasonable

transform Φ(x)

—learning ‘informative’ representation of data
• for unsupervised learning:

• density estimation: larger (structure match) when g(x) ≈ x
• outlier detection: those x where g(x) 6≈ x

—learning ‘typical’ representation of data

autoencoder:
representation-learning through
approximating identity function

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 10/24

Deep Learning Autoencoder

Usefulness of Approximating Identity Function

if g(x) ≈ x using some hidden structures on the observed data xn

• for supervised learning:
• hidden structure (essence) of x can be used as reasonable

transform Φ(x)

—learning ‘informative’ representation of data
• for unsupervised learning:

• density estimation: larger (structure match) when g(x) ≈ x

• outlier detection: those x where g(x) 6≈ x
—learning ‘typical’ representation of data

autoencoder:
representation-learning through
approximating identity function

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 10/24

Deep Learning Autoencoder

Usefulness of Approximating Identity Function

if g(x) ≈ x using some hidden structures on the observed data xn

• for supervised learning:
• hidden structure (essence) of x can be used as reasonable

transform Φ(x)

—learning ‘informative’ representation of data
• for unsupervised learning:

• density estimation: larger (structure match) when g(x) ≈ x
• outlier detection: those x where g(x) 6≈ x

—learning ‘typical’ representation of data

autoencoder:
representation-learning through
approximating identity function

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 10/24

Deep Learning Autoencoder

Usefulness of Approximating Identity Function

if g(x) ≈ x using some hidden structures on the observed data xn

• for supervised learning:
• hidden structure (essence) of x can be used as reasonable

transform Φ(x)

—learning ‘informative’ representation of data
• for unsupervised learning:

• density estimation: larger (structure match) when g(x) ≈ x
• outlier detection: those x where g(x) 6≈ x

—learning ‘typical’ representation of data

autoencoder:
representation-learning through
approximating identity function

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 10/24

Deep Learning Autoencoder

Usefulness of Approximating Identity Function

if g(x) ≈ x using some hidden structures on the observed data xn

• for supervised learning:
• hidden structure (essence) of x can be used as reasonable

transform Φ(x)

—learning ‘informative’ representation of data
• for unsupervised learning:

• density estimation: larger (structure match) when g(x) ≈ x
• outlier detection: those x where g(x) 6≈ x

—learning ‘typical’ representation of data

autoencoder:
representation-learning through
approximating identity function

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 10/24

Deep Learning Autoencoder

Basic Autoencoder
basic autoencoder:

d—d̃—d NNet with error function
∑d

i=1(gi(x)− xi)
2

• backprop easily applies; shallow and easy to train
• usually d̃ < d : compressed representation
• data: {(x1,y1 = x1), (x2,y2 = x2), . . . , (xN ,yN = xN)}

—often categorized as unsupervised learning technique

• sometimes constrain w (1)
ij = w (2)

ji as regularization
—more sophisticated in calculating gradient

basic autoencoder in basic deep learning:{
w (1)

ij

}
taken as shallowly pre-trained weights

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 11/24

Deep Learning Autoencoder

Basic Autoencoder
basic autoencoder:

d—d̃—d NNet with error function
∑d

i=1(gi(x)− xi)
2

• backprop easily applies; shallow and easy to train

• usually d̃ < d : compressed representation
• data: {(x1,y1 = x1), (x2,y2 = x2), . . . , (xN ,yN = xN)}

—often categorized as unsupervised learning technique

• sometimes constrain w (1)
ij = w (2)

ji as regularization
—more sophisticated in calculating gradient

basic autoencoder in basic deep learning:{
w (1)

ij

}
taken as shallowly pre-trained weights

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 11/24

Deep Learning Autoencoder

Basic Autoencoder
basic autoencoder:

d—d̃—d NNet with error function
∑d

i=1(gi(x)− xi)
2

• backprop easily applies; shallow and easy to train
• usually d̃ < d : compressed representation

• data: {(x1,y1 = x1), (x2,y2 = x2), . . . , (xN ,yN = xN)}

—often categorized as unsupervised learning technique

• sometimes constrain w (1)
ij = w (2)

ji as regularization
—more sophisticated in calculating gradient

basic autoencoder in basic deep learning:{
w (1)

ij

}
taken as shallowly pre-trained weights

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 11/24

Deep Learning Autoencoder

Basic Autoencoder
basic autoencoder:

d—d̃—d NNet with error function
∑d

i=1(gi(x)− xi)
2

• backprop easily applies; shallow and easy to train
• usually d̃ < d : compressed representation
• data: {(x1,y1 = x1), (x2,y2 = x2), . . . , (xN ,yN = xN)}

—often categorized as unsupervised learning technique

• sometimes constrain w (1)
ij = w (2)

ji as regularization
—more sophisticated in calculating gradient

basic autoencoder in basic deep learning:{
w (1)

ij

}
taken as shallowly pre-trained weights

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 11/24

Deep Learning Autoencoder

Basic Autoencoder
basic autoencoder:

d—d̃—d NNet with error function
∑d

i=1(gi(x)− xi)
2

• backprop easily applies; shallow and easy to train
• usually d̃ < d : compressed representation
• data: {(x1,y1 = x1), (x2,y2 = x2), . . . , (xN ,yN = xN)}

—often categorized as unsupervised learning technique

• sometimes constrain w (1)
ij = w (2)

ji as regularization

—more sophisticated in calculating gradient

basic autoencoder in basic deep learning:{
w (1)

ij

}
taken as shallowly pre-trained weights

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 11/24

Deep Learning Autoencoder

Basic Autoencoder
basic autoencoder:

d—d̃—d NNet with error function
∑d

i=1(gi(x)− xi)
2

• backprop easily applies; shallow and easy to train
• usually d̃ < d : compressed representation
• data: {(x1,y1 = x1), (x2,y2 = x2), . . . , (xN ,yN = xN)}

—often categorized as unsupervised learning technique

• sometimes constrain w (1)
ij = w (2)

ji as regularization

—more sophisticated in calculating gradient

basic autoencoder in basic deep learning:{
w (1)

ij

}
taken as shallowly pre-trained weights

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 11/24

Deep Learning Autoencoder

Basic Autoencoder
basic autoencoder:

d—d̃—d NNet with error function
∑d

i=1(gi(x)− xi)
2

• backprop easily applies; shallow and easy to train
• usually d̃ < d : compressed representation
• data: {(x1,y1 = x1), (x2,y2 = x2), . . . , (xN ,yN = xN)}

—often categorized as unsupervised learning technique

• sometimes constrain w (1)
ij = w (2)

ji as regularization
—more sophisticated in calculating gradient

basic autoencoder in basic deep learning:{
w (1)

ij

}
taken as shallowly pre-trained weights

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 11/24

Deep Learning Autoencoder

Basic Autoencoder
basic autoencoder:

d—d̃—d NNet with error function
∑d

i=1(gi(x)− xi)
2

• backprop easily applies; shallow and easy to train
• usually d̃ < d : compressed representation
• data: {(x1,y1 = x1), (x2,y2 = x2), . . . , (xN ,yN = xN)}

—often categorized as unsupervised learning technique

• sometimes constrain w (1)
ij = w (2)

ji as regularization
—more sophisticated in calculating gradient

basic autoencoder in basic deep learning:{
w (1)

ij

}
taken as shallowly pre-trained weights

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 11/24

Deep Learning Autoencoder

Pre-Training with Autoencoders
Deep Learning

with Autoencoders

1 for ` = 1, . . . ,L, pre-train
{

w (`)
ij

}
assuming w (1)

∗ , . . . w (`−1)
∗ fixed

(a) (b) (c) (d)

by training basic autoencoder on
{

x(`−1)
n

}
with d̃ = d (`)

2 train with backprop on pre-trained NNet to fine-tune all
{

w (`)
ij

}

many successful pre-training techniques take
‘fancier’ autoencoders with different

architectures and regularization schemes

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 12/24

Deep Learning Autoencoder

Pre-Training with Autoencoders
Deep Learning with Autoencoders

1 for ` = 1, . . . ,L, pre-train
{

w (`)
ij

}
assuming w (1)

∗ , . . . w (`−1)
∗ fixed

(a) (b) (c) (d)

by training basic autoencoder on
{

x(`−1)
n

}
with d̃ = d (`)

2 train with backprop on pre-trained NNet to fine-tune all
{

w (`)
ij

}

many successful pre-training techniques take
‘fancier’ autoencoders with different

architectures and regularization schemes

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 12/24

Deep Learning Autoencoder

Pre-Training with Autoencoders
Deep Learning with Autoencoders

1 for ` = 1, . . . ,L, pre-train
{

w (`)
ij

}
assuming w (1)

∗ , . . . w (`−1)
∗ fixed

(a) (b) (c) (d)

by training basic autoencoder on
{

x(`−1)
n

}
with d̃ = d (`)

2 train with backprop on pre-trained NNet to fine-tune all
{

w (`)
ij

}
many successful pre-training techniques take

‘fancier’ autoencoders with different
architectures and regularization schemes

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 12/24

Deep Learning Autoencoder

Fun Time

Suppose training a d-d̃-d autoencoder with backprop takes
approximately c · d · d̃ seconds. Then, what is the total number of
seconds needed for pre-training a d-d (1)-d (2)-d (3)-1 deep NNet?

1 c
(
d + d (1) + d (2) + d (3) + 1

)
2 c

(
d · d (1) · d (2) · d (3) · 1

)
3 c

(
dd (1) + d (1)d (2) + d (2)d (3) + d (3)

)
4 c

(
dd (1) · d (1)d (2) · d (2)d (3) · d (3)

)

Reference Answer: 3

Each c · d (`−1) · d (`) represents the time for
pre-training with one autoencoder to determine
one layer of the weights.

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 13/24

Deep Learning Autoencoder

Fun Time

Suppose training a d-d̃-d autoencoder with backprop takes
approximately c · d · d̃ seconds. Then, what is the total number of
seconds needed for pre-training a d-d (1)-d (2)-d (3)-1 deep NNet?

1 c
(
d + d (1) + d (2) + d (3) + 1

)
2 c

(
d · d (1) · d (2) · d (3) · 1

)
3 c

(
dd (1) + d (1)d (2) + d (2)d (3) + d (3)

)
4 c

(
dd (1) · d (1)d (2) · d (2)d (3) · d (3)

)
Reference Answer: 3

Each c · d (`−1) · d (`) represents the time for
pre-training with one autoencoder to determine
one layer of the weights.

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 13/24

Deep Learning Denoising Autoencoder

Regularization in Deep Learning
x0 = 1

x1

x2

...
xd

+1

tanh

tanh

w (1)
ij w (2)

jk w (3)
kq

+1

tanh

tanh

tanhs(2)
3 x (2)

3

watch out for overfitting, remember? :-)

high model complexity: regularization needed

• structural decisions/constraints
• weight decay or weight elimination regularizers
• early stopping

next: another regularization technique

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 14/24

Deep Learning Denoising Autoencoder

Regularization in Deep Learning
x0 = 1

x1

x2

...
xd

+1

tanh

tanh

w (1)
ij w (2)

jk w (3)
kq

+1

tanh

tanh

tanhs(2)
3 x (2)

3

watch out for overfitting, remember? :-)

high model complexity:

regularization needed

• structural decisions/constraints
• weight decay or weight elimination regularizers
• early stopping

next: another regularization technique

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 14/24

Deep Learning Denoising Autoencoder

Regularization in Deep Learning
x0 = 1

x1

x2

...
xd

+1

tanh

tanh

w (1)
ij w (2)

jk w (3)
kq

+1

tanh

tanh

tanhs(2)
3 x (2)

3

watch out for overfitting, remember? :-)

high model complexity:

regularization needed

• structural decisions/constraints
• weight decay or weight elimination regularizers
• early stopping

next: another regularization technique

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 14/24

Deep Learning Denoising Autoencoder

Regularization in Deep Learning
x0 = 1

x1

x2

...
xd

+1

tanh

tanh

w (1)
ij w (2)

jk w (3)
kq

+1

tanh

tanh

tanhs(2)
3 x (2)

3

watch out for overfitting, remember? :-)

high model complexity: regularization needed

• structural decisions/constraints
• weight decay or weight elimination regularizers
• early stopping

next: another regularization technique

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 14/24

Deep Learning Denoising Autoencoder

Regularization in Deep Learning
x0 = 1

x1

x2

...
xd

+1

tanh

tanh

w (1)
ij w (2)

jk w (3)
kq

+1

tanh

tanh

tanhs(2)
3 x (2)

3

watch out for overfitting, remember? :-)

high model complexity: regularization needed
• structural decisions/constraints

• weight decay or weight elimination regularizers
• early stopping

next: another regularization technique

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 14/24

Deep Learning Denoising Autoencoder

Regularization in Deep Learning
x0 = 1

x1

x2

...
xd

+1

tanh

tanh

w (1)
ij w (2)

jk w (3)
kq

+1

tanh

tanh

tanhs(2)
3 x (2)

3

watch out for overfitting, remember? :-)

high model complexity: regularization needed
• structural decisions/constraints
• weight decay or weight elimination regularizers

• early stopping

next: another regularization technique

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 14/24

Deep Learning Denoising Autoencoder

Regularization in Deep Learning
x0 = 1

x1

x2

...
xd

+1

tanh

tanh

w (1)
ij w (2)

jk w (3)
kq

+1

tanh

tanh

tanhs(2)
3 x (2)

3

watch out for overfitting, remember? :-)

high model complexity: regularization needed
• structural decisions/constraints
• weight decay or weight elimination regularizers
• early stopping

next: another regularization technique

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 14/24

Deep Learning Denoising Autoencoder

Regularization in Deep Learning
x0 = 1

x1

x2

...
xd

+1

tanh

tanh

w (1)
ij w (2)

jk w (3)
kq

+1

tanh

tanh

tanhs(2)
3 x (2)

3

watch out for overfitting, remember? :-)

high model complexity: regularization needed
• structural decisions/constraints
• weight decay or weight elimination regularizers
• early stopping

next: another regularization technique

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 14/24

Deep Learning Denoising Autoencoder

Reasons of Overfitting Revisited

stochastic noise

Number of Data Points, N

N
oi

se
Le

ve
l,
σ
2

80 100 120
-0.2

-0.1

0

0.1

0.2

0

1

2

reasons of serious overfitting:
data size N ↓ overfit ↑

noise ↑ overfit ↑
excessive power ↑ overfit ↑

how to deal with noise?

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 15/24

Deep Learning Denoising Autoencoder

Reasons of Overfitting Revisited

stochastic noise

Number of Data Points, N

N
oi

se
Le

ve
l,
σ
2

80 100 120
-0.2

-0.1

0

0.1

0.2

0

1

2

reasons of serious overfitting:
data size N ↓ overfit ↑

noise ↑ overfit ↑
excessive power ↑ overfit ↑

how to deal with noise?

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 15/24

Deep Learning Denoising Autoencoder

Dealing with Noise
• direct possibility: data cleaning/pruning, remember? :-)

• a wild possibility: adding noise to data?

• idea: robust autoencoder should not only let g(x) ≈ x

but also allow g(x̃) ≈ x even when x̃ slightly different from x

• denoising autoencoder:

run basic autoencoder with data
{(x̃1,y1 = x1), (x̃2,y2 = x2), . . . , (x̃N ,yN = xN)},

where x̃n = xn+ artificial noise

—often used instead of basic autoencoder in deep learning
• useful for data/image processing: g(x̃) a denoised version of x̃
• effect: ‘constrain/regularize’ g towards noise-tolerant denoising

artificial noise/hint as regularization!
—practically also useful for other NNet/models

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 16/24

Deep Learning Denoising Autoencoder

Dealing with Noise
• direct possibility: data cleaning/pruning, remember? :-)
• a wild possibility: adding noise to data?

• idea: robust autoencoder should not only let g(x) ≈ x

but also allow g(x̃) ≈ x even when x̃ slightly different from x

• denoising autoencoder:

run basic autoencoder with data
{(x̃1,y1 = x1), (x̃2,y2 = x2), . . . , (x̃N ,yN = xN)},

where x̃n = xn+ artificial noise

—often used instead of basic autoencoder in deep learning
• useful for data/image processing: g(x̃) a denoised version of x̃
• effect: ‘constrain/regularize’ g towards noise-tolerant denoising

artificial noise/hint as regularization!
—practically also useful for other NNet/models

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 16/24

Deep Learning Denoising Autoencoder

Dealing with Noise
• direct possibility: data cleaning/pruning, remember? :-)
• a wild possibility: adding noise to data?

• idea: robust autoencoder should not only let g(x) ≈ x

but also allow g(x̃) ≈ x even when x̃ slightly different from x

• denoising autoencoder:

run basic autoencoder with data
{(x̃1,y1 = x1), (x̃2,y2 = x2), . . . , (x̃N ,yN = xN)},

where x̃n = xn+ artificial noise

—often used instead of basic autoencoder in deep learning
• useful for data/image processing: g(x̃) a denoised version of x̃
• effect: ‘constrain/regularize’ g towards noise-tolerant denoising

artificial noise/hint as regularization!
—practically also useful for other NNet/models

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 16/24

Deep Learning Denoising Autoencoder

Dealing with Noise
• direct possibility: data cleaning/pruning, remember? :-)
• a wild possibility: adding noise to data?

• idea: robust autoencoder should not only let g(x) ≈ x
but also allow g(x̃) ≈ x even when x̃ slightly different from x

• denoising autoencoder:

run basic autoencoder with data
{(x̃1,y1 = x1), (x̃2,y2 = x2), . . . , (x̃N ,yN = xN)},

where x̃n = xn+ artificial noise

—often used instead of basic autoencoder in deep learning
• useful for data/image processing: g(x̃) a denoised version of x̃
• effect: ‘constrain/regularize’ g towards noise-tolerant denoising

artificial noise/hint as regularization!
—practically also useful for other NNet/models

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 16/24

Deep Learning Denoising Autoencoder

Dealing with Noise
• direct possibility: data cleaning/pruning, remember? :-)
• a wild possibility: adding noise to data?

• idea: robust autoencoder should not only let g(x) ≈ x
but also allow g(x̃) ≈ x even when x̃ slightly different from x

• denoising autoencoder:

run basic autoencoder with data
{(x̃1,y1 = x1), (x̃2,y2 = x2), . . . , (x̃N ,yN = xN)},

where x̃n = xn+ artificial noise

—often used instead of basic autoencoder in deep learning

• useful for data/image processing: g(x̃) a denoised version of x̃
• effect: ‘constrain/regularize’ g towards noise-tolerant denoising

artificial noise/hint as regularization!
—practically also useful for other NNet/models

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 16/24

Deep Learning Denoising Autoencoder

Dealing with Noise
• direct possibility: data cleaning/pruning, remember? :-)
• a wild possibility: adding noise to data?

• idea: robust autoencoder should not only let g(x) ≈ x
but also allow g(x̃) ≈ x even when x̃ slightly different from x

• denoising autoencoder:

run basic autoencoder with data
{(x̃1,y1 = x1), (x̃2,y2 = x2), . . . , (x̃N ,yN = xN)},

where x̃n = xn+ artificial noise

—often used instead of basic autoencoder in deep learning

• useful for data/image processing: g(x̃) a denoised version of x̃
• effect: ‘constrain/regularize’ g towards noise-tolerant denoising

artificial noise/hint as regularization!
—practically also useful for other NNet/models

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 16/24

Deep Learning Denoising Autoencoder

Dealing with Noise
• direct possibility: data cleaning/pruning, remember? :-)
• a wild possibility: adding noise to data?

• idea: robust autoencoder should not only let g(x) ≈ x
but also allow g(x̃) ≈ x even when x̃ slightly different from x

• denoising autoencoder:

run basic autoencoder with data
{(x̃1,y1 = x1), (x̃2,y2 = x2), . . . , (x̃N ,yN = xN)},

where x̃n = xn+ artificial noise

—often used instead of basic autoencoder in deep learning

• useful for data/image processing: g(x̃) a denoised version of x̃
• effect: ‘constrain/regularize’ g towards noise-tolerant denoising

artificial noise/hint as regularization!
—practically also useful for other NNet/models

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 16/24

Deep Learning Denoising Autoencoder

Dealing with Noise
• direct possibility: data cleaning/pruning, remember? :-)
• a wild possibility: adding noise to data?

• idea: robust autoencoder should not only let g(x) ≈ x
but also allow g(x̃) ≈ x even when x̃ slightly different from x

• denoising autoencoder:

run basic autoencoder with data
{(x̃1,y1 = x1), (x̃2,y2 = x2), . . . , (x̃N ,yN = xN)},

where x̃n = xn+ artificial noise

—often used instead of basic autoencoder in deep learning
• useful for data/image processing: g(x̃) a denoised version of x̃

• effect: ‘constrain/regularize’ g towards noise-tolerant denoising

artificial noise/hint as regularization!
—practically also useful for other NNet/models

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 16/24

Deep Learning Denoising Autoencoder

Dealing with Noise
• direct possibility: data cleaning/pruning, remember? :-)
• a wild possibility: adding noise to data?

• idea: robust autoencoder should not only let g(x) ≈ x
but also allow g(x̃) ≈ x even when x̃ slightly different from x

• denoising autoencoder:

run basic autoencoder with data
{(x̃1,y1 = x1), (x̃2,y2 = x2), . . . , (x̃N ,yN = xN)},

where x̃n = xn+ artificial noise

—often used instead of basic autoencoder in deep learning
• useful for data/image processing: g(x̃) a denoised version of x̃
• effect: ‘constrain/regularize’ g towards noise-tolerant denoising

artificial noise/hint as regularization!
—practically also useful for other NNet/models

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 16/24

Deep Learning Denoising Autoencoder

Dealing with Noise
• direct possibility: data cleaning/pruning, remember? :-)
• a wild possibility: adding noise to data?

• idea: robust autoencoder should not only let g(x) ≈ x
but also allow g(x̃) ≈ x even when x̃ slightly different from x

• denoising autoencoder:

run basic autoencoder with data
{(x̃1,y1 = x1), (x̃2,y2 = x2), . . . , (x̃N ,yN = xN)},

where x̃n = xn+ artificial noise

—often used instead of basic autoencoder in deep learning
• useful for data/image processing: g(x̃) a denoised version of x̃
• effect: ‘constrain/regularize’ g towards noise-tolerant denoising

artificial noise/hint as regularization!
—practically also useful for other NNet/models

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 16/24

Deep Learning Denoising Autoencoder

Fun Time

Which of the following cannot be viewed as a regularization technique?

1 hint the model with artificially-generated noisy data
2 stop gradient descent early
3 add a weight elimination regularizer
4 all the above are regularization techniques

Reference Answer: 4

1 is our new friend for regularization, while
2 and 3 are old friends.

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 17/24

Deep Learning Denoising Autoencoder

Fun Time

Which of the following cannot be viewed as a regularization technique?

1 hint the model with artificially-generated noisy data
2 stop gradient descent early
3 add a weight elimination regularizer
4 all the above are regularization techniques

Reference Answer: 4

1 is our new friend for regularization, while
2 and 3 are old friends.

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 17/24

Deep Learning Principal Component Analysis

Linear Autoencoder Hypothesis
nonlinear autoencoder

sophisticated
linear autoencoder

simple

linear: more efficient? less overfitting?

linear first, remember? :-)

consider three special conditions:
• exclude x0: range of i same as range of k

• constrain w (1)
ij = w (2)

ji = wij : regularization

—denote W = [wij] of size d × d̃

• assume d̃ < d : ensure non-trivial solution

linear autoencoder hypothesis:
h(x) = WWT x

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 18/24

Deep Learning Principal Component Analysis

Linear Autoencoder Hypothesis
nonlinear autoencoder

sophisticated
linear autoencoder

simple

linear: more efficient? less overfitting? linear first, remember? :-)

consider three special conditions:
• exclude x0: range of i same as range of k

• constrain w (1)
ij = w (2)

ji = wij : regularization

—denote W = [wij] of size d × d̃

• assume d̃ < d : ensure non-trivial solution

linear autoencoder hypothesis:
h(x) = WWT x

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 18/24

Deep Learning Principal Component Analysis

Linear Autoencoder Hypothesis
nonlinear autoencoder

sophisticated
linear autoencoder

simple

linear: more efficient? less overfitting? linear first, remember? :-)

linear hypothesis for k -th component hk (x) =
d̃∑

j=0

w (2)
jk �

��XXXtanh

(
d∑

i=0

w (1)
ij xi

)
consider three special conditions:
• exclude x0: range of i same as range of k

• constrain w (1)
ij = w (2)

ji = wij : regularization

—denote W = [wij] of size d × d̃

• assume d̃ < d : ensure non-trivial solution

linear autoencoder hypothesis:
h(x) = WWT x

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 18/24

Deep Learning Principal Component Analysis

Linear Autoencoder Hypothesis
nonlinear autoencoder

sophisticated
linear autoencoder

simple

linear: more efficient? less overfitting? linear first, remember? :-)

linear hypothesis for k -th component hk (x) =
d̃∑

j=0

w (2)
jk

(
d∑

i=1

w (1)
ij xi

)
consider three special conditions:
• exclude x0: range of i same as range of k

• constrain w (1)
ij = w (2)

ji = wij : regularization

—denote W = [wij] of size d × d̃

• assume d̃ < d : ensure non-trivial solution

linear autoencoder hypothesis:
h(x) = WWT x

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 18/24

Deep Learning Principal Component Analysis

Linear Autoencoder Hypothesis
nonlinear autoencoder

sophisticated
linear autoencoder

simple

linear: more efficient? less overfitting? linear first, remember? :-)

linear hypothesis for k -th component hk (x) =
d̃∑

j=0

w (2)
jk

(
d∑

i=1

w (1)
ij xi

)
consider three special conditions:
• exclude x0: range of i same as range of k

• constrain w (1)
ij = w (2)

ji = wij : regularization

—denote W = [wij] of size d × d̃

• assume d̃ < d : ensure non-trivial solution

linear autoencoder hypothesis:
h(x) = WWT x

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 18/24

Deep Learning Principal Component Analysis

Linear Autoencoder Hypothesis
nonlinear autoencoder

sophisticated
linear autoencoder

simple

linear: more efficient? less overfitting? linear first, remember? :-)

linear hypothesis for k -th component hk (x) =
d̃∑

j=0

wkj

(
d∑

i=1

wijxi

)
consider three special conditions:
• exclude x0: range of i same as range of k

• constrain w (1)
ij = w (2)

ji = wij : regularization

—denote W = [wij] of size d × d̃

• assume d̃ < d : ensure non-trivial solution

linear autoencoder hypothesis:
h(x) = WWT x

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 18/24

Deep Learning Principal Component Analysis

Linear Autoencoder Hypothesis
nonlinear autoencoder

sophisticated
linear autoencoder

simple

linear: more efficient? less overfitting? linear first, remember? :-)

linear hypothesis for k -th component hk (x) =
d̃∑

j=0

wkj

(
d∑

i=1

wijxi

)
consider three special conditions:
• exclude x0: range of i same as range of k

• constrain w (1)
ij = w (2)

ji = wij : regularization

—denote W = [wij] of size d × d̃

• assume d̃ < d : ensure non-trivial solution

linear autoencoder hypothesis:
h(x) = WWT x

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 18/24

Deep Learning Principal Component Analysis

Linear Autoencoder Hypothesis
nonlinear autoencoder

sophisticated
linear autoencoder

simple

linear: more efficient? less overfitting? linear first, remember? :-)

linear hypothesis for k -th component hk (x) =
d̃∑

j=0

wkj

(
d∑

i=1

wijxi

)
consider three special conditions:
• exclude x0: range of i same as range of k

• constrain w (1)
ij = w (2)

ji = wij : regularization
—denote W = [wij] of size d × d̃

• assume d̃ < d : ensure non-trivial solution

linear autoencoder hypothesis:
h(x) = WWT x

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 18/24

Deep Learning Principal Component Analysis

Linear Autoencoder Hypothesis
nonlinear autoencoder

sophisticated
linear autoencoder

simple

linear: more efficient? less overfitting? linear first, remember? :-)

linear hypothesis for k -th component hk (x) =
d̃∑

j=0

wkj

(
d∑

i=1

wijxi

)
consider three special conditions:
• exclude x0: range of i same as range of k

• constrain w (1)
ij = w (2)

ji = wij : regularization
—denote W = [wij] of size d × d̃

• assume d̃ < d : ensure non-trivial solution

linear autoencoder hypothesis:
h(x) = WWT x

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 18/24

Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

Ein(h) = Ein(W) =
1
N

N∑
n=1

∥∥∥xn −WWT xn

∥∥∥2
with d × d̃ matrix W

—analytic solution to minimize Ein? but 4-th order polynomial of wij

let’s familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose WWT = VΓVT

• d × d matrix V orthogonal: VVT = VT V =

Id

• d × d matrix Γ diagonal with ≤

d̃

non-zero

• WWT xn =

VΓVT

xn

• VT (xn): change of orthonormal basis (rotate or reflect)
• Γ(· · ·): set ≥ d − d̃ components to 0, and scale others
• V(· · ·): reconstruct by coefficients and basis (back-rotate)

• xn = VIVT xn: rotate and back-rotate cancel out

next: minimize Ein by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/24

Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

Ein(h) = Ein(W) =
1
N

N∑
n=1

∥∥∥xn −WWT xn

∥∥∥2
with d × d̃ matrix W

—analytic solution to minimize Ein? but 4-th order polynomial of wij

let’s familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose WWT = VΓVT

• d × d matrix V orthogonal: VVT = VT V =

Id

• d × d matrix Γ diagonal with ≤

d̃

non-zero

• WWT xn =

VΓVT

xn

• VT (xn): change of orthonormal basis (rotate or reflect)
• Γ(· · ·): set ≥ d − d̃ components to 0, and scale others
• V(· · ·): reconstruct by coefficients and basis (back-rotate)

• xn = VIVT xn: rotate and back-rotate cancel out

next: minimize Ein by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/24

Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

Ein(h) = Ein(W) =
1
N

N∑
n=1

∥∥∥xn −WWT xn

∥∥∥2
with d × d̃ matrix W

—analytic solution to minimize Ein? but 4-th order polynomial of wij

let’s familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose WWT = VΓVT

• d × d matrix V orthogonal: VVT = VT V =

Id

• d × d matrix Γ diagonal with ≤

d̃

non-zero

• WWT xn =

VΓVT

xn

• VT (xn): change of orthonormal basis (rotate or reflect)
• Γ(· · ·): set ≥ d − d̃ components to 0, and scale others
• V(· · ·): reconstruct by coefficients and basis (back-rotate)

• xn = VIVT xn: rotate and back-rotate cancel out

next: minimize Ein by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/24

Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

Ein(h) = Ein(W) =
1
N

N∑
n=1

∥∥∥xn −WWT xn

∥∥∥2
with d × d̃ matrix W

—analytic solution to minimize Ein? but 4-th order polynomial of wij

let’s familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose WWT = VΓVT

• d × d matrix V orthogonal: VVT = VT V =

Id

• d × d matrix Γ diagonal with ≤

d̃

non-zero
• WWT xn =

VΓVT

xn

• VT (xn): change of orthonormal basis (rotate or reflect)
• Γ(· · ·): set ≥ d − d̃ components to 0, and scale others
• V(· · ·): reconstruct by coefficients and basis (back-rotate)

• xn = VIVT xn: rotate and back-rotate cancel out

next: minimize Ein by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/24

Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

Ein(h) = Ein(W) =
1
N

N∑
n=1

∥∥∥xn −WWT xn

∥∥∥2
with d × d̃ matrix W

—analytic solution to minimize Ein? but 4-th order polynomial of wij

let’s familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose WWT = VΓVT

• d × d matrix V orthogonal: VVT = VT V =

Id
• d × d matrix Γ diagonal with ≤

d̃

non-zero
• WWT xn =

VΓVT

xn

• VT (xn): change of orthonormal basis (rotate or reflect)
• Γ(· · ·): set ≥ d − d̃ components to 0, and scale others
• V(· · ·): reconstruct by coefficients and basis (back-rotate)

• xn = VIVT xn: rotate and back-rotate cancel out

next: minimize Ein by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/24

Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

Ein(h) = Ein(W) =
1
N

N∑
n=1

∥∥∥xn −WWT xn

∥∥∥2
with d × d̃ matrix W

—analytic solution to minimize Ein? but 4-th order polynomial of wij

let’s familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose WWT = VΓVT

• d × d matrix V orthogonal: VVT = VT V = Id

• d × d matrix Γ diagonal with ≤

d̃

non-zero
• WWT xn =

VΓVT

xn

• VT (xn): change of orthonormal basis (rotate or reflect)
• Γ(· · ·): set ≥ d − d̃ components to 0, and scale others
• V(· · ·): reconstruct by coefficients and basis (back-rotate)

• xn = VIVT xn: rotate and back-rotate cancel out

next: minimize Ein by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/24

Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

Ein(h) = Ein(W) =
1
N

N∑
n=1

∥∥∥xn −WWT xn

∥∥∥2
with d × d̃ matrix W

—analytic solution to minimize Ein? but 4-th order polynomial of wij

let’s familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose WWT = VΓVT

• d × d matrix V orthogonal: VVT = VT V = Id
• d × d matrix Γ diagonal with ≤

d̃

non-zero

• WWT xn =

VΓVT

xn

• VT (xn): change of orthonormal basis (rotate or reflect)
• Γ(· · ·): set ≥ d − d̃ components to 0, and scale others
• V(· · ·): reconstruct by coefficients and basis (back-rotate)

• xn = VIVT xn: rotate and back-rotate cancel out

next: minimize Ein by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/24

Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

Ein(h) = Ein(W) =
1
N

N∑
n=1

∥∥∥xn −WWT xn

∥∥∥2
with d × d̃ matrix W

—analytic solution to minimize Ein? but 4-th order polynomial of wij

let’s familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose WWT = VΓVT

• d × d matrix V orthogonal: VVT = VT V = Id
• d × d matrix Γ diagonal with ≤ d̃ non-zero

• WWT xn =

VΓVT

xn

• VT (xn): change of orthonormal basis (rotate or reflect)
• Γ(· · ·): set ≥ d − d̃ components to 0, and scale others
• V(· · ·): reconstruct by coefficients and basis (back-rotate)

• xn = VIVT xn: rotate and back-rotate cancel out

next: minimize Ein by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/24

Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

Ein(h) = Ein(W) =
1
N

N∑
n=1

∥∥∥xn −WWT xn

∥∥∥2
with d × d̃ matrix W

—analytic solution to minimize Ein? but 4-th order polynomial of wij

let’s familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose WWT = VΓVT

• d × d matrix V orthogonal: VVT = VT V = Id
• d × d matrix Γ diagonal with ≤ d̃ non-zero

• WWT xn =

VΓVT

xn

• VT (xn): change of orthonormal basis (rotate or reflect)
• Γ(· · ·): set ≥ d − d̃ components to 0, and scale others
• V(· · ·): reconstruct by coefficients and basis (back-rotate)

• xn = VIVT xn: rotate and back-rotate cancel out

next: minimize Ein by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/24

Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

Ein(h) = Ein(W) =
1
N

N∑
n=1

∥∥∥xn −WWT xn

∥∥∥2
with d × d̃ matrix W

—analytic solution to minimize Ein? but 4-th order polynomial of wij

let’s familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose WWT = VΓVT

• d × d matrix V orthogonal: VVT = VT V = Id
• d × d matrix Γ diagonal with ≤ d̃ non-zero

• WWT xn = VΓVT xn

• VT (xn): change of orthonormal basis (rotate or reflect)
• Γ(· · ·): set ≥ d − d̃ components to 0, and scale others
• V(· · ·): reconstruct by coefficients and basis (back-rotate)

• xn = VIVT xn: rotate and back-rotate cancel out

next: minimize Ein by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/24

Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

Ein(h) = Ein(W) =
1
N

N∑
n=1

∥∥∥xn −WWT xn

∥∥∥2
with d × d̃ matrix W

—analytic solution to minimize Ein? but 4-th order polynomial of wij

let’s familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose WWT = VΓVT

• d × d matrix V orthogonal: VVT = VT V = Id
• d × d matrix Γ diagonal with ≤ d̃ non-zero

• WWT xn = VΓVT xn
• VT (xn): change of orthonormal basis (rotate or reflect)

• Γ(· · ·): set ≥ d − d̃ components to 0, and scale others
• V(· · ·): reconstruct by coefficients and basis (back-rotate)

• xn = VIVT xn: rotate and back-rotate cancel out

next: minimize Ein by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/24

Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

Ein(h) = Ein(W) =
1
N

N∑
n=1

∥∥∥xn −WWT xn

∥∥∥2
with d × d̃ matrix W

—analytic solution to minimize Ein? but 4-th order polynomial of wij

let’s familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose WWT = VΓVT

• d × d matrix V orthogonal: VVT = VT V = Id
• d × d matrix Γ diagonal with ≤ d̃ non-zero

• WWT xn = VΓVT xn
• VT (xn): change of orthonormal basis (rotate or reflect)
• Γ(· · ·): set ≥ d − d̃ components to 0, and scale others

• V(· · ·): reconstruct by coefficients and basis (back-rotate)

• xn = VIVT xn: rotate and back-rotate cancel out

next: minimize Ein by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/24

Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

Ein(h) = Ein(W) =
1
N

N∑
n=1

∥∥∥xn −WWT xn

∥∥∥2
with d × d̃ matrix W

—analytic solution to minimize Ein? but 4-th order polynomial of wij

let’s familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose WWT = VΓVT

• d × d matrix V orthogonal: VVT = VT V = Id
• d × d matrix Γ diagonal with ≤ d̃ non-zero

• WWT xn = VΓVT xn
• VT (xn): change of orthonormal basis (rotate or reflect)
• Γ(· · ·): set ≥ d − d̃ components to 0, and scale others
• V(· · ·): reconstruct by coefficients and basis (back-rotate)

• xn = VIVT xn: rotate and back-rotate cancel out

next: minimize Ein by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/24

Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

Ein(h) = Ein(W) =
1
N

N∑
n=1

∥∥∥xn −WWT xn

∥∥∥2
with d × d̃ matrix W

—analytic solution to minimize Ein? but 4-th order polynomial of wij

let’s familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose WWT = VΓVT

• d × d matrix V orthogonal: VVT = VT V = Id
• d × d matrix Γ diagonal with ≤ d̃ non-zero

• WWT xn = VΓVT xn
• VT (xn): change of orthonormal basis (rotate or reflect)
• Γ(· · ·): set ≥ d − d̃ components to 0, and scale others
• V(· · ·): reconstruct by coefficients and basis (back-rotate)

• xn = VIVT xn: rotate and back-rotate cancel out

next: minimize Ein by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/24

Deep Learning Principal Component Analysis

Linear Autoencoder Error Function

Ein(h) = Ein(W) =
1
N

N∑
n=1

∥∥∥xn −WWT xn

∥∥∥2
with d × d̃ matrix W

—analytic solution to minimize Ein? but 4-th order polynomial of wij

let’s familiarize the problem with linear algebra (be brave! :-))

• eigen-decompose WWT = VΓVT

• d × d matrix V orthogonal: VVT = VT V = Id
• d × d matrix Γ diagonal with ≤ d̃ non-zero

• WWT xn = VΓVT xn
• VT (xn): change of orthonormal basis (rotate or reflect)
• Γ(· · ·): set ≥ d − d̃ components to 0, and scale others
• V(· · ·): reconstruct by coefficients and basis (back-rotate)

• xn = VIVT xn: rotate and back-rotate cancel out

next: minimize Ein by optimizing Γ and V

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 19/24

Deep Learning Principal Component Analysis

The Optimal Γ

min
V

min
Γ

1
N

N∑
n=1

∥∥∥∥∥∥∥VIVT xn︸ ︷︷ ︸
xn

−VΓVT xn︸ ︷︷ ︸
WWT xn

∥∥∥∥∥∥∥
2

• back-rotate not affecting length:�@V

• minΓ
∑
‖(I− Γ)(some vector)‖2: want many

0

within (I− Γ)

• optimal diagonal Γ with rank ≤ d̃ :{
d̃ diagonal components

1

other components

0

}

=⇒ without loss of gen.
[

Id̃ 0
0 0

]

next: min
V

N∑
n=1

∥∥∥∥∥
[

0 0
0 Id−d̃

]
︸ ︷︷ ︸

I−optimal Γ

VT xn

∥∥∥∥∥
2

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 20/24

Deep Learning Principal Component Analysis

The Optimal Γ

min
V

min
Γ

1
N

N∑
n=1

∥∥∥∥∥∥∥VIVT xn︸ ︷︷ ︸
xn

−VΓVT xn︸ ︷︷ ︸
WWT xn

∥∥∥∥∥∥∥
2

• back-rotate not affecting length:�@V
• minΓ

∑
‖(I− Γ)(some vector)‖2: want many

0

within (I− Γ)

• optimal diagonal Γ with rank ≤ d̃ :{
d̃ diagonal components

1

other components

0

}

=⇒ without loss of gen.
[

Id̃ 0
0 0

]

next: min
V

N∑
n=1

∥∥∥∥∥
[

0 0
0 Id−d̃

]
︸ ︷︷ ︸

I−optimal Γ

VT xn

∥∥∥∥∥
2

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 20/24

Deep Learning Principal Component Analysis

The Optimal Γ

min
V

min
Γ

1
N

N∑
n=1

∥∥∥∥∥∥∥VIVT xn︸ ︷︷ ︸
xn

−VΓVT xn︸ ︷︷ ︸
WWT xn

∥∥∥∥∥∥∥
2

• back-rotate not affecting length:�@V
• minΓ

∑
‖(I− Γ)(some vector)‖2: want many 0 within (I− Γ)

• optimal diagonal Γ with rank ≤ d̃ :{
d̃ diagonal components

1

other components

0

}

=⇒ without loss of gen.
[

Id̃ 0
0 0

]

next: min
V

N∑
n=1

∥∥∥∥∥
[

0 0
0 Id−d̃

]
︸ ︷︷ ︸

I−optimal Γ

VT xn

∥∥∥∥∥
2

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 20/24

Deep Learning Principal Component Analysis

The Optimal Γ

min
V

min
Γ

1
N

N∑
n=1

∥∥∥∥∥∥∥VIVT xn︸ ︷︷ ︸
xn

−VΓVT xn︸ ︷︷ ︸
WWT xn

∥∥∥∥∥∥∥
2

• back-rotate not affecting length:�@V
• minΓ

∑
‖(I− Γ)(some vector)‖2: want many 0 within (I− Γ)

• optimal diagonal Γ with rank ≤ d̃ :{
d̃ diagonal components

1

other components

0

}

=⇒ without loss of gen.
[

Id̃ 0
0 0

]

next: min
V

N∑
n=1

∥∥∥∥∥
[

0 0
0 Id−d̃

]
︸ ︷︷ ︸

I−optimal Γ

VT xn

∥∥∥∥∥
2

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 20/24

Deep Learning Principal Component Analysis

The Optimal Γ

min
V

min
Γ

1
N

N∑
n=1

∥∥∥∥∥∥∥VIVT xn︸ ︷︷ ︸
xn

−VΓVT xn︸ ︷︷ ︸
WWT xn

∥∥∥∥∥∥∥
2

• back-rotate not affecting length:�@V
• minΓ

∑
‖(I− Γ)(some vector)‖2: want many 0 within (I− Γ)

• optimal diagonal Γ with rank ≤ d̃ :{
d̃ diagonal components 1

other components 0

}

=⇒ without loss of gen.
[

Id̃ 0
0 0

]

next: min
V

N∑
n=1

∥∥∥∥∥
[

0 0
0 Id−d̃

]
︸ ︷︷ ︸

I−optimal Γ

VT xn

∥∥∥∥∥
2

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 20/24

Deep Learning Principal Component Analysis

The Optimal Γ

min
V

min
Γ

1
N

N∑
n=1

∥∥∥∥∥∥∥VIVT xn︸ ︷︷ ︸
xn

−VΓVT xn︸ ︷︷ ︸
WWT xn

∥∥∥∥∥∥∥
2

• back-rotate not affecting length:�@V
• minΓ

∑
‖(I− Γ)(some vector)‖2: want many 0 within (I− Γ)

• optimal diagonal Γ with rank ≤ d̃ :{
d̃ diagonal components 1

other components 0

}
=⇒ without loss of gen.

[
Id̃ 0
0 0

]

next: min
V

N∑
n=1

∥∥∥∥∥
[

0 0
0 Id−d̃

]
︸ ︷︷ ︸

I−optimal Γ

VT xn

∥∥∥∥∥
2

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 20/24

Deep Learning Principal Component Analysis

The Optimal Γ

min
V

min
Γ

1
N

N∑
n=1

∥∥∥∥∥∥∥VIVT xn︸ ︷︷ ︸
xn

−VΓVT xn︸ ︷︷ ︸
WWT xn

∥∥∥∥∥∥∥
2

• back-rotate not affecting length:�@V
• minΓ

∑
‖(I− Γ)(some vector)‖2: want many 0 within (I− Γ)

• optimal diagonal Γ with rank ≤ d̃ :{
d̃ diagonal components 1

other components 0

}
=⇒ without loss of gen.

[
Id̃ 0
0 0

]

next: min
V

N∑
n=1

∥∥∥∥∥
[

0 0
0 Id−d̃

]
︸ ︷︷ ︸

I−optimal Γ

VT xn

∥∥∥∥∥
2

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 20/24

Deep Learning Principal Component Analysis

The Optimal V

min
V

N∑
n=1

∥∥∥∥[0 0
0 Id−d̃

]
VT xn

∥∥∥∥2

≡ max
V

N∑
n=1

∥∥∥∥[

Id̃ 0
0 0

]
VT xn

∥∥∥∥2

• d̃ = 1: only first row vT of VT matters

maxv
∑N

n=1vT xnxT
n v subject to

vT v = 1

• optimal v satisfies
∑N

n=1 xnxT
n v = λv

—using Lagrange multiplier λ, remember? :-)
• optimal v:

‘topmost’

eigenvector of XT X

• general d̃ : {vj}d̃j=1 ‘topmost’ eigenvectorS of XT X
—optimal {wj} = {vj with

q
γj = 1

y
} = top eigenvectors

linear autoencoder: projecting to orthogonal
patterns wj that ‘matches’ {xn} most

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 21/24

Deep Learning Principal Component Analysis

The Optimal V

min
V

N∑
n=1

∥∥∥∥[0 0
0 Id−d̃

]
VT xn

∥∥∥∥2

≡ max
V

N∑
n=1

∥∥∥∥[Id̃ 0
0 0

]
VT xn

∥∥∥∥2

• d̃ = 1: only first row vT of VT matters

maxv
∑N

n=1vT xnxT
n v subject to

vT v = 1

• optimal v satisfies
∑N

n=1 xnxT
n v = λv

—using Lagrange multiplier λ, remember? :-)
• optimal v:

‘topmost’

eigenvector of XT X

• general d̃ : {vj}d̃j=1 ‘topmost’ eigenvectorS of XT X
—optimal {wj} = {vj with

q
γj = 1

y
} = top eigenvectors

linear autoencoder: projecting to orthogonal
patterns wj that ‘matches’ {xn} most

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 21/24

Deep Learning Principal Component Analysis

The Optimal V

min
V

N∑
n=1

∥∥∥∥[0 0
0 Id−d̃

]
VT xn

∥∥∥∥2

≡ max
V

N∑
n=1

∥∥∥∥[Id̃ 0
0 0

]
VT xn

∥∥∥∥2

• d̃ = 1: only first row vT of VT matters

maxv
∑N

n=1vT xnxT
n v subject to

vT v = 1

• optimal v satisfies
∑N

n=1 xnxT
n v = λv

—using Lagrange multiplier λ, remember? :-)
• optimal v:

‘topmost’

eigenvector of XT X

• general d̃ : {vj}d̃j=1 ‘topmost’ eigenvectorS of XT X
—optimal {wj} = {vj with

q
γj = 1

y
} = top eigenvectors

linear autoencoder: projecting to orthogonal
patterns wj that ‘matches’ {xn} most

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 21/24

Deep Learning Principal Component Analysis

The Optimal V

min
V

N∑
n=1

∥∥∥∥[0 0
0 Id−d̃

]
VT xn

∥∥∥∥2

≡ max
V

N∑
n=1

∥∥∥∥[Id̃ 0
0 0

]
VT xn

∥∥∥∥2

• d̃ = 1: only first row vT of VT matters
maxv

∑N
n=1vT xnxT

n v subject to

vT v = 1

• optimal v satisfies
∑N

n=1 xnxT
n v = λv

—using Lagrange multiplier λ, remember? :-)
• optimal v:

‘topmost’

eigenvector of XT X

• general d̃ : {vj}d̃j=1 ‘topmost’ eigenvectorS of XT X
—optimal {wj} = {vj with

q
γj = 1

y
} = top eigenvectors

linear autoencoder: projecting to orthogonal
patterns wj that ‘matches’ {xn} most

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 21/24

Deep Learning Principal Component Analysis

The Optimal V

min
V

N∑
n=1

∥∥∥∥[0 0
0 Id−d̃

]
VT xn

∥∥∥∥2

≡ max
V

N∑
n=1

∥∥∥∥[Id̃ 0
0 0

]
VT xn

∥∥∥∥2

• d̃ = 1: only first row vT of VT matters
maxv

∑N
n=1vT xnxT

n v subject to vT v = 1

• optimal v satisfies
∑N

n=1 xnxT
n v = λv

—using Lagrange multiplier λ, remember? :-)
• optimal v:

‘topmost’

eigenvector of XT X

• general d̃ : {vj}d̃j=1 ‘topmost’ eigenvectorS of XT X
—optimal {wj} = {vj with

q
γj = 1

y
} = top eigenvectors

linear autoencoder: projecting to orthogonal
patterns wj that ‘matches’ {xn} most

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 21/24

Deep Learning Principal Component Analysis

The Optimal V

min
V

N∑
n=1

∥∥∥∥[0 0
0 Id−d̃

]
VT xn

∥∥∥∥2

≡ max
V

N∑
n=1

∥∥∥∥[Id̃ 0
0 0

]
VT xn

∥∥∥∥2

• d̃ = 1: only first row vT of VT matters
maxv

∑N
n=1vT xnxT

n v subject to vT v = 1

• optimal v satisfies
∑N

n=1 xnxT
n v = λv

—using Lagrange multiplier λ, remember? :-)

• optimal v:

‘topmost’

eigenvector of XT X

• general d̃ : {vj}d̃j=1 ‘topmost’ eigenvectorS of XT X
—optimal {wj} = {vj with

q
γj = 1

y
} = top eigenvectors

linear autoencoder: projecting to orthogonal
patterns wj that ‘matches’ {xn} most

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 21/24

Deep Learning Principal Component Analysis

The Optimal V

min
V

N∑
n=1

∥∥∥∥[0 0
0 Id−d̃

]
VT xn

∥∥∥∥2

≡ max
V

N∑
n=1

∥∥∥∥[Id̃ 0
0 0

]
VT xn

∥∥∥∥2

• d̃ = 1: only first row vT of VT matters
maxv

∑N
n=1vT xnxT

n v subject to vT v = 1

• optimal v satisfies
∑N

n=1 xnxT
n v = λv

—using Lagrange multiplier λ, remember? :-)

• optimal v:

‘topmost’

eigenvector of XT X

• general d̃ : {vj}d̃j=1 ‘topmost’ eigenvectorS of XT X

—optimal {wj} = {vj with
q
γj = 1

y
} = top eigenvectors

linear autoencoder: projecting to orthogonal
patterns wj that ‘matches’ {xn} most

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 21/24

Deep Learning Principal Component Analysis

The Optimal V

min
V

N∑
n=1

∥∥∥∥[0 0
0 Id−d̃

]
VT xn

∥∥∥∥2

≡ max
V

N∑
n=1

∥∥∥∥[Id̃ 0
0 0

]
VT xn

∥∥∥∥2

• d̃ = 1: only first row vT of VT matters
maxv

∑N
n=1vT xnxT

n v subject to vT v = 1

• optimal v satisfies
∑N

n=1 xnxT
n v = λv

—using Lagrange multiplier λ, remember? :-)
• optimal v:

‘topmost’

eigenvector of XT X

• general d̃ : {vj}d̃j=1 ‘topmost’ eigenvectorS of XT X

—optimal {wj} = {vj with
q
γj = 1

y
} = top eigenvectors

linear autoencoder: projecting to orthogonal
patterns wj that ‘matches’ {xn} most

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 21/24

Deep Learning Principal Component Analysis

The Optimal V

min
V

N∑
n=1

∥∥∥∥[0 0
0 Id−d̃

]
VT xn

∥∥∥∥2

≡ max
V

N∑
n=1

∥∥∥∥[Id̃ 0
0 0

]
VT xn

∥∥∥∥2

• d̃ = 1: only first row vT of VT matters
maxv

∑N
n=1vT xnxT

n v subject to vT v = 1

• optimal v satisfies
∑N

n=1 xnxT
n v = λv

—using Lagrange multiplier λ, remember? :-)
• optimal v: ‘topmost’ eigenvector of XT X

• general d̃ : {vj}d̃j=1 ‘topmost’ eigenvectorS of XT X

—optimal {wj} = {vj with
q
γj = 1

y
} = top eigenvectors

linear autoencoder: projecting to orthogonal
patterns wj that ‘matches’ {xn} most

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 21/24

Deep Learning Principal Component Analysis

The Optimal V

min
V

N∑
n=1

∥∥∥∥[0 0
0 Id−d̃

]
VT xn

∥∥∥∥2

≡ max
V

N∑
n=1

∥∥∥∥[Id̃ 0
0 0

]
VT xn

∥∥∥∥2

• d̃ = 1: only first row vT of VT matters
maxv

∑N
n=1vT xnxT

n v subject to vT v = 1

• optimal v satisfies
∑N

n=1 xnxT
n v = λv

—using Lagrange multiplier λ, remember? :-)
• optimal v: ‘topmost’ eigenvector of XT X

• general d̃ : {vj}d̃j=1 ‘topmost’ eigenvectorS of XT X

—optimal {wj} = {vj with
q
γj = 1

y
} = top eigenvectors

linear autoencoder: projecting to orthogonal
patterns wj that ‘matches’ {xn} most

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 21/24

Deep Learning Principal Component Analysis

The Optimal V

min
V

N∑
n=1

∥∥∥∥[0 0
0 Id−d̃

]
VT xn

∥∥∥∥2

≡ max
V

N∑
n=1

∥∥∥∥[Id̃ 0
0 0

]
VT xn

∥∥∥∥2

• d̃ = 1: only first row vT of VT matters
maxv

∑N
n=1vT xnxT

n v subject to vT v = 1

• optimal v satisfies
∑N

n=1 xnxT
n v = λv

—using Lagrange multiplier λ, remember? :-)
• optimal v: ‘topmost’ eigenvector of XT X

• general d̃ : {vj}d̃j=1 ‘topmost’ eigenvectorS of XT X
—optimal {wj} = {vj with

q
γj = 1

y
} = top eigenvectors

linear autoencoder: projecting to orthogonal
patterns wj that ‘matches’ {xn} most

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 21/24

Deep Learning Principal Component Analysis

The Optimal V

min
V

N∑
n=1

∥∥∥∥[0 0
0 Id−d̃

]
VT xn

∥∥∥∥2

≡ max
V

N∑
n=1

∥∥∥∥[Id̃ 0
0 0

]
VT xn

∥∥∥∥2

• d̃ = 1: only first row vT of VT matters
maxv

∑N
n=1vT xnxT

n v subject to vT v = 1

• optimal v satisfies
∑N

n=1 xnxT
n v = λv

—using Lagrange multiplier λ, remember? :-)
• optimal v: ‘topmost’ eigenvector of XT X

• general d̃ : {vj}d̃j=1 ‘topmost’ eigenvectorS of XT X
—optimal {wj} = {vj with

q
γj = 1

y
} = top eigenvectors

linear autoencoder: projecting to orthogonal
patterns wj that ‘matches’ {xn} most

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 21/24

Deep Learning Principal Component Analysis

Principal Component Analysis

Linear Autoencoder

or PCA
1 let x̄ = 1

N
∑N

n=1 xn, and let xn ← xn − x̄

2 calculate d̃ top eigenvectors w1,w2, . . . ,wd̃ of XT X

3 return feature transform Φ(x) = W(x

−x̄

)

• linear autoencoder:
maximize

∑
(maginitude after projection)2

• principal component analysis (PCA) from statistics:
maximize

∑
(variance after projection)

• both useful for linear dimension reduction
though PCA more popular

linear dimension reduction:
useful for data processing

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 22/24

Deep Learning Principal Component Analysis

Principal Component Analysis

Linear Autoencoder

or PCA
1 let x̄ = 1

N
∑N

n=1 xn, and let xn ← xn − x̄

2 calculate d̃ top eigenvectors w1,w2, . . . ,wd̃ of XT X

3 return feature transform Φ(x) = W(x

−x̄

)

• linear autoencoder:
maximize

∑
(maginitude after projection)2

• principal component analysis (PCA) from statistics:
maximize

∑
(variance after projection)

• both useful for linear dimension reduction
though PCA more popular

linear dimension reduction:
useful for data processing

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 22/24

Deep Learning Principal Component Analysis

Principal Component Analysis

Linear Autoencoder

or PCA
1 let x̄ = 1

N
∑N

n=1 xn, and let xn ← xn − x̄

2 calculate d̃ top eigenvectors w1,w2, . . . ,wd̃ of XT X

3 return feature transform Φ(x) = W(x

−x̄

)

• linear autoencoder:
maximize

∑
(maginitude after projection)2

• principal component analysis (PCA) from statistics:
maximize

∑
(variance after projection)

• both useful for linear dimension reduction
though PCA more popular

linear dimension reduction:
useful for data processing

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 22/24

Deep Learning Principal Component Analysis

Principal Component Analysis

Linear Autoencoder or PCA
1 let x̄ = 1

N
∑N

n=1 xn, and let xn ← xn − x̄

2 calculate d̃ top eigenvectors w1,w2, . . . ,wd̃ of XT X

3 return feature transform Φ(x) = W(x

−x̄

)

• linear autoencoder:
maximize

∑
(maginitude after projection)2

• principal component analysis (PCA) from statistics:
maximize

∑
(variance after projection)

• both useful for linear dimension reduction
though PCA more popular

linear dimension reduction:
useful for data processing

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 22/24

Deep Learning Principal Component Analysis

Principal Component Analysis

Linear Autoencoder or PCA
1 let x̄ = 1

N
∑N

n=1 xn, and let xn ← xn − x̄

2 calculate d̃ top eigenvectors w1,w2, . . . ,wd̃ of XT X

3 return feature transform Φ(x) = W(x−x̄)

• linear autoencoder:
maximize

∑
(maginitude after projection)2

• principal component analysis (PCA) from statistics:
maximize

∑
(variance after projection)

• both useful for linear dimension reduction
though PCA more popular

linear dimension reduction:
useful for data processing

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 22/24

Deep Learning Principal Component Analysis

Principal Component Analysis

Linear Autoencoder or PCA
1 let x̄ = 1

N
∑N

n=1 xn, and let xn ← xn − x̄

2 calculate d̃ top eigenvectors w1,w2, . . . ,wd̃ of XT X

3 return feature transform Φ(x) = W(x−x̄)

• linear autoencoder:
maximize

∑
(maginitude after projection)2

• principal component analysis (PCA) from statistics:
maximize

∑
(variance after projection)

• both useful for linear dimension reduction
though PCA more popular

linear dimension reduction:
useful for data processing

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 22/24

Deep Learning Principal Component Analysis

Principal Component Analysis

Linear Autoencoder or PCA
1 let x̄ = 1

N
∑N

n=1 xn, and let xn ← xn − x̄

2 calculate d̃ top eigenvectors w1,w2, . . . ,wd̃ of XT X

3 return feature transform Φ(x) = W(x−x̄)

• linear autoencoder:
maximize

∑
(maginitude after projection)2

• principal component analysis (PCA) from statistics:
maximize

∑
(variance after projection)

• both useful for linear dimension reduction
though PCA more popular

linear dimension reduction:
useful for data processing

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 22/24

Deep Learning Principal Component Analysis

Fun Time
When solving the optimization problem

maxv
∑N

n=1vT xnxT
n v subject to vT v = 1,

we know that the optimal v is the ‘topmost’ eigenvector that
corresponds to the ‘topmost’ eigenvalue λ of XT X. Then, what is the
optimal objective value of the optimization problem?

1 λ1

2 λ2

3 λ3

4 λ4

Reference Answer: 1

The objective value of the optimization problem
is simply vT XT Xv, which is λvT v and you
know what vT v must be.

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 23/24

Deep Learning Principal Component Analysis

Fun Time
When solving the optimization problem

maxv
∑N

n=1vT xnxT
n v subject to vT v = 1,

we know that the optimal v is the ‘topmost’ eigenvector that
corresponds to the ‘topmost’ eigenvalue λ of XT X. Then, what is the
optimal objective value of the optimization problem?

1 λ1

2 λ2

3 λ3

4 λ4

Reference Answer: 1

The objective value of the optimization problem
is simply vT XT Xv, which is λvT v and you
know what vT v must be.

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 23/24

Deep Learning Principal Component Analysis

Summary

1 Embedding Numerous Features: Kernel Models
2 Combining Predictive Features: Aggregation Models
3 Distilling Implicit Features: Extraction Models

Lecture 13: Deep Learning
Deep Neural Network

difficult hierarchical feature extraction problem
Autoencoder

unsupervised NNet learning of representation
Denoising Autoencoder

using noise as hints for regularization
Principal Component Analysis

linear autoencoder variant for data processing

• next: extracting ‘prototype’ instead of pattern

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 24/24

	Deep Learning
	Deep Neural Network
	Autoencoder
	Denoising Autoencoder
	Principal Component Analysis

