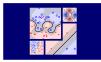
Machine Learning Techniques

(機器學習技法)



Lecture 10: Random Forest

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models

Lecture 9: Decision Tree

recursive branching (purification) for conditional aggregation of constant hypotheses

Lecture 10: Random Forest

- Random Forest Algorithm
- Out-Of-Bag Estimate
- Feature Selection
- Random Forest in Action
- 3 Distilling Implicit Features: Extraction Models

Bagging

```
function Bag(\mathcal{D}, \mathcal{A})
For t = 1, 2, ..., T
```

- $\mathbf{1}$ request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- 2 obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$

```
return G = Uniform(\{g_t\})
```

Bagging

function Bag(\mathcal{D}, \mathcal{A}) For t = 1, 2, ..., T

- ① request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- ② obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$ return $G = \text{Uniform}(\{g_t\})$

Decision Tree

function DTree(\mathcal{D}) if termination return base g_t else

- 1 learn $b(\mathbf{x})$ and split \mathcal{D} to \mathcal{D}_c by $b(\mathbf{x})$
- 2 build $G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)$
- 3 return $G(\mathbf{x}) = \sum_{c=1}^{C} [b(\mathbf{x}) = c] G_c(\mathbf{x})$

Bagging

function Bag(\mathcal{D}, \mathcal{A}) For t = 1, 2, ..., T

- 1 request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- ② obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$ return $G = \text{Uniform}(\{g_t\})$

-reduces variance
by voting/averaging

Decision Tree

function DTree(\mathcal{D}) if termination return base g_t else

- 1 learn $b(\mathbf{x})$ and split \mathcal{D} to \mathcal{D}_c by $b(\mathbf{x})$
- 2 build $G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)$
- 3 return $G(\mathbf{x}) = \sum_{c=1}^{C} [b(\mathbf{x}) = c] G_c(\mathbf{x})$

Bagging

function Bag(\mathcal{D}, \mathcal{A}) For t = 1, 2, ..., T

- 1 request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- ② obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$ return $G = \text{Uniform}(\{g_t\})$

-reduces variance
by voting/averaging

Decision Tree

function DTree(\mathcal{D}) if termination return base g_t else

- 1 learn $b(\mathbf{x})$ and split \mathcal{D} to \mathcal{D}_c by $b(\mathbf{x})$
- 2 build $G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)$
- 3 return $G(\mathbf{x}) = \sum_{c=1}^{C} [b(\mathbf{x}) = c] G_c(\mathbf{x})$

—large variance
especially if fully-grown

Bagging

function Bag(\mathcal{D}, \mathcal{A}) For t = 1, 2, ..., T

- $oldsymbol{1}$ request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- ② obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$

return $G = Uniform(\{g_t\})$

-reduces variance

by voting/averaging

Decision Tree

function DTree(\mathcal{D}) if termination return base g_t else

- 1 learn $b(\mathbf{x})$ and split \mathcal{D} to \mathcal{D}_c by $b(\mathbf{x})$
- 2 build $G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)$
- 3 return $G(\mathbf{x}) = \sum_{c=1}^{C} [b(\mathbf{x}) = c] G_c(\mathbf{x})$

—large variance

especially if fully-grown

putting them together?

Bagging

function Bag(\mathcal{D}, \mathcal{A}) For t = 1, 2, ..., T

- $oldsymbol{1}$ request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- ② obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$ return $G = \text{Uniform}(\{g_t\})$

-reduces variance

by voting/averaging

Decision Tree

function DTree(\mathcal{D}) if termination return base g_t else

- 1 learn $b(\mathbf{x})$ and split \mathcal{D} to \mathcal{D}_c by $b(\mathbf{x})$
- 2 build $G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)$
- 3 return $G(\mathbf{x}) = \sum_{c=1}^{C} [b(\mathbf{x}) = c] G_c(\mathbf{x})$

—large variance

especially if fully-grown

putting them together?
(i.e. aggregation of aggregation :-))

random forest (RF) = bagging + fully-grown C&RT decision tree

random forest (RF) = bagging + fully-grown C&RT decision tree

function RandomForest(D) For t = 1, 2, ..., T

random forest (RF) = bagging + fully-grown C&RT decision tree

function RandomForest(\mathcal{D})

For t = 1, 2, ..., T

1 request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}

random forest (RF) = bagging + fully-grown C&RT decision tree

 $function \ RandomForest(\mathcal{D})$

For
$$t = 1, 2, ..., T$$

- 1 request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- ② obtain tree g_t by $\mathsf{DTree}(\tilde{\mathcal{D}}_t)$

function DTree(\mathcal{D}) if termination return base g_t else

- 1 learn $b(\mathbf{x})$ and split \mathcal{D} to \mathcal{D}_c by $b(\mathbf{x})$
- 2 build $G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)$
- 3 return $G(\mathbf{x}) =$

$$\sum_{c=1}^{C} \llbracket b(\mathbf{x}) = c
rbracket G_c(\mathbf{x})$$

random forest (RF) = bagging + fully-grown C&RT decision tree

function RandomForest(\mathcal{D})

For
$$t = 1, 2, ..., T$$

- 1 request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- ② obtain tree g_t by DTree($\tilde{\mathcal{D}}_t$) return $G = \text{Uniform}(\{g_t\})$

```
function DTree(\mathcal{D})
if termination return base g_t
else
```

- 1 learn $b(\mathbf{x})$ and split \mathcal{D} to \mathcal{D}_c by $b(\mathbf{x})$
- 2 build $G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)$
- $\mathbf{3}$ return $G(\mathbf{x}) =$

$$\sum_{c=1}^{C} \llbracket b(\mathbf{x}) = c
rbracket G_c(\mathbf{x})$$

random forest (RF) = bagging + fully-grown C&RT decision tree

function RandomForest(\mathcal{D})

For
$$t = 1, 2, ..., T$$

- 1 request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- ② obtain tree g_t by DTree($\tilde{\mathcal{D}}_t$) return $G = \text{Uniform}(\{g_t\})$

function DTree(\mathcal{D})
if termination return base g_t else

- 1 learn $b(\mathbf{x})$ and split \mathcal{D} to \mathcal{D}_c by $b(\mathbf{x})$
- 2 build $G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)$
- 3 return $G(\mathbf{x}) =$

$$\sum_{c=1}^{C} \llbracket b(\mathbf{x}) = c \rrbracket \, G_c(\mathbf{x})$$

• highly parallel/efficient to learn

random forest (RF) = bagging + fully-grown C&RT decision tree

function RandomForest(\mathcal{D})

For
$$t = 1, 2, ..., T$$

- 1 request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- ② obtain tree g_t by DTree($\tilde{\mathcal{D}}_t$) return $G = \text{Uniform}(\{g_t\})$

function DTree(\mathcal{D})
if termination return base g_t else

- 1 learn $b(\mathbf{x})$ and split \mathcal{D} to \mathcal{D}_c by $b(\mathbf{x})$
- 2 build $G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)$
- $\mathbf{3}$ return $G(\mathbf{x}) =$

$$\sum_{c=1}^{C} \llbracket b(\mathbf{x}) = c \rrbracket \, G_c(\mathbf{x})$$

- highly parallel/efficient to learn
- inherit pros of C&RT

random forest (RF) = bagging + fully-grown C&RT decision tree

function RandomForest(\mathcal{D})

For
$$t = 1, 2, ..., T$$

- 1 request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- 2 obtain tree g_t by DTree($\tilde{\mathcal{D}}_t$)

return $G = Uniform(\{g_t\})$

function DTree(\mathcal{D}) if termination return base gt else

- 1 learn b(x) and split D to \mathcal{D}_c by $b(\mathbf{x})$
- 2 build $G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)$
- 3 return $G(\mathbf{x}) =$

$$\sum_{c=1}^{C} \llbracket b(\mathbf{x}) = c \rrbracket \, G_c(\mathbf{x})$$

- highly parallel/efficient to learn
- inherit pros of C&RT
- eliminate cons of fully-grown tree

recall: data randomness for diversity in bagging

randomly sample N' examples from \mathcal{D}

recall: data randomness for diversity in bagging

randomly sample N' examples from \mathcal{D}

another possibility for diversity:

recall: data randomness for diversity in bagging

randomly sample N' examples from \mathcal{D}

another possibility for diversity:

randomly sample d' features from x

• when sampling index $i_1, i_2, ..., i_{d'}$: $\Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, ..., x_{i_{d'}})$

recall: data randomness for diversity in bagging

randomly sample N' examples from \mathcal{D}

another possibility for diversity:

- when sampling index $i_1, i_2, ..., i_{d'}$: $\Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, ..., x_{i_{d'}})$
- $\mathcal{Z} \in \mathbb{R}^{d'}$: a random subspace of $\mathcal{X} \in \mathbb{R}^{d}$

recall: data randomness for diversity in bagging

randomly sample N' examples from \mathcal{D}

another possibility for **diversity**:

- when sampling index $i_1,i_2,\ldots,i_{d'}$: $\Phi(\mathbf{x})=(x_{i_1},x_{i_2},\ldots,x_{i_{d'}})$
- $\mathcal{Z} \in \mathbb{R}^{d'}$: a random subspace of $\mathcal{X} \in \mathbb{R}^{d}$
- often $d' \ll d$, efficient for large d

recall: data randomness for diversity in bagging

randomly sample N' examples from \mathcal{D}

another possibility for diversity:

- when sampling index $i_1,i_2,\ldots,i_{d'}$: $\Phi(\mathbf{x})=(x_{i_1},x_{i_2},\ldots,x_{i_{d'}})$
- $\mathcal{Z} \in \mathbb{R}^{d'}$: a random subspace of $\mathcal{X} \in \mathbb{R}^{d}$
- often d' ≪ d, efficient for large d
 —can be generally applied on other models

recall: data randomness for diversity in bagging

randomly sample N' examples from \mathcal{D}

another possibility for **diversity**:

- when sampling index $i_1,i_2,\ldots,i_{d'}$: $\Phi(\mathbf{x})=(x_{i_1},x_{i_2},\ldots,x_{i_{d'}})$
- $\mathcal{Z} \in \mathbb{R}^{d'}$: a random subspace of $\mathcal{X} \in \mathbb{R}^{d}$
- often d' ≪ d, efficient for large d
 —can be generally applied on other models
- original RF re-sample new subspace for each b(x) in C&RT

recall: data randomness for diversity in bagging

randomly sample N' examples from \mathcal{D}

another possibility for diversity:

randomly **sample** *d'* **features** from **x**

- when sampling index $i_1, i_2, \ldots, i_{d'}$: $\Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, \ldots, x_{i_{d'}})$
- $\mathcal{Z} \in \mathbb{R}^{d'}$: a random subspace of $\mathcal{X} \in \mathbb{R}^{d}$
- often d' ≪ d, efficient for large d
 —can be generally applied on other models
- original RF re-sample new subspace for each b(x) in C&RT

RF = bagging + random-subspace C&RT

randomly **sample** d' **features** from \mathbf{x} : $\mathbf{\Phi}(\mathbf{x}) = \mathbf{P} \cdot \mathbf{x}$ with row i of \mathbf{P} sampled randomly \in natural basis

randomly sample d' features from \mathbf{x} : $\mathbf{\Phi}(\mathbf{x}) = \mathbf{P} \cdot \mathbf{x}$ with row i of \mathbf{P} sampled randomly \in natural basis

randomly **sample** d' **features** from \mathbf{x} : $\mathbf{\Phi}(\mathbf{x}) = \mathbf{P} \cdot \mathbf{x}$ with row i of \mathbf{P} sampled randomly \in natural basis

more **powerful** features for **diversity**: row *i* other than natural basis

• **projection** (combination) with random row \mathbf{p}_i of P: $\phi_i(\mathbf{x}) = \mathbf{p}_i^T \mathbf{x}$

randomly **sample** d' **features** from \mathbf{x} : $\mathbf{\Phi}(\mathbf{x}) = \mathbf{P} \cdot \mathbf{x}$ with row i of \mathbf{P} sampled randomly \in natural basis

- **projection** (combination) with random row \mathbf{p}_i of P: $\phi_i(\mathbf{x}) = \mathbf{p}_i^T \mathbf{x}$
- often consider low-dimensional projection: only d" non-zero components in p_i

randomly **sample** d' **features** from \mathbf{x} : $\mathbf{\Phi}(\mathbf{x}) = \mathbf{P} \cdot \mathbf{x}$ with row i of \mathbf{P} sampled randomly \in natural basis

- **projection** (combination) with random row \mathbf{p}_i of P: $\phi_i(\mathbf{x}) = \mathbf{p}_i^T \mathbf{x}$
- often consider low-dimensional projection: only d" non-zero components in p_i
- includes random subspace as special case:
 d" = 1 and p_i ∈ natural basis

randomly sample d' features from \mathbf{x} : $\mathbf{\Phi}(\mathbf{x}) = P \cdot \mathbf{x}$ with row i of P sampled randomly \in natural basis

- **projection** (combination) with random row \mathbf{p}_i of P: $\phi_i(\mathbf{x}) = \mathbf{p}_i^T \mathbf{x}$
- often consider low-dimensional projection: only d" non-zero components in p_i
- includes random subspace as special case:
 d" = 1 and p_i ∈ natural basis
- original RF consider d' random low-dimensional projections for each b(x) in C&RT

randomly **sample** d' **features** from \mathbf{x} : $\mathbf{\Phi}(\mathbf{x}) = \mathbf{P} \cdot \mathbf{x}$ with row i of \mathbf{P} sampled randomly \in natural basis

more **powerful** features for **diversity**: row *i* other than natural basis

- **projection** (combination) with random row \mathbf{p}_i of P: $\phi_i(\mathbf{x}) = \mathbf{p}_i^T \mathbf{x}$
- often consider low-dimensional projection: only d" non-zero components in p_i
- includes random subspace as special case:
 d" = 1 and p_i ∈ natural basis
- original RF consider d' random low-dimensional projections for each b(x) in C&RT

RF = bagging + random-combination C&RT
—randomness everywhere!

Fun Time

Within RF that contains random-combination C&RT trees, which of the following hypothesis is equivalent to each branching function $b(\mathbf{x})$ within the tree?

- a constant
- 2 a decision stump
- a perceptron
- 4 none of the other choices

Fun Time

Within RF that contains random-combination C&RT trees, which of the following hypothesis is equivalent to each branching function $b(\mathbf{x})$ within the tree?

- a constant
- 2 a decision stump
- a perceptron
- 4 none of the other choices

Reference Answer: (3)

In each $b(\mathbf{x})$, the input vector \mathbf{x} is first projected by a random vector \mathbf{v} and then thresholded to make a binary decision, which is exactly what a perceptron does.

Bagging Revisited

Bagging

```
function Bag(\mathcal{D}, \mathcal{A})
For t = 1, 2, ..., T
```

- 1 request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- 2 obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$

return $G = Uniform(\{g_t\})$

Bagging Revisited

Bagging

function $\operatorname{Bag}(\mathcal{D}, \mathcal{A})$

For t = 1, 2, ..., T

- 2 obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$

return $G = Uniform(\{g_t\})$

	α.	α-	O-	α-
	<i>g</i> 1	<i>g</i> ₂	g 3	<i>g</i> ⊤
(\mathbf{x}_1, y_1)	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$\mathcal{ ilde{D}}_{\mathcal{T}}$
(\mathbf{x}_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$	$\mathcal{ ilde{D}}_{\mathcal{T}}$
(\mathbf{x}_3, y_3)	*	$ ilde{\mathcal{D}}_2$	*	$\mathcal{ ilde{D}}_{\mathcal{T}}$
• • • •				
(\mathbf{x}_N, y_N)	$\tilde{\mathcal{D}}_1$	$ ilde{\mathcal{D}}_{2}$	*	*

Bagging Revisited

Bagging

function $Bag(\mathcal{D}, \mathcal{A})$

For t = 1, 2, ..., T

- 1 request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- 2 obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$

return $G = Uniform(\{g_t\})$

	<i>g</i> ₁	<i>g</i> ₂	<i>g</i> ₃	 g ⊤
(\mathbf{x}_1, y_1)	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$\tilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$	$\mathcal{ ilde{D}}_{\mathcal{T}}$
$(\mathbf{x}_3, \mathbf{y}_3)$	*	$ ilde{\mathcal{D}}_2$	*	$\mathcal{ ilde{D}}_{\mathcal{T}}$
(\mathbf{x}_N, y_N)	$\mid ilde{\mathcal{D}}_1 \mid$	$ ilde{\mathcal{D}}_{2}$	*	*

 \star in *t*-th column: not used for obtaining g_t —called **out-of-bag (OOB) examples** of g_t

OOB (in \star) \iff not sampled after N' drawings

OOB (in \star) \iff not sampled after N' drawings

OOB (in \star) \iff not sampled after N' drawings

if N' = N

• probability for (\mathbf{x}_n, y_n) to be OOB for g_t :

OOB (in \star) \iff not sampled after N' drawings

if N' = N

• probability for (\mathbf{x}_n, y_n) to be OOB for g_t : $\left(1 - \frac{1}{N}\right)^N$

OOB (in \star) \iff not sampled after N' drawings

- probability for (\mathbf{x}_n, y_n) to be OOB for g_t : $\left(1 \frac{1}{N}\right)^N$
- if N large:

$$\left(1-\frac{1}{N}\right)^N=$$

OOB (in \star) \iff not sampled after N' drawings

- probability for (\mathbf{x}_n, y_n) to be OOB for g_t : $\left(1 \frac{1}{N}\right)^N$
- if N large:

$$\left(1 - \frac{1}{N}\right)^N = \frac{1}{\left(\begin{array}{c} \end{array}\right)^N} =$$

OOB (in \star) \iff not sampled after N' drawings

- probability for (\mathbf{x}_n, y_n) to be OOB for g_t : $\left(1 \frac{1}{N}\right)^N$
- if N large:

$$\left(1 - \frac{1}{N}\right)^N = \frac{1}{\left(\frac{N}{N-1}\right)^N} =$$

OOB (in \star) \iff not sampled after N' drawings

- probability for (\mathbf{x}_n, y_n) to be OOB for g_t : $(1 \frac{1}{N})^N$
- if N large:

$$\left(1 - \frac{1}{N}\right)^N = \frac{1}{\left(\frac{N}{N-1}\right)^N} = \frac{1}{\left(1 + \frac{1}{N}\right)^N}$$

OOB (in \star) \iff not sampled after N' drawings

- probability for (\mathbf{x}_n, y_n) to be OOB for g_t : $(1 \frac{1}{N})^N$
- if N large:

$$\left(1 - \frac{1}{N}\right)^N = \frac{1}{\left(\frac{N}{N-1}\right)^N} = \frac{1}{\left(1 + \frac{1}{N-1}\right)^N}$$

OOB (in \star) \iff not sampled after N' drawings

- probability for (\mathbf{x}_n, y_n) to be OOB for g_t : $(1 \frac{1}{N})^N$
- if N large:

$$\left(1 - \frac{1}{N}\right)^N = \frac{1}{\left(\frac{N}{N-1}\right)^N} = \frac{1}{\left(1 + \frac{1}{N-1}\right)^N} \approx \frac{1}{e}$$

OOB (in \star) \iff not sampled after N' drawings

if N' = N

- probability for (\mathbf{x}_n, y_n) to be OOB for g_t : $(1 \frac{1}{N})^N$
- if N large:

$$\left(1 - \frac{1}{N}\right)^N = \frac{1}{\left(\frac{N}{N-1}\right)^N} = \frac{1}{\left(1 + \frac{1}{N-1}\right)^N} \approx \frac{1}{e}$$

OOB size per $g_t \approx \frac{1}{e}N$

C	OOB							
		<i>g</i> ₁	<i>g</i> ₂	g 3		g ⊤		
	(x_1, y_1)	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$		$ ilde{\mathcal{D}}_{\mathcal{T}}$		
	(\mathbf{x}_2, y_2) (\mathbf{x}_3, y_3)	*	*	$ ilde{\mathcal{D}}_3$		$ ilde{\mathcal{D}}_{\mathcal{T}}$		
	(x_3, y_3)	*	$ ilde{\mathcal{D}}_{2}$	*		$ ilde{\mathcal{D}}_{\mathcal{T}}$		
	(\mathbf{x}_N, y_N)	$\tilde{\mathcal{D}}_1$	*	*		*		

OOB

	<i>g</i> ₁	<i>g</i> ₂	<i>g</i> ₃	 <i>g</i> _T
(\mathbf{x}_1, y_1)	$ ilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$ ilde{\mathcal{D}}_{\mathcal{T}}$
$(\mathbf{x}_2, \mathbf{y}_2)$	*	*	$ ilde{\mathcal{D}}_3$	$\mathcal{ ilde{D}}_{\mathcal{T}}$
$(\mathbf{x}_3, \mathbf{y}_3)$	*	$ ilde{\mathcal{D}}_2$	*	$\mathcal{ ilde{D}}_{\mathcal{T}}$
• • •				
(\mathbf{x}_N, y_N)	$\tilde{\mathcal{D}}_1$	*	*	*

g_1^-	g_2^-	• • •	g_M^-
\mathcal{D}_{train}	\mathcal{D}_{train}		\mathcal{D}_{train}
\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}
\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}
\mathcal{D}_{train}	\mathcal{D}_{train}		\mathcal{D}_{train}

OOB

	<i>g</i> ₁	g ₂	g 3	 g T
(\mathbf{x}_1, y_1)	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$\tilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$	$\mathcal{ ilde{D}}_{\mathcal{T}}$
(\mathbf{x}_3, y_3)	*	$ ilde{\mathcal{D}}_2$	*	$\mathcal{ ilde{D}}_{\mathcal{T}}$
• • •				
(\mathbf{x}_N, y_N)	$\tilde{\mathcal{D}}_1$	*	*	*

Validation

g_1^-	g_2^-	• • •	g_M^-
\mathcal{D}_{train}	\mathcal{D}_{train}		\mathcal{D}_{train}
\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}
\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}
\mathcal{D}_{train}	\mathcal{D}_{train}		\mathcal{D}_{train}

• \star like \mathcal{D}_{val} : 'enough' random examples unused during training

OOB

	<i>g</i> ₁	g ₂	g 3	 g ⊤
(\mathbf{x}_1, y_1)	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$\tilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$	$\mathcal{ ilde{D}}_{\mathcal{T}}$
(\mathbf{x}_3, y_3)	*	$ ilde{\mathcal{D}}_2$	*	$\mathcal{ ilde{D}}_{\mathcal{T}}$
• • •				
(\mathbf{x}_N, y_N)	$\tilde{\mathcal{D}}_1$	*	*	*

g_1^-	g_2^-	 g_M^-
\mathcal{D}_{train}	\mathcal{D}_{train}	\mathcal{D}_{train}
\mathcal{D}_{val}	\mathcal{D}_{val}	\mathcal{D}_{val}
\mathcal{D}_{val}	\mathcal{D}_{val}	\mathcal{D}_{val}
\mathcal{D}_{train}	\mathcal{D}_{train}	\mathcal{D}_{train}

- \star like \mathcal{D}_{val} : 'enough' random examples unused during training
- use ★ to validate g_t?

OOB

	<i>g</i> ₁	<i>g</i> ₂	g 3	 д т
(\mathbf{x}_1, y_1)	$ ilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$ ilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$	$ ilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_3, y_3)	*	$ ilde{\mathcal{D}}_2$	*	$\mathcal{ ilde{D}}_{\mathcal{T}}$
• • •				
(\mathbf{x}_N, y_N)	$ \tilde{\mathcal{D}}_1 $	*	*	*

g_1^-	g_2^-	• • •	g_M^-
\mathcal{D}_{train}	\mathcal{D}_{train}		\mathcal{D}_{train}
\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}
\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}
\mathcal{D}_{train}	\mathcal{D}_{train}		\mathcal{D}_{train}

- \star like \mathcal{D}_{val} : 'enough' random examples unused during training
- use ★ to validate g_t? easy, but rarely needed

OOB

	<i>g</i> ₁	g ₂	g 3	 9 τ
(\mathbf{x}_1, y_1)	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$\tilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$	$\mathcal{ ilde{D}}_{\mathcal{T}}$
(\mathbf{x}_3, y_3)	*	$ ilde{\mathcal{D}}_2$	*	$\mathcal{ ilde{D}}_{\mathcal{T}}$
(\mathbf{x}_N, y_N)	$\tilde{\mathcal{D}}_1$	*	*	*

g_1^-	g_2^-	• • •	g_M^-
\mathcal{D}_{train}	\mathcal{D}_{train}		\mathcal{D}_{train}
\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}
\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}
\mathcal{D}_{train}	\mathcal{D}_{train}		\mathcal{D}_{train}

- \star like \mathcal{D}_{val} : 'enough' random examples unused during training
- use ★ to validate g_t? easy, but rarely needed
- use ★ to validate G?

OOB

	<i>g</i> ₁	<i>g</i> ₂	<i>g</i> ₃	 g τ
(\mathbf{x}_1, y_1)	$ ilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$ ilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$	$ ilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_3, y_3)	*	$ ilde{\mathcal{D}}_2$	*	$ ilde{\mathcal{D}}_{\mathcal{T}}$
• • •				
(\mathbf{x}_N, y_N)	$\tilde{\mathcal{D}}_1$	*	*	*

g_1^-	g_2^-	 g_{M}^{-}
\mathcal{D}_{train}	\mathcal{D}_{train}	\mathcal{D}_{train}
\mathcal{D}_{val}	\mathcal{D}_{val}	\mathcal{D}_{val}
\mathcal{D}_{val}	\mathcal{D}_{val}	\mathcal{D}_{val}
\mathcal{D}_{train}	\mathcal{D}_{train}	\mathcal{D}_{train}

- \star like \mathcal{D}_{val} : 'enough' random examples unused during training
- use * to validate g_t? easy, but rarely needed
- use * to validate G?
 with G_n⁻ contains only trees that x_n is OOB of,
 such as G_N⁻(x) = average(g₂, g₃, g_T)

OOB

	<i>g</i> ₁	<i>g</i> ₂	g 3	 9 T
(\mathbf{x}_1, y_1)	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$ ilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$	$ ilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_3, y_3)	*	$ ilde{\mathcal{D}}_2$	*	$ ilde{\mathcal{D}}_{\mathcal{T}}$
• • •				
(\mathbf{x}_N, y_N)	$\tilde{\mathcal{D}}_1$	*	*	*

g_1^-	g_2^-	 g_M^-
\mathcal{D}_{train}	\mathcal{D}_{train}	\mathcal{D}_{train}
\mathcal{D}_{val}	\mathcal{D}_{val}	\mathcal{D}_{val}
\mathcal{D}_{val}	\mathcal{D}_{val}	\mathcal{D}_{val}
\mathcal{D}_{train}	\mathcal{D}_{train}	\mathcal{D}_{train}

- ★ like D_{val}: 'enough' random examples unused during training
- use * to validate g_t? easy, but rarely needed
- use \star to validate G? $\operatorname{err}(y_n, G_n^-(\mathbf{x}_n))$, with G_n^- contains only trees that \mathbf{x}_n is OOB of,

such as
$$G_N^-(\mathbf{x}) = \text{average}(g_2, g_3, g_T)$$

OOB

	<i>g</i> ₁	<i>g</i> ₂	g 3	 д т
(\mathbf{x}_1, y_1)	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$ ilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$	$ ilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_3, y_3)	*	$ ilde{\mathcal{D}}_2$	*	$ ilde{\mathcal{D}}_{\mathcal{T}}$
• • •				
(\mathbf{x}_N, y_N)	$\tilde{\mathcal{D}}_1$	*	*	*

g_1^-	g_2^-	• • •	g_M^-
\mathcal{D}_{train}	\mathcal{D}_{train}		\mathcal{D}_{train}
\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}
\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}
\mathcal{D}_{train}	\mathcal{D}_{train}		\mathcal{D}_{train}

- \star like \mathcal{D}_{val} : 'enough' random examples unused during training
- use * to validate g_t? easy, but rarely needed
- use \star to validate G? $E_{\text{oob}}(G) = \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, G_n^-(\mathbf{x}_n))$, with G_n^- contains only trees that \mathbf{x}_n is OOB of,

such as
$$G_N^-(\mathbf{x}) = \text{average}(g_2, g_3, g_T)$$

OOB

	<i>g</i> ₁	<i>g</i> ₂	<i>g</i> ₃	 д т
(\mathbf{x}_1, y_1)	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$\tilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$	$ ilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_3, y_3)	*	$ ilde{\mathcal{D}}_2$	*	$\mathcal{ ilde{D}}_{\mathcal{T}}$
(\mathbf{x}_N, y_N)	$\tilde{\mathcal{D}}_1$	*	*	*

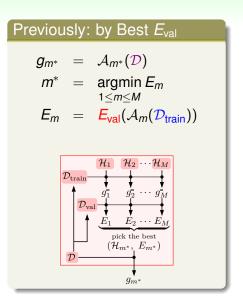
Validation

g_1^-	g_2^-	• • •	g_M^-
\mathcal{D}_{train}	\mathcal{D}_{train}		\mathcal{D}_{train}
\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}
\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}
\mathcal{D}_{train}	\mathcal{D}_{train}		\mathcal{D}_{train}

- \star like \mathcal{D}_{val} : 'enough' random examples unused during training
- use * to validate g_t? easy, but rarely needed
- use * to validate G? $E_{\text{oob}}(G) = \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, G_n^-(\mathbf{x}_n)),$ with G_n^- contains only trees that \mathbf{x}_n is OOB of,

such as
$$G_N^-(\mathbf{x}) = \text{average}(g_2, g_3, g_T)$$

E_{oob}: self-validation of bagging/RF



Previously: by Best E_{val} $g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$ $m^* = \operatorname{argmin} E_m$ 1<*m*<*M* $E_m = E_{\text{val}}(A_m(\mathcal{D}_{\text{train}}))$ $\mathcal{H}_1 \quad \mathcal{H}_2 \cdots \mathcal{H}_M$ $\mathcal{D}_{ ext{train}}$ pick the best $(\mathcal{H}_{m^*}, E_{m^*})$ g_{m^*}

RF: by Best Eoob

$$G_{m^*} = \operatorname{RF}_{m^*}(\mathcal{D})$$
 $m^* = \underset{1 \leq m \leq M}{\operatorname{argmin}} E_m$
 $E_m = \underset{\mathsf{Coob}}{E_{\mathsf{oob}}}(\operatorname{RF}_m(\mathcal{D}))$

• use E_{oob} for self-validation

Previously: by Best E_{val} $g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$ $m^* = \operatorname{argmin} E_m$ 1<*m*<*M* $E_m = E_{\text{val}}(A_m(\mathcal{D}_{\text{train}}))$ $\mathcal{H}_1 \quad \mathcal{H}_2 \cdots \mathcal{H}_M$ $\mathcal{D}_{ ext{train}}$ pick the best $(\mathcal{H}_{m^*}, E_{m^*})$ q_{m^*}

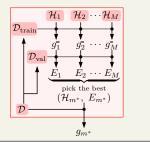
RF: by Best Eoob

$$G_{m^*} = RF_{m^*}(\mathcal{D})$$
 $m^* = \underset{1 \leq m \leq M}{\operatorname{argmin}} E_m$
 $E_m = \underset{Oob}{E_{oob}}(RF_m(\mathcal{D}))$

use E_{oob} for self-validation
 —of RF parameters such as d"

Previously: by Best E_{val}

$$g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$$
 $m^* = \underset{1 \leq m \leq M}{\operatorname{argmin}} E_m$
 $E_m = \underset{\mathsf{Eval}}{\mathsf{E}_{val}}(\mathcal{A}_m(\mathcal{D}_{\mathsf{train}}))$



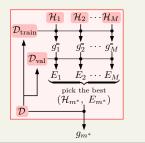
RF: by Best Eoob

$$G_{m^*} = RF_{m^*}(\mathcal{D})$$
 $m^* = \underset{1 \leq m \leq M}{\operatorname{argmin}} E_m$
 $E_m = \underset{Coob}{E_{oob}} (RF_m(\mathcal{D}))$

- use E_{oob} for self-validation
 —of RF parameters such as d"
- no re-training needed

Previously: by Best E_{val}

$$g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$$
 $m^* = \underset{1 \leq m \leq M}{\operatorname{argmin}} E_m$
 $E_m = \underset{\mathsf{Eval}}{\mathsf{E}_{val}}(\mathcal{A}_m(\mathcal{D}_{\mathsf{train}}))$



RF: by Best Eoob

$$G_{m^*} = RF_{m^*}(\mathcal{D})$$
 $m^* = \underset{1 \leq m \leq M}{\operatorname{argmin}} E_m$
 $E_m = \underset{Coob}{E_{oob}} (RF_m(\mathcal{D}))$

- use E_{oob} for self-validation
 —of RF parameters such as d"
- no re-training needed

E_{oob} often **accurate** in practice

Fun Time

For a data set with N = 1126, what is the probability that $(\mathbf{x}_{1126}, y_{1126})$ is not sampled after bootstrapping N' = N samples from the data set?

- 0.113
- 2 0.368
- 3 0.632
- **4** 0.887

Fun Time

For a data set with N = 1126, what is the probability that $(\mathbf{x}_{1126}, y_{1126})$ is not sampled after bootstrapping N' = N samples from the data set?

- 0.113
- 2 0.368
- 3 0.632
- 4 0.887

Reference Answer: (2)

The value of $(1 - \frac{1}{N})^N$ with N = 1126 is about 0.367716, which is close to $\frac{1}{n} = 0.367879$.

Feature Selection

for $\mathbf{x} = (x_1, x_2, \dots, x_d)$, want to remove

Feature Selection

for $\mathbf{x} = (x_1, x_2, \dots, x_d)$, want to remove

• redundant features: like keeping one of 'age' and 'full birthday'

for $\mathbf{x} = (x_1, x_2, \dots, x_d)$, want to remove

- redundant features: like keeping one of 'age' and 'full birthday'
- irrelevant features: like insurance type for cancer prediction

```
for \mathbf{x} = (x_1, x_2, \dots, x_d), want to remove
```

- redundant features: like keeping one of 'age' and 'full birthday'
- irrelevant features: like insurance type for cancer prediction

```
and only 'learn' subset-transform \Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, x_{i_{d'}}) with d' < d for g(\Phi(\mathbf{x}))
```

for $\mathbf{x} = (x_1, x_2, \dots, x_d)$, want to remove

- redundant features: like keeping one of 'age' and 'full birthday'
- irrelevant features: like insurance type for cancer prediction

```
and only 'learn' subset-transform \Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, x_{i_{n'}})
                                                                              with d' < d for g(\mathbf{\Phi}(\mathbf{x}))
```

advantages:

```
for \mathbf{x} = (x_1, x_2, \dots, x_d), want to remove
```

- · redundant features: like keeping one of 'age' and 'full birthday'
- irrelevant features: like insurance type for cancer prediction

```
and only 'learn' subset-transform \Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, x_{i_{d'}}) with d' < d for g(\Phi(\mathbf{x}))
```

advantages:

 efficiency: simpler hypothesis and shorter prediction time

```
for \mathbf{x} = (x_1, x_2, \dots, x_d), want to remove
```

- redundant features: like keeping one of 'age' and 'full birthday'
- irrelevant features: like insurance type for cancer prediction

```
and only 'learn' subset-transform \Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, x_{i_{d'}}) with d' < d for g(\Phi(\mathbf{x}))
```

advantages:

- efficiency: simpler hypothesis and shorter prediction time
- generalization: 'feature noise' removed

```
for \mathbf{x} = (x_1, x_2, \dots, x_d), want to remove
```

- redundant features: like keeping one of 'age' and 'full birthday'
- irrelevant features: like insurance type for cancer prediction

```
and only 'learn' subset-transform \Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, x_{i_{d'}}) with d' < d for g(\Phi(\mathbf{x}))
```

advantages:

- efficiency: simpler hypothesis and shorter prediction time
- generalization: 'feature noise' removed
- interpretability

for $\mathbf{x} = (x_1, x_2, \dots, x_d)$, want to remove

- redundant features: like keeping one of 'age' and 'full birthday'
- irrelevant features: like insurance type for cancer prediction

```
and only 'learn' subset-transform \Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, x_{i_{n'}})
                                                                         with d' < d for g(\Phi(\mathbf{x}))
```

advantages:

- efficiency: simpler hypothesis and shorter prediction time
- generalization: 'feature noise' removed
- interpretability

disadvantages:

Feature Selection

for $\mathbf{x} = (x_1, x_2, \dots, x_d)$, want to remove

- redundant features: like keeping one of 'age' and 'full birthday'
- irrelevant features: like insurance type for cancer prediction

```
and only 'learn' subset-transform \Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, x_{i_{d'}}) with d' < d for g(\Phi(\mathbf{x}))
```

advantages:

- efficiency: simpler hypothesis and shorter prediction time
- generalization: 'feature noise' removed
- interpretability

disadvantages:

 computation: 'combinatorial' optimization in training for $\mathbf{x} = (x_1, x_2, \dots, x_d)$, want to remove

- redundant features: like keeping one of 'age' and 'full birthday'
- irrelevant features: like insurance type for cancer prediction

```
and only 'learn' subset-transform \Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, x_{i_{n'}})
                                                                         with d' < d for g(\Phi(\mathbf{x}))
```

advantages:

- efficiency: simpler hypothesis and shorter prediction time
- generalization: 'feature noise' removed
- interpretability

disadvantages:

- computation: 'combinatorial' optimization in training
- overfit: 'combinatorial' selection

Feature Selection

for $\mathbf{x} = (x_1, x_2, \dots, x_d)$, want to remove

- redundant features: like keeping one of 'age' and 'full birthday'
- irrelevant features: like insurance type for cancer prediction

```
and only 'learn' subset-transform \Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, x_{i_{d'}}) with d' < d for g(\Phi(\mathbf{x}))
```

advantages:

- efficiency: simpler hypothesis and shorter prediction time
- generalization: 'feature noise' removed
- interpretability

disadvantages:

- computation: 'combinatorial' optimization in training
- overfit: 'combinatorial' selection
- mis-interpretability

Feature Selection

for $\mathbf{x} = (x_1, x_2, \dots, x_d)$, want to remove

- redundant features: like keeping one of 'age' and 'full birthday'
- irrelevant features: like insurance type for cancer prediction

```
and only 'learn' subset-transform \Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, x_{i_{d'}}) with d' < d for g(\Phi(\mathbf{x}))
```

advantages:

- efficiency: simpler hypothesis and shorter prediction time
- generalization: 'feature noise' removed
- interpretability

disadvantages:

- computation: 'combinatorial' optimization in training
- overfit: 'combinatorial' selection
- mis-interpretability

decision tree: a rare model with built-in feature selection

idea: if possible to calculate

importance(
$$i$$
) for $i = 1, 2, ..., d$

then can select $i_1, i_2, \dots, i_{d'}$ of top-d' importance

idea: if possible to calculate

importance(i) for
$$i = 1, 2, ..., d$$

then can select $i_1, i_2, \dots, i_{d'}$ of top-d' importance

importance by linear model

$$score = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^d w_i x_i$$

idea: if possible to calculate

importance(
$$i$$
) for $i = 1, 2, ..., d$

then can select $i_1, i_2, \dots, i_{d'}$ of top-d' importance

importance by linear model

$$score = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^d w_i x_i$$

• intuitive estimate: importance(i) = $|w_i|$ with some 'good' w

idea: if possible to calculate

importance(
$$i$$
) for $i = 1, 2, ..., d$

then can select $i_1, i_2, \dots, i_{d'}$ of top-d' importance

importance by linear model

$$score = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^d w_i x_i$$

- intuitive estimate: importance(i) = |w_i| with some 'good' w
- getting 'good' w: learned from data

idea: if possible to calculate

importance(i) for
$$i = 1, 2, ..., d$$

then can select $i_1, i_2, \dots, i_{d'}$ of top-d' importance

importance by linear model

$$score = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^d w_i x_i$$

- intuitive estimate: importance(i) = |w_i| with some 'good' w
- getting 'good' w: learned from data
- non-linear models? often much harder

idea: if possible to calculate

importance(
$$i$$
) for $i = 1, 2, ..., d$

then can select $i_1, i_2, \dots, i_{d'}$ of top-d' importance

importance by linear model

$$score = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^d w_i x_i$$

- intuitive estimate: importance(i) = |w_i| with some 'good' w
- getting 'good' w: learned from data
- non-linear models? often much harder

next: 'easy' feature selection in RF

idea: random test

idea: random test

idea: random test

—if feature *i* needed, 'random' values of $x_{n,i}$ degrades performance

which random values?

idea: random test

- which random values?
 - uniform, Gaussian, . . .:

idea: random test

- which random values?
 - uniform, Gaussian, . . .: P(x_i) changed

idea: random test

- which random values?
 - uniform, Gaussian, . . .: P(x_i) changed
 - bootstrap, **permutation** (of $\{x_{n,i}\}_{n=1}^{N}$): $P(x_i)$ approximately remained

idea: random test

—if feature i needed, 'random' values of $x_{n,i}$ degrades performance

- which random values?
 - uniform, Gaussian, . . .: P(x_i) changed
 - bootstrap, **permutation** (of $\{x_{n,i}\}_{n=1}^{N}$): $P(x_i)$ approximately remained
- permutation test:

```
importance(i) = performance(\mathcal{D}) - performance(\mathcal{D}^{(p)})
```

with $\mathcal{D}^{(p)}$ is \mathcal{D} with $\{x_{n,i}\}$ replaced by permuted $\{x_{n,i}\}_{n=1}^{N}$

idea: random test

—if feature i needed, 'random' values of $x_{n,i}$ degrades performance

- which random values?
 - uniform, Gaussian, . . .: P(x_i) changed
 - bootstrap, **permutation** (of $\{x_{n,i}\}_{n=1}^{N}$): $P(x_i)$ approximately remained
- permutation test:

```
importance(i) = performance(\mathcal{D}) - performance(\mathcal{D}^{(p)})
```

with $\mathcal{D}^{(p)}$ is \mathcal{D} with $\{x_{n,i}\}$ replaced by permuted $\{x_{n,i}\}_{n=1}^{N}$

permutation test: a general statistical tool for arbitrary non-linear models like RF

$$importance(i) = performance(\mathcal{D}) - performance(\mathcal{D}^{(p)})$$

with $\mathcal{D}^{(p)}$ is \mathcal{D} with $\{x_{n,i}\}$ replaced by permuted $\{x_{n,i}\}_{n=1}^{N}$

 $importance(i) = performance(\mathcal{D}) - performance(\mathcal{D}^{(p)})$

with $\mathcal{D}^{(p)}$ is \mathcal{D} with $\{x_{n,i}\}$ replaced by permuted $\{x_{n,i}\}_{n=1}^{N}$

• $performance(\mathcal{D}^{(p)})$: needs re-training and validation in general

```
importance(i) = performance(\mathcal{D}) - performance(\mathcal{D}^{(p)})
```

```
with \mathcal{D}^{(p)} is \mathcal{D} with \{x_{n,i}\} replaced by permuted \{x_{n,i}\}_{n=1}^{N}
```

- $performance(\mathcal{D}^{(p)})$: needs re-training and validation in general
- 'escaping' validation?

 $importance(i) = performance(\mathcal{D}) - performance(\mathcal{D}^{(p)})$

with $\mathcal{D}^{(p)}$ is \mathcal{D} with $\{x_{n,i}\}$ replaced by permuted $\{x_{n,i}\}_{n=1}^{N}$

- $performance(\mathcal{D}^{(p)})$: needs re-training and validation in general
- 'escaping' validation? OOB in RF

Feature Importance in Original Random Forest

permutation test:

```
importance(i) = performance(\mathcal{D}) - performance(\mathcal{D}^{(p)})
with \mathcal{D}^{(p)} is \mathcal{D} with \{x_{n,i}\} replaced by permuted \{x_{n,i}\}_{n=1}^{N}
```

- $performance(\mathcal{D}^{(p)})$: needs re-training and validation in general
- 'escaping' validation? OOB in RF
- original RF solution: importance(i) = $E_{\text{oob}}(G) E_{\text{oob}}^{(p)}(G)$, where $E_{\text{oob}}^{(p)}$ comes from replacing each request of $x_{n,i}$ by a **permuted OOB** value

Feature Importance in Original Random Forest

permutation test:

```
importance(i) = performance(\mathcal{D}) - performance(\mathcal{D}^{(p)})
with \mathcal{D}^{(p)} is \mathcal{D} with \{x_{n,i}\} replaced by permuted \{x_{n,i}\}_{n=1}^{N}
```

- $performance(\mathcal{D}^{(p)})$: needs re-training and validation in general
- 'escaping' validation? OOB in RF
- original RF solution: importance(i) = $E_{\text{oob}}(G) E_{\text{oob}}^{(p)}(G)$, where $E_{\text{oob}}^{(p)}$ comes from replacing each request of $x_{n,i}$ by a **permuted OOB** value

RF feature selection via permutation + OOB: often efficient and promising in practice

Fun Time

For RF, if the 1126-th feature within the data set is a constant 5566, what would importance(i) be?

- **1** 0
- **2** 1
- **3** 1126
- 4 5566

Fun Time

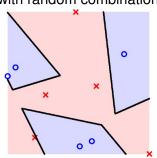
For RF, if the 1126-th feature within the data set is a constant 5566, what would importance(i) be?

- **1** 0
- **2** 1
- **3** 1126
- 4 5566

Reference Answer: 1

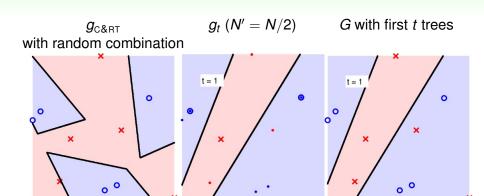
When a feature is a constant, permutation does not change its value. Then, $E_{\rm oob}(G)$ and $E_{\rm oob}^{(\rho)}(G)$ are the same, and thus importance(i) = 0.

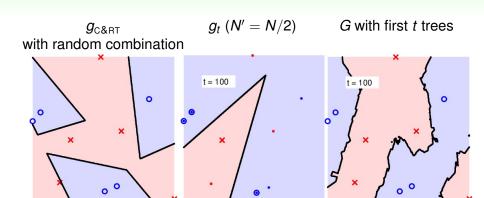
 $g_{\text{C&RT}}$ with random combination

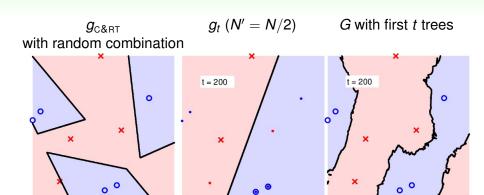


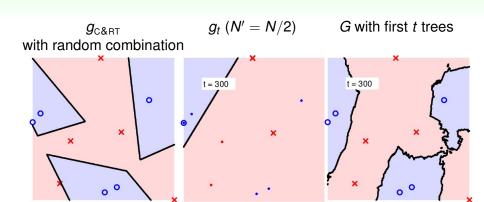
 $g_t (N' = N/2)$

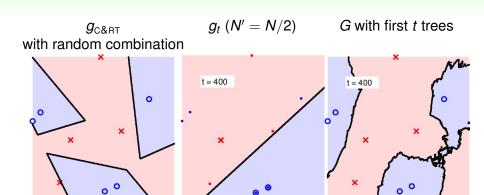
G with first t trees

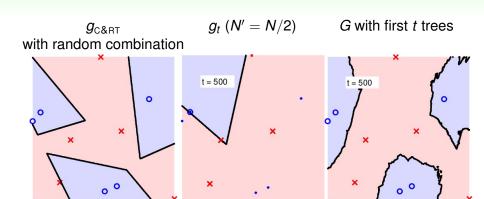


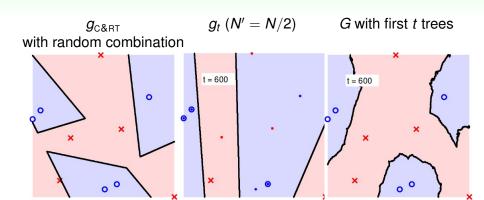


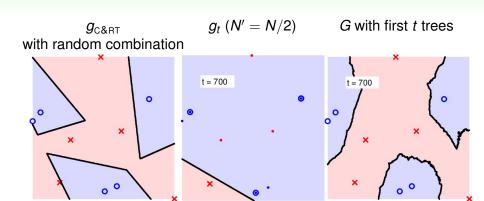




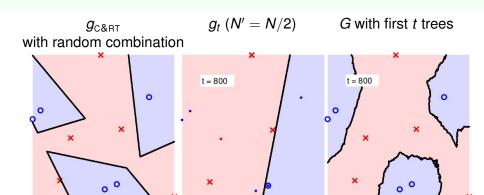




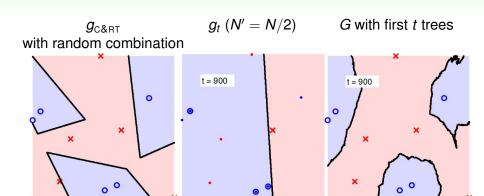




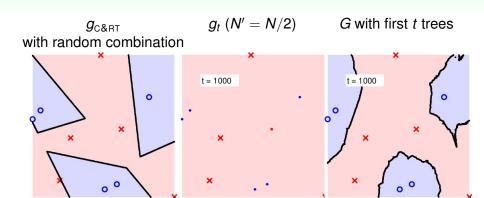
A Simple Data Set



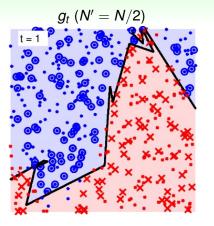
A Simple Data Set

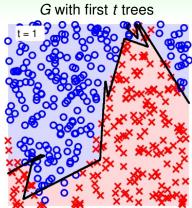


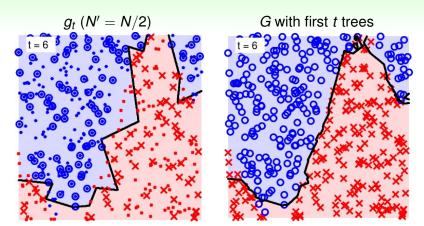
A Simple Data Set

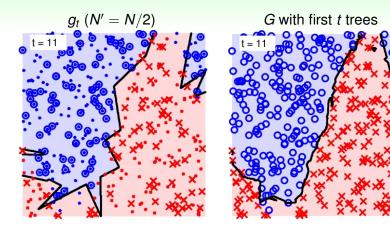


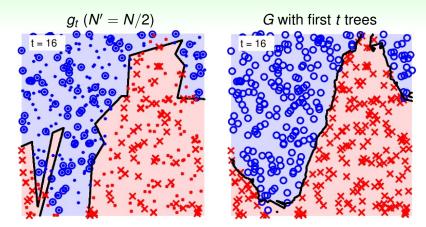
'smooth' and large-margin-like boundary with many trees

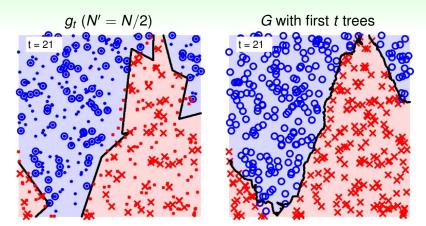




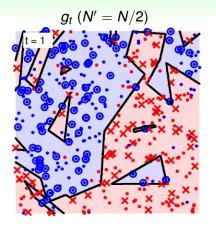


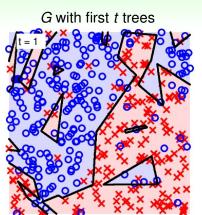


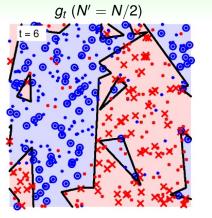


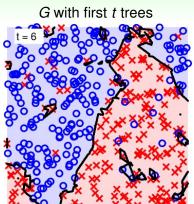


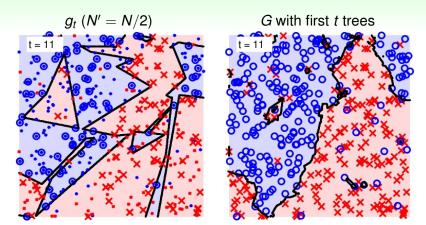
'easy yet robust' nonlinear model

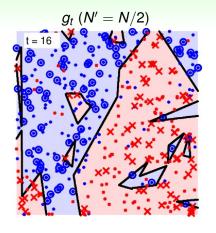


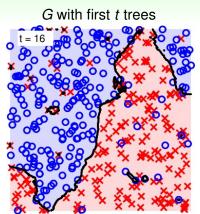


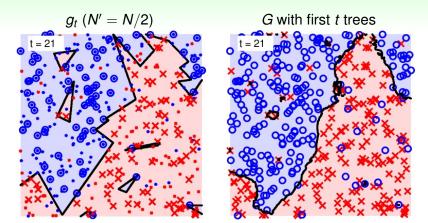












noise corrected by voting

almost every theory: the more, the 'better' assuming good $\bar{g} = \lim_{T \to \infty} G$

almost every theory: the more, the 'better' assuming $\operatorname{good} \bar{g} = \lim_{T \to \infty} G$

Our NTU Experience

 KDDCup 2013 Track 1 predicting author-paper relation

almost every theory: the more, the 'better' assuming $good \bar{g} = \lim_{T \to \infty} G$

Our NTU Experience

• KDDCup 2013 Track 1 (yes, NTU is world champion again! :-)): predicting author-paper relation

almost every theory: the more, the 'better' assuming good $\bar{g} = \lim_{T \to \infty} G$

- KDDCup 2013 Track 1 (yes, NTU is world champion again! :-)): predicting author-paper relation
- E_{val} of **thousands** of trees: [0.015, 0.019] depending **on seed**;

almost every theory: the more, the 'better' assuming $\operatorname{good} \bar{g} = \lim_{T \to \infty} G$

- KDDCup 2013 Track 1 (yes, NTU is world champion again! :-)): predicting author-paper relation
- E_{val} of **thousands** of trees: [0.015, 0.019] depending **on seed**; E_{out} of top 20 teams: [0.014, 0.019]

almost every theory: the more, the 'better' assuming $\operatorname{good} \bar{g} = \lim_{T \to \infty} G$

- KDDCup 2013 Track 1 (yes, NTU is world champion again! :-)): predicting author-paper relation
- E_{val} of **thousands** of trees: [0.015, 0.019] depending **on seed**; E_{out} of top 20 teams: [0.014, 0.019]
- decision: take 12000 trees

almost every theory: the more, the 'better' assuming $\operatorname{good} \bar{g} = \lim_{T \to \infty} G$

- KDDCup 2013 Track 1 (yes, NTU is world champion again! :-)): predicting author-paper relation
- E_{val} of thousands of trees: [0.015, 0.019] depending on seed;
 E_{out} of top 20 teams: [0.014, 0.019]
- decision: take 12000 trees with seed 1

almost every theory: the more, the 'better' assuming $\operatorname{good} \bar{g} = \lim_{T \to \infty} G$

Our NTU Experience

- KDDCup 2013 Track 1 (yes, NTU is world champion again! :-)): predicting author-paper relation
- E_{val} of thousands of trees: [0.015, 0.019] depending on seed;
 E_{out} of top 20 teams: [0.014, 0.019]
- decision: take 12000 trees with seed 1

cons of RF: may need lots of trees if the whole random process too unstable

almost every theory: the more, the 'better' assuming $\operatorname{good} \bar{g} = \lim_{T \to \infty} G$

Our NTU Experience

- KDDCup 2013 Track 1 (yes, NTU is world champion again! :-)): predicting author-paper relation
- E_{val} of thousands of trees: [0.015, 0.019] depending on seed;
 E_{out} of top 20 teams: [0.014, 0.019]
- decision: take 12000 trees with seed 1

cons of RF: may need lots of trees if the whole random process too unstable —should double-check stability of G to ensure enough trees

Fun Time

Which of the following is **not** the best use of Random Forest?

- 1 train each tree with bootstrapped data
- 2 use E_{oob} to validate the performance
- 3 conduct feature selection with permutation test
- 4 fix the number of trees, T, to the lucky number 1126

Fun Time

Which of the following is **not** the best use of Random Forest?

- 1 train each tree with bootstrapped data
- 2 use E_{oob} to validate the performance
- 3 conduct feature selection with permutation test
- 4 fix the number of trees, T, to the lucky number 1126

Reference Answer: 4

A good value of *T* can depend on the nature of the data and the stability of the whole random process.

Summary

- 1 Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models

Lecture 10: Random Forest

Random Forest Algorithm

bag of trees on randomly projected subspaces

- Out-Of-Bag Estimate
 - self-validation with OOB examples
- Feature Selection
 - permutation test for feature importance
- Random Forest in Action
 - 'smooth' boundary with many trees
- next: boosted decision trees beyond classification
- 3 Distilling Implicit Features: Extraction Models