Machine Learning Techniques

(機器學習技法)



Lecture 8: Adaptive Boosting

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models

Lecture 7: Blending and Bagging

blending known diverse hypotheses uniformly, linearly, or even non-linearly; obtaining diverse hypotheses from bootstrapped data

Lecture 8: Adaptive Boosting

- Motivation of Boosting
- Diversity by Re-weighting
- Adaptive Boosting Algorithm
- Adaptive Boosting in Action
- 3 Distilling Implicit Features: Extraction Models

Apple Recognition Problem

- is this a picture of an apple?
- say, want to teach a class of 6 year olds

Apple Recognition Problem

- is this a picture of an apple?
- say, want to teach a class of 6 year olds
- gather photos under CC-BY-2.0 license on Flicker (thanks to the authors below!)

(APAL stands for Apple and Pear Australia Ltd)

APAL

https:

//flic.

kr/p/jzRe4u

Dan Foy https: //flic. kr/p/jNQ55

https: //flic. kr/p/jzP1VB

adrianbartel https: //flic. kr/p/bdy2hZ

kr/p/7jwtGp

//flic.

APAL https: //flic. kr/p/jzPYNr

ANdrzej cH.

kr/p/51DKA8

https:

//flic.

Stuart Webster https: //flic. kr/p/9C3Ybd

APAL https: //flic. kr/p/jzScif

Apple Recognition Problem

- is this a picture of an apple?
- say, want to teach a class of 6 year olds
- gather photos under CC-BY-2.0 license on Flicker (thanks to the authors below!)

Mr. Roboto.

https: //flic. kr/p/i5BN85

Crystal https: //flic. kr/p/kaPYp

Richard North

ifh686 https: //flic. kr/p/6viRFH

Richard North

https: //flic. kr/p/d8tGou

skyseeker https:

//flic. kr/p/2MvnV

Fmilian Robert Vicol

https: //flic. kr/p/bpmGXW

Janet Hudson

https: //flic. kr/p/70DBbm

Nathaniel Mc-Queen

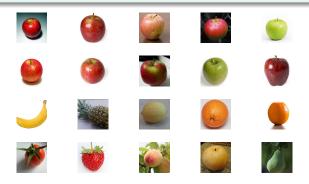
https: //flic. kr/p/pZv1Mf

Rennett Stowe

https: //flic. kr/p/agmnrk

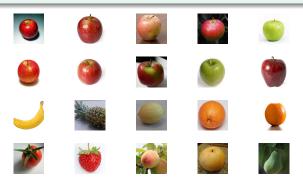
Our Fruit Class Begins

 Teacher: Please look at the pictures of apples and non-apples below. Based on those pictures, how would you describe an apple? Michael?



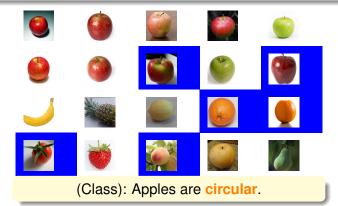
Our Fruit Class Begins

- Teacher: Please look at the pictures of apples and non-apples below. Based on those pictures, how would you describe an apple? Michael?
- Michael: I think apples are circular.



Our Fruit Class Begins

- Teacher: Please look at the pictures of apples and non-apples below. Based on those pictures, how would you describe an apple? Michael?
- Michael: I think apples are circular.

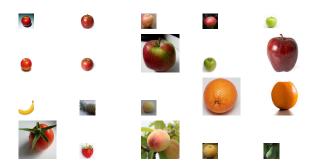


Our Fruit Class Continues

 Teacher: Being circular is a good feature for the apples. However, if you only say circular, you could make several mistakes. What else can we say for an apple? Tina?

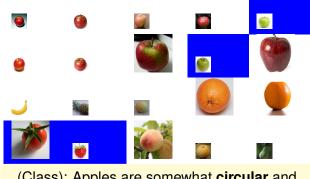
Our Fruit Class Continues

- Teacher: Being circular is a good feature for the apples. However, if you only say circular, you could make several mistakes. What else can we say for an apple? Tina?
- Tina: It looks like apples are red.



Our Fruit Class Continues

- Teacher: Being circular is a good feature for the apples. However, if you only say circular, you could make several mistakes. What else can we say for an apple? Tina?
- Tina: It looks like apples are red.



(Class): Apples are somewhat **circular** and somewhat **red**.

Our Fruit Class Continues More

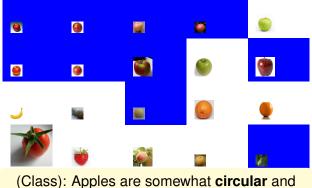
 Teacher: Yes. Many apples are red. However, you could still make mistakes based on circular and red. Do you have any other suggestions, Joey?

Our Fruit Class Continues More

- Teacher: Yes. Many apples are red. However, you could still make mistakes based on circular and red. Do you have any other suggestions, Joey?
- Joey: Apples could also be green.

Our Fruit Class Continues More

- Teacher: Yes. Many apples are red. However, you could still make mistakes based on circular and red. Do you have any other suggestions, Joey?
- Joey: Apples could also be green.



(Class): Apples are somewhat **circular** and somewhat **red** and possibly **green**.

Our Fruit Class Ends

Teacher: Yes. It seems that apples might be circular, red, green.
 But you may confuse them with tomatoes or peaches, right? Any more suggestions, Jessica?

Our Fruit Class Ends

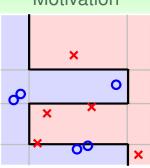
- Teacher: Yes. It seems that apples might be circular, red, green.
 But you may confuse them with tomatoes or peaches, right? Any more suggestions, Jessica?
- Jessica: Apples have stems at the top.

Our Fruit Class Ends

- Teacher: Yes. It seems that apples might be circular, red, green.
 But you may confuse them with tomatoes or peaches, right? Any more suggestions, Jessica?
- Jessica: Apples have stems at the top.

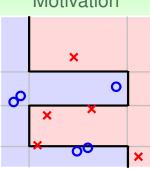
(Class): Apples are somewhat **circular**, somewhat **red**, possibly **green**, and may have **stems** at the top.

Motivation

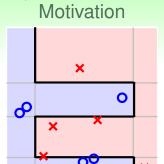


students: simple hypotheses g_t (like vertical/horizontal lines)

Motivation

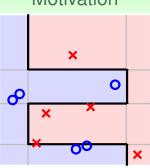


- students: simple hypotheses g_t (like vertical/horizontal lines)
- (Class): sophisticated hypothesis *G* (like black curve)



- students: simple hypotheses g_t (like vertical/horizontal lines)
- (Class): sophisticated hypothesis *G* (like black curve)
- Teacher: a tactic learning algorithm that directs the students to focus on key examples

Motivation



- students: simple hypotheses g_t (like vertical/horizontal lines)
- (Class): sophisticated hypothesis *G* (like black curve)
- Teacher: a tactic learning algorithm that directs the students to focus on key examples

next: the 'math' of such an algorithm

Fun Time

Which of the following can help recognize an apple?

- apples are often circular
- 2 apples are often red or green
- 3 apples often have stems at the top
- 4 all of the above

Fun Time

Which of the following can help recognize an apple?

- apples are often circular
- 2 apples are often red or green
- 3 apples often have stems at the top
- 4 all of the above

Reference Answer: 4

Congratulations! You have passed first grade. :-)

$$\mathcal{D} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), (\boldsymbol{x}_3, y_3), (\boldsymbol{x}_4, y_4)\}$$

$$\overset{\text{bootstrap}}{\Longrightarrow} \quad \tilde{\mathcal{D}}_t = \{(\mathbf{x}_1, y_1), (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_4, y_4)\}$$

$E_{\text{in}} \text{ on } \tilde{D}_{t}$ $E_{\text{in}}^{0/1}(h) = \frac{1}{4} \sum_{(\mathbf{x}, y) \in \tilde{D}_{t}} \llbracket y \neq h(\mathbf{x}) \rrbracket$ $(\mathbf{x}_{1}, y_{1}), (\mathbf{x}_{1}, y_{1})$ (\mathbf{x}_{2}, y_{2}) (\mathbf{x}_{4}, y_{4})

weighted E_{in} on \mathcal{D}

$$(\mathbf{x}_1, y_1), u_1 = 2$$

 $(\mathbf{x}_2, y_2), u_2 = 1$
 $(\mathbf{x}_3, y_3), u_3 = 0$
 $(\mathbf{x}_4, y_4), u_4 = 1$

$E_{\rm in}$ on $D_{\rm in}$

$$E_{\text{in}}^{0/1}(h) = \frac{1}{4} \sum_{(\mathbf{x}, y) \in \tilde{D}_t} \llbracket y \neq h(\mathbf{x}) \rrbracket$$
$$(\mathbf{x}_1, y_1), (\mathbf{x}_1, y_1)$$
$$(\mathbf{x}_2, y_2)$$
$$(\mathbf{x}_4, y_4)$$

$$\begin{split} \mathcal{D} &= \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3), (\mathbf{x}_4, y_4) \} \\ \stackrel{\text{bootstrap}}{\Longrightarrow} & \tilde{\mathcal{D}}_t = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_4, y_4) \} \end{split}$$

weighted E_{in} on \mathcal{D}

$$E_{\text{in}}^{\mathbf{u}}(h) = \frac{1}{4} \sum_{n=1}^{4} u_{n}^{(t)} \cdot [y_{n} \neq h(\mathbf{x}_{n})]$$

$$(\mathbf{x}_{1}, y_{1}), u_{1} = 2$$

$$(\mathbf{x}_{2}, y_{2}), u_{2} = 1$$

$$(\mathbf{x}_{3}, y_{3}), u_{3} = 0$$

$$(\mathbf{x}_{4}, y_{4}), u_{4} = 1$$

$$E_{\text{in}} \text{ on } \overline{D}_t$$

$$E_{\text{in}}^{0/1}(h) = \frac{1}{4} \sum_{(\mathbf{x}, y) \in \tilde{D}_t} \llbracket y \neq h(\mathbf{x}) \rrbracket$$

$$(\mathbf{x}_1, y_1), (\mathbf{x}_1, y_1)$$

$$(\mathbf{x}_2, y_2)$$

 (\mathbf{x}_4, y_4)

$$\begin{split} \mathcal{D} &= \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3), (\mathbf{x}_4, y_4) \} \\ \stackrel{\text{bootstrap}}{\Longrightarrow} & \tilde{\mathcal{D}}_t = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_4, y_4) \} \end{split}$$

weighted $E_{\rm in}$ on \mathcal{D}

$$E_{\text{in}}^{\mathbf{u}}(h) = \frac{1}{4} \sum_{n=1}^{4} u_{n}^{(t)} \cdot [y_{n} \neq h(\mathbf{x}_{n})]$$

$$(\mathbf{x}_{1}, y_{1}), u_{1} = 2$$

$$(\mathbf{x}_{2}, y_{2}), u_{2} = 1$$

$$(\mathbf{x}_{3}, y_{3}), u_{3} = 0$$

$$(\mathbf{x}_{4}, y_{4}), u_{4} = 1$$

$$E_{\text{in}} \text{ on } \overline{D}_{\ell}$$

$$E_{\text{in}}^{0/1}(h) = \frac{1}{4} \sum [y \neq h(\mathbf{x})]$$

$$(\mathbf{x}_1, y_1), (\mathbf{x}_1, y_1)$$

 (\mathbf{x}_2, y_2)
 (\mathbf{x}_4, y_4)

each diverse g_t in bagging: by minimizing bootstrap-weighted error

minimize (regularized)

$$E_{\rm in}^{\mathbf{u}}(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot \operatorname{err}(y_n, h(\mathbf{x}_n))$$

minimize (regularized)

$$E_{\text{in}}^{\mathbf{u}}(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot \text{err}(y_n, h(\mathbf{x}_n))$$

SVM

$$E_{\rm in}^{\bf u} \propto C \sum_{n=1}^{N} u_n \widehat{\rm err}_{\rm SVM}$$
 by dual QP

minimize (regularized)

$$E_{\text{in}}^{\mathbf{u}}(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot \text{err}(y_n, h(\mathbf{x}_n))$$

SVM

$$E_{\rm in}^{\bf u} \propto C \sum_{n=1}^{N} u_n \widehat{\rm err}_{\rm SVM}$$
 by dual QP

⇔ adjusted upper bound

$$0 \le \alpha_n \le Cu_n$$

minimize (regularized)

$$E_{\rm in}^{\mathbf{u}}(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot \operatorname{err}(y_n, h(\mathbf{x}_n))$$

SVM

 $E_{\text{in}}^{\mathbf{u}} \propto C \sum_{n=1}^{N} u_n \widehat{\text{err}}_{\text{SVM}}$ by dual QP \Leftrightarrow adjusted upper bound $0 < \alpha_n < C u_n$

logistic regression

$$E_{\rm in}^{\rm u} \propto \sum_{n=1}^{N} u_n {\rm err}_{\rm CE}$$
 by SGD

minimize (regularized)

$$E_{\text{in}}^{\mathbf{u}}(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot \text{err}(y_n, h(\mathbf{x}_n))$$

SVM

$$E_{\text{in}}^{\mathbf{u}} \propto C \sum_{n=1}^{N} u_n \widehat{\text{err}}_{\text{SVM}}$$
 by dual QP

⇔ adjusted upper bound

$$0 \leq \alpha_n \leq C u_n$$

logistic regression

$$E_{\text{in}}^{\mathbf{u}} \propto \sum_{n=1}^{N} u_n \text{err}_{\text{CE}} \text{ by SGD}$$

 $\Leftrightarrow \text{sample } (\mathbf{x}_n, y_n) \text{ with }$

 \Leftrightarrow sample (\mathbf{x}_n, y_n) with probability proportional to u_n

minimize (regularized)

$$E_{\rm in}^{\mathbf{u}}(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot \operatorname{err}(y_n, h(\mathbf{x}_n))$$

SVM

$$E_{\text{in}}^{\mathbf{u}} \propto C \sum_{n=1}^{N} u_n \widehat{\text{err}}_{\text{SVM}}$$
 by dual QP \Leftrightarrow adjusted upper bound

$$0 \le \alpha_n \le C u_n$$

logistic regression

$$E_{\text{in}}^{\mathbf{u}} \propto \sum_{n=1}^{N} u_n \text{err}_{\text{CE}} \text{ by SGD}$$

 $\Leftrightarrow \text{sample } (\mathbf{x}_n, y_n) \text{ with }$

probability proportional to u_n

example-weighted learning:

extension of class-weighted learning in Lecture 8 of ML Foundations

Re-weighting for More Diverse Hypothesis

'improving' bagging for binary classification:
how to re-weight for more diverse hypotheses?

Re-weighting for More Diverse Hypothesis

'improving' bagging for binary classification:

how to re-weight for more diverse hypotheses?

$$\frac{g_t}{g_{t+1}} \leftarrow \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left(\sum_{n=1}^{N} u_n^{(t)} \left[y_n \neq h(\mathbf{x}_n) \right] \right)$$

$$\frac{g_{t+1}}{g_{t+1}} \leftarrow \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left(\sum_{n=1}^{N} u_n^{(t+1)} \left[y_n \neq h(\mathbf{x}_n) \right] \right)$$

'improving' bagging for binary classification:

how to re-weight for more diverse hypotheses?

$$g_{t} \leftarrow \operatorname{argmin} \left(\sum_{n=1}^{N} u_{n}^{(t)} \left[y_{n} \neq h(\mathbf{x}_{n}) \right] \right)$$

$$g_{t+1} \leftarrow \operatorname{argmin} \left(\sum_{n=1}^{N} u_{n}^{(t+1)} \left[y_{n} \neq h(\mathbf{x}_{n}) \right] \right)$$

if g_t 'not good' for $\mathbf{u}^{(t+1)}$

'improving' bagging for binary classification:

how to re-weight for more diverse hypotheses?

$$\frac{g_t}{g_{t+1}} \leftarrow \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left(\sum_{n=1}^{N} u_n^{(t)} \left[y_n \neq h(\mathbf{x}_n) \right] \right)$$

$$\frac{g_{t+1}}{g_{t+1}} \leftarrow \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left(\sum_{n=1}^{N} u_n^{(t+1)} \left[y_n \neq h(\mathbf{x}_n) \right] \right)$$

if g_t 'not good' for $\mathbf{u}^{(t+1)} \Longrightarrow g_t$ -like hypotheses not returned as g_{t+1}

'improving' bagging for binary classification:
how to re-weight for more diverse hypotheses?

$$\frac{g_t}{g_{t+1}} \leftarrow \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left(\sum_{n=1}^{N} u_n^{(t)} \left[y_n \neq h(\mathbf{x}_n) \right] \right)$$

$$\frac{g_{t+1}}{g_{t+1}} \leftarrow \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left(\sum_{n=1}^{N} u_n^{(t+1)} \left[y_n \neq h(\mathbf{x}_n) \right] \right)$$

if g_t 'not good' for $\mathbf{u}^{(t+1)} \Longrightarrow g_t$ -like hypotheses not returned as $g_{t+1} \Longrightarrow g_{t+1}$ diverse from g_t

'improving' bagging for binary classification:

how to re-weight for more diverse hypotheses?

$$g_{t} \leftarrow \operatorname{argmin} \left(\sum_{n=1}^{N} u_{n}^{(t)} \left[y_{n} \neq h(\mathbf{x}_{n}) \right] \right)$$

$$g_{t+1} \leftarrow \operatorname{argmin} \left(\sum_{n=1}^{N} u_{n}^{(t+1)} \left[y_{n} \neq h(\mathbf{x}_{n}) \right] \right)$$

if g_t 'not good' for $\mathbf{u}^{(t+1)} \Longrightarrow g_t$ -like hypotheses not returned as $g_{t+1} \Longrightarrow g_{t+1}$ diverse from g_t

idea: **construct** $\mathbf{u}^{(t+1)}$ to make g_t random-like

$$\frac{\sum_{n=1}^{N} u_n^{(t+1)} [\![y_n \neq \underline{g_t}(\mathbf{x}_n)]\!]}{\sum_{n=1}^{N} u_n^{(t+1)}} =$$

'improving' bagging for binary classification:

how to re-weight for more diverse hypotheses?

$$\frac{g_t}{g_{t+1}} \leftarrow \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left(\sum_{n=1}^{N} u_n^{(t)} \left[y_n \neq h(\mathbf{x}_n) \right] \right)$$

$$\frac{g_{t+1}}{g_{t+1}} \leftarrow \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left(\sum_{n=1}^{N} u_n^{(t+1)} \left[y_n \neq h(\mathbf{x}_n) \right] \right)$$

if g_t 'not good' for $\mathbf{u}^{(t+1)} \Longrightarrow g_t$ -like hypotheses not returned as $g_{t+1} \Longrightarrow g_{t+1}$ diverse from g_t

idea: **construct** $\mathbf{u}^{(t+1)}$ to make g_t random-like

$$\frac{\sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket}{\sum_{n=1}^{N} u_n^{(t+1)}} = \frac{1}{2}$$

want:
$$\frac{\sum_{n=1}^{N} u_n^{(t+1)} [y_n \neq g_t(\mathbf{x}_n)]}{\sum_{n=1}^{N} u_n^{(t+1)}} = \frac{1}{2}, \text{ where}$$

want:
$$\frac{\sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket}{\sum_{n=1}^{N} u_n^{(t+1)}} = \frac{\blacksquare_{t+1}}{\blacksquare_{t+1} + \blacksquare_{t+1}} = \frac{1}{2}, \text{ where}$$

$$\blacksquare_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \qquad , \bullet_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)}$$

want:
$$\frac{\sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket}{\sum_{n=1}^{N} u_n^{(t+1)}} = \frac{\blacksquare_{t+1}}{\blacksquare_{t+1} + \blacksquare_{t+1}} = \frac{1}{2}, \text{ where}$$

$$\blacksquare_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket, \bullet_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)}$$

want:
$$\frac{\sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket}{\sum_{n=1}^{N} u_n^{(t+1)}} = \frac{\blacksquare_{t+1}}{\blacksquare_{t+1} + \blacksquare_{t+1}} = \frac{1}{2}, \text{ where}$$

$$\blacksquare_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket, \bullet_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n = g_t(\mathbf{x}_n) \rrbracket$$

want:
$$\frac{\sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket}{\sum_{n=1}^{N} u_n^{(t+1)}} = \frac{\blacksquare_{t+1}}{\blacksquare_{t+1} + \bullet_{t+1}} = \frac{1}{2}, \text{ where}$$

$$\blacksquare_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket, \bullet_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n = g_t(\mathbf{x}_n) \rrbracket$$

• need:
$$(total \ u_n^{(t+1)} \ of \ incorrect) = (total \ u_n^{(t+1)} \ of \ correct)$$

want:
$$\frac{\sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket}{\sum_{n=1}^{N} u_n^{(t+1)}} = \frac{\blacksquare_{t+1}}{\blacksquare_{t+1} + \blacksquare_{t+1}} = \frac{1}{2}, \text{ where}$$

$$\blacksquare_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket, \bullet_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n = g_t(\mathbf{x}_n) \rrbracket$$

• need:
$$\underbrace{(\text{total } u_n^{(t+1)} \text{ of incorrect})}_{=t+1} = \underbrace{(\text{total } u_n^{(t+1)} \text{ of correct})}_{=t+1}$$

one possibility by re-scaling (multiplying) weights, if

(total
$$u_n^{(t)}$$
 of incorrect) = 1126; (total $u_n^{(t)}$ of correct) = 6211; incorrect: $u_n^{(t+1)} \leftarrow u_n^{(t)}$ correct: $u_n^{(t+1)} \leftarrow u_n^{(t)}$.

want:
$$\frac{\sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket}{\sum_{n=1}^{N} u_n^{(t+1)}} = \frac{\blacksquare_{t+1}}{\blacksquare_{t+1} + \blacksquare_{t+1}} = \frac{1}{2}, \text{ where}$$

$$\blacksquare_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket, \bullet_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n = g_t(\mathbf{x}_n) \rrbracket$$

• need:
$$\underbrace{(\text{total } u_n^{(t+1)} \text{ of incorrect})}_{=t+1} = \underbrace{(\text{total } u_n^{(t+1)} \text{ of correct})}_{=t+1}$$

one possibility by re-scaling (multiplying) weights, if

(total
$$u_n^{(t)}$$
 of incorrect) = 1126; (total $u_n^{(t)}$ of correct) = 6211; incorrect: $u_n^{(t+1)} \leftarrow u_n^{(t)} \cdot 6211$ correct: $u_n^{(t+1)} \leftarrow u_n^{(t)} \cdot 1126$

want:
$$\frac{\sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket}{\sum_{n=1}^{N} u_n^{(t+1)}} = \frac{\blacksquare_{t+1}}{\blacksquare_{t+1} + \bullet_{t+1}} = \frac{1}{2}, \text{ where}$$

$$\blacksquare_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket, \bullet_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n = g_t(\mathbf{x}_n) \rrbracket$$

- need: $\underbrace{(\text{total } u_n^{(t+1)} \text{ of incorrect})}_{\text{t+1}} = \underbrace{(\text{total } u_n^{(t+1)} \text{ of correct})}_{\text{t+1}}$
- one possibility by re-scaling (multiplying) weights, if

(total
$$u_n^{(t)}$$
 of incorrect) = 1126; (total $u_n^{(t)}$ of correct) = 6211; (weighted incorrect rate) = $\frac{1126}{7337}$ (weighted correct rate) = $\frac{6211}{7337}$ incorrect: $u_n^{(t+1)} \leftarrow u_n^{(t)} \cdot 6211$ correct: $u_n^{(t+1)} \leftarrow u_n^{(t)} \cdot 1126$

want:
$$\frac{\sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket}{\sum_{n=1}^{N} u_n^{(t+1)}} = \frac{\blacksquare_{t+1}}{\blacksquare_{t+1} + \bullet_{t+1}} = \frac{1}{2}, \text{ where}$$

$$\blacksquare_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket, \bullet_{t+1} = \sum_{n=1}^{N} u_n^{(t+1)} \llbracket y_n = g_t(\mathbf{x}_n) \rrbracket$$

• need:
$$\underbrace{(\text{total } u_n^{(t+1)} \text{ of incorrect})}_{t+1} = \underbrace{(\text{total } u_n^{(t+1)} \text{ of correct})}_{t+1}$$

one possibility by re-scaling (multiplying) weights, if

(total
$$u_n^{(t)}$$
 of incorrect) = 1126; (total $u_n^{(t)}$ of correct) = 6211; (weighted incorrect rate) = $\frac{1126}{7337}$ (weighted correct rate) = $\frac{6211}{7337}$ incorrect: $u_n^{(t+1)} \leftarrow u_n^{(t)} \cdot 6211$ correct: $u_n^{(t+1)} \leftarrow u_n^{(t)} \cdot 1126$

'optimal' re-weighting under weighted incorrect rate ϵ_t : multiply incorrect $\propto (1 - \epsilon_t)$; multiply correct $\propto \epsilon_t$

Fun Time

For four examples with $u_n^{(1)} = \frac{1}{4}$ for all examples. If g_1 predicts the first example wrongly but all the other three examples correctly. After the 'optimal' re-weighting, what is $u_1^{(2)}/u_2^{(2)}$?

- **1** 4
- **2** 3
- **3** 1/3
- **4** 1/4

Fun Time

For four examples with $u_n^{(1)} = \frac{1}{4}$ for all examples. If g_1 predicts the first example wrongly but all the other three examples correctly. After the 'optimal' re-weighting, what is $u_1^{(2)}/u_2^{(2)}$?

- **1** 4
- **2** 3
- **3** 1/3
- **4** 1/4

Reference Answer: 2

By 'optimal' re-weighting, u_1 is scaled proportional to $\frac{3}{4}$ and every other u_n is scaled proportional to $\frac{1}{4}$. So example 1 is now three times more important than any other example.

'optimal' re-weighting: let
$$\epsilon_t = \frac{\sum_{n=1}^N u_n^{(t)} \llbracket y_n \neq \frac{g_t}{N} (\mathbf{x}_n) \rrbracket}{\sum_{n=1}^N u_n^{(t)}}$$
,

'optimal' re-weighting: let
$$\epsilon_t = \frac{\sum_{n=1}^N u_n^{(t)} \llbracket y_n \neq \frac{g_t}{g_t} (\mathbf{x}_n) \rrbracket}{\sum_{n=1}^N u_n^{(t)}},$$

define scaling factor
$$\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$$

```
\begin{array}{cccc} \text{incorrect} & \leftarrow & \text{incorrect} & \cdot & \blacklozenge_t \\ \text{correct} & \leftarrow & \text{correct} & / & \blacklozenge_t \end{array}
```

'optimal' re-weighting: let
$$\epsilon_t = \frac{\sum_{n=1}^N u_n^{(t)} \llbracket y_n \neq \underline{g_t}(\mathbf{x}_n) \rrbracket}{\sum_{n=1}^N u_n^{(t)}}$$
,

multiply incorrect $\propto (1 - \epsilon_t)$; multiply correct $\propto \epsilon_t$

define scaling factor
$$\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$$

$$\frac{\mathsf{incorrect}}{\mathsf{correct}} \leftarrow \frac{\mathsf{incorrect}}{\mathsf{correct}} \cdot \blacklozenge_t$$

equivalent to optimal re-weighting

'optimal' re-weighting: let
$$\epsilon_t = \frac{\sum_{n=1}^N u_n^{(t)} [y_n \neq \underline{g_t}(\mathbf{x}_n)]}{\sum_{n=1}^N u_n^{(t)}}$$
,

define scaling factor
$$\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$$

$$\begin{array}{ccc} \text{incorrect} & \leftarrow & \text{incorrect} & \cdot & \blacklozenge_t \\ \text{correct} & \leftarrow & \text{correct} & / & \blacklozenge_t \end{array}$$

- · equivalent to optimal re-weighting
- $\phi_t \ge 1$ iff $\epsilon_t \le \frac{1}{2}$ —physical meaning:

'optimal' re-weighting: let
$$\epsilon_t = \frac{\sum_{n=1}^N u_n^{(t)} \llbracket y_n \neq \underline{g_t}(\mathbf{x}_n) \rrbracket}{\sum_{n=1}^N u_n^{(t)}}$$
,

define scaling factor
$$\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$$

$$\frac{\mathsf{incorrect}}{\mathsf{correct}} \leftarrow \frac{\mathsf{incorrect}}{\mathsf{correct}} \cdot \blacklozenge_t$$

- equivalent to optimal re-weighting
- $\phi_t \geq 1$ iff $\epsilon_t \leq \frac{1}{2}$
 - —physical meaning: scale up incorrect; scale down correct

'optimal' re-weighting: let
$$\epsilon_t = \frac{\sum_{n=1}^N u_n^{(t)} \llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket}{\sum_{n=1}^N u_n^{(t)}}$$
,

define scaling factor
$$\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$$

$$\frac{\mathsf{incorrect}}{\mathsf{correct}} \leftarrow \frac{\mathsf{incorrect}}{\mathsf{correct}} \cdot \blacklozenge_t$$

- · equivalent to optimal re-weighting
- $\phi_t \geq 1$ iff $\epsilon_t \leq \frac{1}{2}$
 - —physical meaning: scale up incorrect; scale down correct
 - —like what Teacher does

'optimal' re-weighting: let
$$\epsilon_t = \frac{\sum_{n=1}^N u_n^{(t)} [y_n \neq \mathbf{g}_t(\mathbf{x}_n)]}{\sum_{n=1}^N u_n^{(t)}}$$
,

multiply incorrect $\propto (1 - \epsilon_t)$; multiply correct $\propto \epsilon_t$

define scaling factor
$$\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$$

$$\frac{\mathsf{incorrect}}{\mathsf{correct}} \leftarrow \frac{\mathsf{incorrect}}{\mathsf{correct}} \cdot \blacklozenge_t$$

- equivalent to optimal re-weighting
- $\phi_t \ge 1$ iff $\epsilon_t \le \frac{1}{2}$
 - —physical meaning: scale up incorrect; scale down correct
 - —like what Teacher does

scaling-up incorrect examples leads to diverse hypotheses

$$\mathbf{u}^{(1)} = ?$$
 for $t = 1, 2, ..., T$

1 obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where \mathcal{A} tries to minimize $\mathbf{u}^{(t)}$ -weighted 0/1 error

$$\mathbf{u}^{(1)} = ?$$
 for $t = 1, 2, ..., T$

- 1 obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where \mathcal{A} tries to minimize $\mathbf{u}^{(t)}$ -weighted 0/1 error
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ϵ_t = weighted error (incorrect) rate of g_t

```
\mathbf{u}^{(1)} = ? for t = 1, 2, ..., T
```

- 1 obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where \mathcal{A} tries to minimize $\mathbf{u}^{(t)}$ -weighted 0/1 error
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ϵ_t = weighted error (incorrect) rate of g_t return $G(\mathbf{x})$ =?

```
u^{(1)} = ? for t = 1, 2, ..., T
```

- ① obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where \mathcal{A} tries to minimize $\mathbf{u}^{(t)}$ -weighted 0/1 error
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ϵ_t = weighted error (incorrect) rate of g_t return $G(\mathbf{x}) = ?$
 - want g_1 'best' for E_{in} : $u_n^{(1)} = \frac{1}{N}$

```
\mathbf{u}^{(1)} = ? for t = 1, 2, ..., T
```

- ① obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where \mathcal{A} tries to minimize $\mathbf{u}^{(t)}$ -weighted 0/1 error
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ϵ_t = weighted error (incorrect) rate of g_t return $G(\mathbf{x}) = ?$
 - want g_1 'best' for E_{in} : $u_n^{(1)} = \frac{1}{N}$
 - G(x):

```
\mathbf{u}^{(1)} = ? for t = 1, 2, ..., T
```

- 1 obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where \mathcal{A} tries to minimize $\mathbf{u}^{(t)}$ -weighted 0/1 error
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ϵ_t = weighted error (incorrect) rate of g_t return $G(\mathbf{x}) = ?$
 - want g_1 'best' for E_{in} : $u_n^{(1)} = \frac{1}{N}$
 - *G*(**x**):
 - uniform?

```
u^{(1)} = ? for t = 1, 2, ..., T
```

- ① obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where \mathcal{A} tries to minimize $\mathbf{u}^{(t)}$ -weighted 0/1 error
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ϵ_t = weighted error (incorrect) rate of g_t return $G(\mathbf{x}) = ?$
 - want g_1 'best' for E_{in} : $u_n^{(1)} = \frac{1}{N}$
 - G(x):
 - uniform? but g₂ very bad for E_{in} (why?:-))

```
u^{(1)} = ? for t = 1, 2, ..., T
```

- ① obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where \mathcal{A} tries to minimize $\mathbf{u}^{(t)}$ -weighted 0/1 error
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ϵ_t = weighted error (incorrect) rate of g_t return $G(\mathbf{x}) = ?$
 - want g_1 'best' for E_{in} : $u_n^{(1)} = \frac{1}{N}$
 - G(x):
 - uniform? but g_2 very bad for E_{in} (why? :-))
 - linear, non-linear? as you wish

```
u^{(1)} = ? for t = 1, 2, ..., T
```

- ① obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where \mathcal{A} tries to minimize $\mathbf{u}^{(t)}$ -weighted 0/1 error
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ϵ_t = weighted error (incorrect) rate of g_t return $G(\mathbf{x}) = ?$
 - want g_1 'best' for E_{in} : $u_n^{(1)} = \frac{1}{N}$
 - *G*(**x**):
 - uniform? but g₂ very bad for E_{in} (why? :-))
 - linear, non-linear? as you wish

next: a special algorithm to aggregate **linearly on the fly** with theoretical guarantee

$$\mathbf{u}^{(1)} = [\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}]$$

for $t = 1, 2, \dots, T$

- **1** obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where ...
- ② update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ...

$$\mathbf{u}^{(1)} = [\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}]$$

for $t = 1, 2, \dots, T$

- **1** obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where ...
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ...
- \odot compute α_t

return
$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t g_t(\mathbf{x})\right)$$

$$\mathbf{u}^{(1)} = [\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}]$$

for $t = 1, 2, \dots, T$

- **1** obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where ...
- ② update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ...
- 3 compute α_t

return
$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t g_t(\mathbf{x})\right)$$

wish: large α_t for 'good' $g_t \leftarrow$

$$\mathbf{u}^{(1)} = [\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}]$$

for $t = 1, 2, \dots, T$

- **1** obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where ...
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ...
- \odot compute α_t

return
$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t g_t(\mathbf{x})\right)$$

• wish: large α_t for 'good' $g_t \longleftarrow \alpha_t = \text{monotonic}(\phi_t)$

$$\mathbf{u}^{(1)} = [\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}]$$

for $t = 1, 2, \dots, T$

- **1** obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where ...
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ...
- 3 compute $\alpha_t = \ln(\blacklozenge_t)$ return $G(\mathbf{x}) = \text{sign}\left(\sum_{t=1}^T \alpha_t g_t(\mathbf{x})\right)$
 - wish: large α_t for 'good' g_t ← α_t = monotonic(♦_t)
 - will take $\alpha_t = \ln(\blacklozenge_t)$

$$\mathbf{u}^{(1)} = [\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}]$$

for $t = 1, 2, \dots, T$

- **1** obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where ...
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ...
- 3 compute $\alpha_t = \ln(\phi_t)$

return
$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t g_t(\mathbf{x})\right)$$

- wish: large α_t for 'good' $g_t \longleftarrow \alpha_t = \text{monotonic}(\blacklozenge_t)$
- will take $\alpha_t = \ln(\blacklozenge_t)$
 - $\epsilon_t = \frac{1}{2} \Longrightarrow \bullet_t = 1 \Longrightarrow \alpha_t = 0$ (bad g_t zero weight)

$$\mathbf{u}^{(1)} = [\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}]$$

for $t = 1, 2, \dots, T$

- **1** obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where ...
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ...
- 3 compute $\alpha_t = \ln(\blacklozenge_t)$

return
$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t g_t(\mathbf{x})\right)$$

- wish: large α_t for 'good' $g_t \longleftarrow \alpha_t = \text{monotonic}(\phi_t)$
- will take $\alpha_t = \ln(\blacklozenge_t)$
 - $\epsilon_t = \frac{1}{2} \Longrightarrow \blacklozenge_t = 1 \Longrightarrow \alpha_t = 0$ (bad g_t zero weight)
 - $\epsilon_t = \bar{0} \Longrightarrow \blacklozenge_t = \infty \Longrightarrow \alpha_t = \infty$ (super g_t superior weight)

$$\mathbf{u}^{(1)} = [\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}]$$

for $t = 1, 2, \dots, T$

- **1** obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where ...
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, where ...
- 3 compute $\alpha_t = \ln(\phi_t)$

return
$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t g_t(\mathbf{x})\right)$$

- wish: large α_t for 'good' g_t ← α_t = monotonic(♦_t)
- will take $\alpha_t = \ln(\blacklozenge_t)$
 - $\epsilon_t = \frac{1}{2} \Longrightarrow \bullet_t = 1 \Longrightarrow \alpha_t = 0$ (bad g_t zero weight)
 - $\epsilon_t = 0 \Longrightarrow \phi_t = \infty \Longrightarrow \alpha_t = \infty$ (super q_t superior weight)
- Adaptive Boosting = weak base learning algorithm \mathcal{A} (Student)
 - + optimal re-weighting factor ♦_t (Teacher)
 - + 'magic' linear aggregation α_t (Class)

Adaptive Boosting (AdaBoost) Algorithm

$$\mathbf{u}^{(1)} = [\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}]$$

for $t = 1, 2, \dots, T$

- 1 obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where \mathcal{A} tries to minimize $\mathbf{u}^{(t)}$ -weighted 0/1 error
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by

$$[y_n \neq g_t(\mathbf{x}_n)]$$
 (incorrect examples): $u_n^{(t+1)} \leftarrow u_n^{(t)} \cdot \blacklozenge_t$ $[y_n = g_t(\mathbf{x}_n)]$ (correct examples): $u_n^{(t+1)} \leftarrow u_n^{(t)} / \blacklozenge_t$

where
$$lacklost _t = \sqrt{rac{1-\epsilon_t}{\epsilon_t}}$$
 and $\epsilon_t = rac{\sum_{n=1}^N u_n^{(t)} \llbracket y_n
eq g_t(\mathbf{x}_n)
rbracket}{\sum_{n=1}^N u_n^{(t)}}$

3 compute $\alpha_t = \ln(\blacklozenge_t)$

return
$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t g_t(\mathbf{x})\right)$$

Adaptive Boosting (AdaBoost) Algorithm

$$\mathbf{u}^{(1)} = [\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}]$$

for $t = 1, 2, \dots, T$

- 1 obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where \mathcal{A} tries to minimize $\mathbf{u}^{(t)}$ -weighted 0/1 error
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by

$$\llbracket y_n \neq g_t(\mathbf{x}_n) \rrbracket$$
 (incorrect examples): $u_n^{(t+1)} \leftarrow u_n^{(t)} \cdot \blacklozenge_t$ $\llbracket y_n = g_t(\mathbf{x}_n) \rrbracket$ (correct examples): $u_n^{(t+1)} \leftarrow u_n^{(t)} / \blacklozenge_t$

where
$$lackloslash_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$$
 and $\epsilon_t = \frac{\sum_{n=1}^N u_n^{(t)} [y_n \neq g_t(\mathbf{x}_n)]}{\sum_{n=1}^N u_n^{(t)}}$

3 compute $\alpha_t = \ln(\blacklozenge_t)$

return
$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t g_t(\mathbf{x})\right)$$

AdaBoost: provable boosting property

From VC bound

$$E_{\text{out}}(G) \leq E_{\text{in}}(G) + O\left(\sqrt{\underbrace{O(d_{\text{VC}}(\mathcal{H}) \cdot T \log T)}_{d_{\text{VC}} \text{ of all possible } G} \cdot \frac{\log N}{N}}\right)$$

From VC bound

$$E_{\text{out}}(G) \leq E_{\text{in}}(G) + O\left(\sqrt{\underbrace{O(d_{\text{VC}}(\mathcal{H}) \cdot T \log T)}_{d_{\text{VC}} \text{ of all possible } G} \cdot \frac{\log N}{N}}\right)$$

first term can be small:

$$E_{in}(G) = 0$$
 after $T = O(\log N)$ iterations if $\epsilon_t \le \epsilon < \frac{1}{2}$ always

From VC bound

$$E_{\text{out}}(G) \leq E_{\text{in}}(G) + O\left(\sqrt{\underbrace{O(d_{\text{VC}}(\mathcal{H}) \cdot T \log T)}_{d_{\text{VC}} \text{ of all possible } G} \cdot \frac{\log N}{N}}\right)$$

- first term can be small:
 - $E_{in}(G) = 0$ after $T = O(\log N)$ iterations if $\epsilon_t \le \epsilon < \frac{1}{2}$ always
- second term can be small: overall d_{VC} grows "slowly" with T

From VC bound

$$E_{\mathrm{out}}(G) \leq E_{\mathrm{in}}(G) + O\left(\sqrt{\underbrace{O(d_{\mathrm{VC}}(\mathcal{H}) \cdot T \log T)}_{d_{\mathrm{VC}} \text{ of all possible } G} \cdot \frac{\log N}{N}}\right)$$

- first term can be small
 - $E_{in}(G) = 0$ after $T = O(\log N)$ iterations if $\epsilon_t \le \epsilon < \frac{1}{2}$ always
- second term can be small: overall d_{VC} grows "slowly" with T

boosting view of AdaBoost:

if A is weak but always **slightly better than random** ($\epsilon_t \le \epsilon < \frac{1}{2}$), then (AdaBoost+A) can be strong ($E_{in} = 0$ and E_{out} small)

Fun Time

According to $\alpha_t = \ln(\blacklozenge_t)$, and $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, when would $\alpha_t > 0$?

- 1 $\epsilon_t < \frac{1}{2}$
- **2** $\epsilon_t > \frac{1}{2}$
- $3 \epsilon_t \neq 1$
- $4 \epsilon_t \neq 0$

Fun Time

According to $\alpha_t = \ln(\blacklozenge_t)$, and $\blacklozenge_t = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$, when would $\alpha_t > 0$?

- $\bullet_t < \tfrac{1}{2}$
- $2 \epsilon_t > \frac{1}{2}$
- $\epsilon_t \neq 1$
- $\mathbf{4} \; \epsilon_t \neq \mathbf{0}$

Reference Answer: (1)

The math part should be easy for you, and it is interesting to think about the physical meaning: $\alpha_t > 0$ (g_t is useful for G) if and only if the weighted error rate of g_t is better than random!

want: a 'weak' base learning algorithm \mathcal{A} that minimizes $E_{\text{in}}^{\mathbf{u}}(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot [\![y_n \neq h(\mathbf{x}_n)]\!]$ a little bit

want: a 'weak' base learning algorithm \mathcal{A} that minimizes $E_{\text{in}}^{\mathbf{u}}(h) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}_n \cdot [\![\mathbf{y}_n \neq h(\mathbf{x}_n)]\!]$ a little bit

a popular choice: decision stump

• in ML Foundations Homework 2, remember? :-)

$$h_{\mathbf{s},i,\theta}(\mathbf{x}) = \mathbf{s} \cdot \operatorname{sign}(x_i - \theta)$$

want: a 'weak' base learning algorithm \mathcal{A} that minimizes $E_{\text{in}}^{\mathbf{u}}(h) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}_n \cdot [\![\mathbf{y}_n \neq h(\mathbf{x}_n)]\!]$ a little bit

a popular choice: decision stump

• in ML Foundations Homework 2, remember? :-)

$$h_{\mathbf{s},i,\theta}(\mathbf{x}) = \mathbf{s} \cdot \operatorname{sign}(x_i - \theta)$$

 positive and negative rays on some feature: three parameters (feature i, threshold θ, direction s)

want: a 'weak' base learning algorithm \mathcal{A} that minimizes $E_{\text{in}}^{\mathbf{u}}(h) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}_n \cdot [\![\mathbf{y}_n \neq h(\mathbf{x}_n)]\!]$ a little bit

a popular choice: decision stump

• in ML Foundations Homework 2, remember? :-)

$$h_{\mathbf{s},i,\theta}(\mathbf{x}) = \mathbf{s} \cdot \operatorname{sign}(x_i - \theta)$$

- positive and negative rays on some feature: three parameters (feature i, threshold θ, direction s)
- physical meaning: vertical/horizontal lines in 2D

want: a 'weak' base learning algorithm \mathcal{A} that minimizes $E_{\text{in}}^{\mathbf{u}}(h) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}_n \cdot [\![\mathbf{y}_n \neq h(\mathbf{x}_n)]\!]$ a little bit

a popular choice: decision stump

• in ML Foundations Homework 2, remember? :-)

$$h_{\mathbf{s},i,\theta}(\mathbf{x}) = \mathbf{s} \cdot \operatorname{sign}(x_i - \theta)$$

- positive and negative rays on some feature: three parameters (feature i, threshold θ, direction s)
- physical meaning: vertical/horizontal lines in 2D
- efficient to optimize: O(d ⋅ N log N) time

want: a 'weak' base learning algorithm \mathcal{A} that minimizes $E_{\text{in}}^{\mathbf{u}}(h) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}_n \cdot [\![\mathbf{y}_n \neq h(\mathbf{x}_n)]\!]$ a little bit

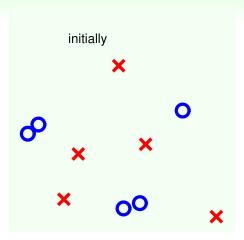
a popular choice: decision stump

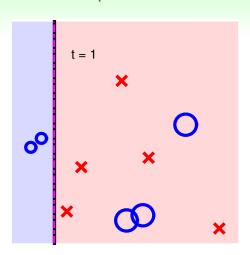
• in ML Foundations Homework 2, remember? :-)

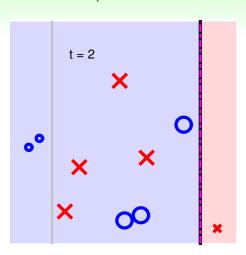
$$h_{\mathbf{s},i,\theta}(\mathbf{x}) = \mathbf{s} \cdot \operatorname{sign}(x_i - \theta)$$

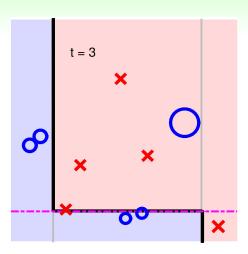
- positive and negative rays on some feature: three parameters (feature i, threshold θ, direction s)
- physical meaning: vertical/horizontal lines in 2D
- efficient to optimize: O(d · N log N) time

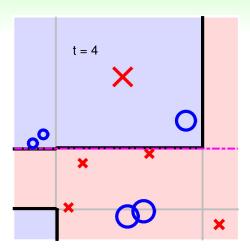
decision stump model: allows efficient minimization of E_{in}^{u} but perhaps too weak to work by itself

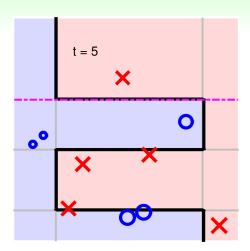


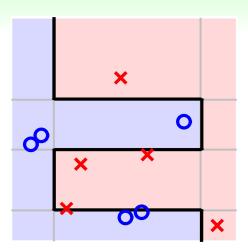




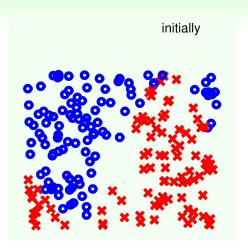


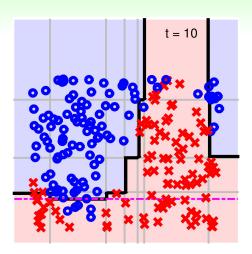


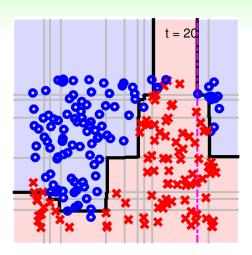


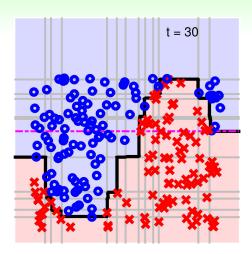


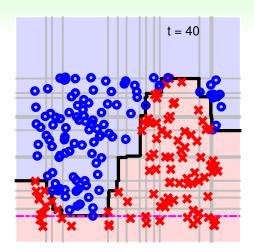
'Teacher'-like algorithm works!

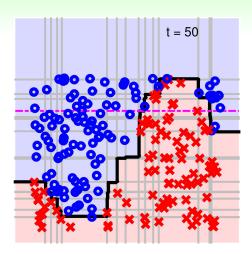


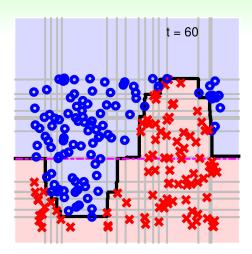


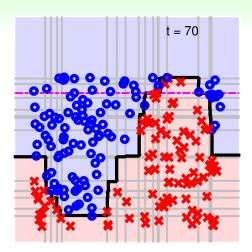


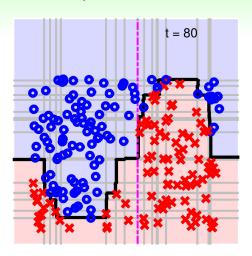


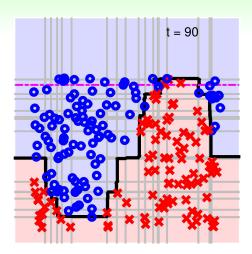


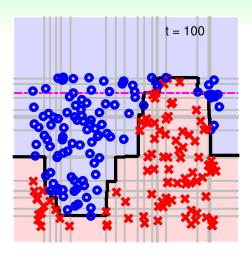












AdaBoost-Stump: non-linear yet efficient

Adaptive Boosting in Action

AdaBoost-Stump in Application

original picture by F.U.S.I.A. assistant and derivative work by Sylenius via Wikimedia Commons

The World's First 'Real-Time' Face Detection Program

Adaptive Boosting in Action

AdaBoost-Stump in Application

original picture by F.U.S.I.A. assistant and derivative work by Sylenius via Wikimedia Commons

The World's First 'Real-Time' Face Detection Program

 AdaBoost-Stump as core model: linear aggregation of key patches selected out of 162,336 possibilities in 24x24 images —feature selection achieved through AdaBoost-Stump

Hsuan-Tien Lin (NTU CSIE)

Adaptive Boosting in Action

AdaBoost-Stump in Application

original picture by F.U.S.I.A. assistant and derivative work by Sylenius via Wikimedia Commons

The World's First 'Real-Time' Face Detection Program

- AdaBoost-Stump as core model: linear aggregation of key patches selected out of 162,336 possibilities in 24x24 images —feature selection achieved through AdaBoost-Stump
- modified linear aggregation G to rule out non-face earlier
 efficiency achieved through modified linear aggregation

AdaBoost-Stump in Application

original picture by F.U.S.I.A. assistant and derivative work by Sylenius via Wikimedia Commons

The World's First 'Real-Time' Face Detection Program

- AdaBoost-Stump as core model: linear aggregation of key patches selected out of 162,336 possibilities in 24x24 images —feature selection achieved through AdaBoost-Stump
- modified linear aggregation G to rule out non-face earlier
 efficiency achieved through modified linear aggregation

AdaBoost-Stump:

efficient feature selection and aggregation

Fun Time

For a data set of size 9876 that contains $\mathbf{x}_n \in \mathbb{R}^{5566}$, after running AdaBoost-Stump for 1126 iterations, what is the number of distinct features within \mathbf{x} that are effectively used by G?

- $0 \le \text{number} \le 1126$
- 2 1126 < number ≤ 5566</p>
- **3** $5566 < \text{number} \le 9876$
- 4 9876 < number

Fun Time

For a data set of size 9876 that contains $\mathbf{x}_n \in \mathbb{R}^{5566}$, after running AdaBoost-Stump for 1126 iterations, what is the number of distinct features within \mathbf{x} that are effectively used by G?

- **1** $0 \le \text{number} \le 1126$
- 2 1126 < number ≤ 5566</p>
- **3** $5566 < number \le 9876$
- 4 9876 < number

Reference Answer: 1

Each decision stump takes only one feature. So 1126 decision stumps need at most 1126 distinct features.

Summary

- 1 Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models

Lecture 8: Adaptive Boosting

- Motivation of Boosting aggregate weak hypotheses for strength
- Diversity by Re-weighting scale up incorrect, scale down correct
- Adaptive Boosting Algorithm two heads are better than one, theoretically
- Adaptive Boosting in Action
 AdaBoost-Stump useful and efficient
- next: learning conditional aggregation instead of linear one
- 3 Distilling Implicit Features: Extraction Models