Lecture 6: Support Vector Regression

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering
National Taiwan University
(國立台灣大學資訊工程系)
Roadmap

1. Embedding Numerous Features: Kernel Models

 Lecture 5: Kernel Logistic Regression
 - two-level learning for SVM-like sparse model for soft classification, or using representer theorem with regularized logistic error for dense model

 Lecture 6: Support Vector Regression
 - Kernel Ridge Regression
 - Support Vector Regression Primal
 - Support Vector Regression Dual
 - Summary of Kernel Models

2. Combining Predictive Features: Aggregation Models

3. Distilling Implicit Features: Extraction Models
Recall: Representer Theorem

for any \textbf{L2-regularized} linear model

\[
\min_w \frac{\lambda}{N} w^T w + \frac{1}{N} \sum_{n=1}^{N} \text{err}(y_n, w^T z_n)
\]

optimal \(w_* = \sum_{n=1}^{N} \beta_n z_n \).

—any \textbf{L2-regularized} linear model can be \textit{kernelized}!

regression with squared error

\[
\text{err}(y, w^T z) = (y - w^T z)^2
\]

—analytic solution for linear/ridge regression

\textbf{analytic solution} for \textit{kernel} ridge regression?
Kernel Ridge Regression Problem

Solving ridge regression
\[
\min_w \frac{\lambda}{N} w^T w + \frac{1}{N} \sum_{n=1}^{N} (y_n - w^T z_n)^2
\]
yields optimal solution \(w^* = \sum_{n=1}^{N} \beta_n z_n \)

With out loss of generality, can solve for optimal \(\beta \) instead of \(w \)

\[
\min_{\beta} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \beta_n \beta_m K(x_n, x_m) + \frac{1}{N} \sum_{n=1}^{N} \left(y_n - \sum_{m=1}^{N} \beta_m K(x_n, x_m) \right)^2
\]

Regularization of \(\beta \) on K-based regularizer

Linear regression of \(\beta \) on K-based features

\[
= \frac{\lambda}{N} \beta^T K \beta + \frac{1}{N} \left(\beta^T K^T K \beta - 2 \beta^T K^T y + y^T y \right)
\]

Kernel ridge regression:
Use representer theorem for kernel trick on ridge regression
Solving Kernel Ridge Regression

\[E_{\text{aug}}(\beta) = \frac{\lambda}{N} \beta^T K \beta + \frac{1}{N} \left(\beta^T K^T K \beta - 2 \beta^T K^T y + y^T y \right) \]

\[\nabla E_{\text{aug}}(\beta) = \frac{2}{N} \left(\lambda K^T I \beta + K^T K \beta - K^T y \right) = \frac{2}{N} K^T \left((\lambda I + K) \beta - y \right) \]

want \(\nabla E_{\text{aug}}(\beta) = 0 \): one analytic solution

\[\beta = (\lambda I + K)^{-1} y \]

- \((\cdot)^{-1}\) always exists for \(\lambda > 0\), because
 - \(\lambda \) positive semi-definite (Mercer’s condition, remember? :-))
- time complexity: \(O(N^3)\) with simple dense matrix inversion

can now do non-linear regression ‘easily’
Linear versus Kernel Ridge Regression

Linear Ridge Regression

\[\mathbf{w} = (\lambda \mathbf{I} + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \]

- more restricted
- \(O(d^3 + d^2N) \) training; \(O(d) \) prediction
 - efficient when \(N \gg d \)

Kernel Ridge Regression

\[\beta = (\lambda \mathbf{I} + \mathbf{K})^{-1} \mathbf{y} \]

- more flexible with \(K \)
- \(O(N^3) \) training; \(O(N) \) prediction
 - hard for big data

linear versus kernel:
trade-off between **efficiency** and **flexibility**
After getting the optimal β from kernel ridge regression based on some kernel function K, what is the resulting $g(x)$?

1. \[\sum_{n=1}^{N} \beta_n K(x_n, x) \]
2. \[\sum_{n=1}^{N} y_n \beta_n K(x_n, x) \]
3. \[\sum_{n=1}^{N} \beta_n K(x_n, x) + \lambda \]
4. \[\sum_{n=1}^{N} y_n \beta_n K(x_n, x) + \lambda \]
After getting the optimal β from kernel ridge regression based on some kernel function K, what is the resulting $g(x)$?

1. $\sum_{n=1}^{N} \beta_n K(x_n, x)$
2. $\sum_{n=1}^{N} y_n \beta_n K(x_n, x)$
3. $\sum_{n=1}^{N} \beta_n K(x_n, x) + \lambda$
4. $\sum_{n=1}^{N} y_n \beta_n K(x_n, x) + \lambda$

Reference Answer: ①

Recall that the optimal $w = \sum_{n=1}^{N} \beta_n z_n$ by representer theorem and $g(x) = w^T z$. The answer comes from combining the two equations with the kernel trick.
Soft-Margin SVM versus Least-Squares SVM

least-squares SVM (LSSVM)
= kernel ridge regression for classification

- LSSVM: similar boundary, **many more SVs**
 \(\implies \) slower prediction, **dense \(\beta \) (BIG \(g \))

- dense \(\beta \): LSSVM, kernel LogReg;
 sparse \(\alpha \): standard SVM

want: **sparse \(\beta \)** like standard SVM
will consider **tube regression**

- within a tube: **no error**
- outside a tube: **error** by distance to tube

error measure:

\[
\text{err}(y, s) = \max(0, |s - y| - \epsilon)
\]

- \(|s - y| \leq \epsilon\): 0
- \(|s - y| > \epsilon\): \(|s - y| - \epsilon\)

—usually called **\(\epsilon\)-insensitive error** with \(\epsilon > 0\)

todo: L2-regularized **tube regression** to get **sparse** \(\beta\)
Tube versus Squared Regression

Tube

\[\text{err}(y, s) = \max(0, |s - y| - \epsilon) \]

Squared

\[\text{err}(y, s) = (s - y)^2 \]

- Tube ≈ Squared when \(|s - y| \) small
- Less affected by outliers
L2-Regularized Tube Regression

\[
\min_w \frac{\lambda}{N} w^T w + \frac{1}{N} \sum_{n=1}^{N} \max \left(0, |w^T z_n - y_n| - \epsilon \right)
\]

Regularized Tube Regr.

\[
\min \frac{\lambda}{N} w^T w + \frac{1}{N} \sum \text{tube violation}
\]
- unconstrained,
- but \textbf{max not differentiable}
- ‘representer’ to kernelize,
- but \textbf{no obvious sparsity}

Standard SVM

\[
\min \frac{1}{2} w^T w + C \sum \text{margin vio.}
\]
- not differentiable,
- but \textbf{QP}
- dual to kernelize,
- KKT conditions \Rightarrow \textbf{sparsity}

will mimic \textbf{standard SVM} derivation:

\[
\min_{b,w} \frac{1}{2} w^T w + C \sum_{n=1}^{N} \max \left(0, |w^T z_n + b - y_n| - \epsilon \right)
\]
Support Vector Regression (SVR) primal:
minimize regularizer + (upper tube violations ξ_n^\vee & lower violations ξ_n^\wedge)

Standard Support Vector Regression Primal

$$\begin{align*}
\min_{b,w} & \quad \frac{1}{2} w^T w + C \sum_{n=1}^{N} \max \left(0, |w^T z_n + b - y_n| - \epsilon \right) \\
\text{s.t.} & \quad |w^T z_n + b - y_n| \leq \epsilon + \xi_n \\
& \quad \xi_n \geq 0
\end{align*}$$

Support Vector Regression (SVR) primal:

 Mimicking standard SVM

$$\begin{align*}
\min_{b,w,\xi} & \quad \frac{1}{2} w^T w + C \sum_{n=1}^{N} \xi_n \\
\text{s.t.} & \quad |w^T z_n + b - y_n| \leq \epsilon + \xi_n \\
& \quad \xi_n \geq 0
\end{align*}$$

Making constraints linear

$$\begin{align*}
\frac{1}{2} w^T w + C \sum_{n=1}^{N} (\xi_n^\vee + \xi_n^\wedge) \\
-\epsilon - \xi_n^\vee \leq y_n - w^T z_n - b \leq \epsilon + \xi_n^\wedge \\
\xi_n^\vee \geq 0, \xi_n^\wedge \geq 0
\end{align*}$$
Quadratic Programming for SVR

\[
\begin{align*}
\min_{b,w,\xi^\vee,\xi^\wedge} & \quad \frac{1}{2} w^T w + C \sum_{n=1}^{N} (\xi_n^\vee + \xi_n^\wedge) \\
\text{s.t.} & \quad -\epsilon - \xi_n^\vee \leq y_n - w^T z_n - b \leq \epsilon + \xi_n^\wedge \\
& \quad \xi_n^\vee \geq 0, \xi_n^\wedge \geq 0
\end{align*}
\]

- parameter \(C \): trade-off of regularization & tube violation
- parameter \(\epsilon \): vertical tube width
 — one more parameter to choose!
- QP of \(\tilde{d} + 1 + 2N \) variables, \(2N + 2N \) constraints

next: remove dependence on \(\tilde{d} \) by SVR primal \(\Rightarrow \text{dual?} \)
Consider solving support vector regression with $\epsilon = 0.05$. At the optimal solution, assume that $w^T z_1 + b = 1.234$ and $y_1 = 1.126$. What is ξ^\vee_1 and ξ^\wedge_1?

1. $\xi^\vee_1 = 0.108$, $\xi^\wedge_1 = 0.000$
2. $\xi^\vee_1 = 0.000$, $\xi^\wedge_1 = 0.108$
3. $\xi^\vee_1 = 0.058$, $\xi^\wedge_1 = 0.000$
4. $\xi^\vee_1 = 0.000$, $\xi^\wedge_1 = 0.058$
Consider solving support vector regression with $\epsilon = 0.05$. At the optimal solution, assume that $w^T z_1 + b = 1.234$ and $y_1 = 1.126$. What is ξ^\vee_1 and ξ^\wedge_1?

1. $\xi^\vee_1 = 0.108, \xi^\wedge_1 = 0.000$

2. $\xi^\vee_1 = 0.000, \xi^\wedge_1 = 0.108$

3. $\xi^\vee_1 = 0.058, \xi^\wedge_1 = 0.000$

4. $\xi^\vee_1 = 0.000, \xi^\wedge_1 = 0.058$

Reference Answer: 3

$y_1 - w^T z_1 - b = -0.108 < -0.05$, which means that there is a lower tube violation of amount 0.058. When there is a lower tube violation on some example, trivially there is no upper tube violation.
Support Vector Regression Dual

Lagrange Multipliers α^\wedge & α^\vee

Objective function

$$\frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^{N} (\xi^\vee_n + \xi^\wedge_n)$$

Lagrange multiplier α^\wedge_n for $y_n - \mathbf{w}^T \mathbf{z}_n - b \leq \epsilon + \xi^\wedge_n$

Lagrange multiplier α^\vee_n for $-\epsilon - \xi^\vee_n \leq y_n - \mathbf{w}^T \mathbf{z}_n - b$

Some of the KKT Conditions

- $\frac{\partial L}{\partial \mathbf{w}_i} = 0$: $\mathbf{w} = \sum_{n=1}^{N} (\alpha^\wedge_n - \alpha^\vee_n) \mathbf{z}_n$; $\frac{\partial L}{\partial b} = 0$: $\sum_{n=1}^{N} (\alpha^\wedge_n - \alpha^\vee_n) = 0$

- Complementary slackness:
 - $\alpha^\wedge_n (\epsilon + \xi^\wedge_n - y_n + \mathbf{w}^T \mathbf{z}_n + b) = 0$
 - $\alpha^\vee_n (\epsilon + \xi^\vee_n + y_n - \mathbf{w}^T \mathbf{z}_n - b) = 0$

Standard dual can be derived using the same steps as Lecture 4
Support Vector Regression (SVR)

\[
\begin{align*}
\text{min} & \quad \frac{1}{2} w^T w + C \sum_{n=1}^{N} \xi_n \\
\text{s.t.} & \quad y_n (w^T z_n + b) \geq 1 - \xi_n \\
& \quad \xi_n \geq 0
\end{align*}
\]

Support Vector Regression Dual (SVRD)

\[
\begin{align*}
\text{min} & \quad \frac{1}{2} w^T w + C \sum_{n=1}^{N} (\xi_{n}^\wedge + \xi_{n}^\vee) \\
\text{s.t.} & \quad 1 (y_n - w^T z_n - b) \leq \epsilon + \xi_{n}^\wedge \\
& \quad 1 (w^T z_n + b - y_n) \leq \epsilon + \xi_{n}^\vee \\
& \quad \xi_{n}^\wedge \geq 0, \quad \xi_{n}^\vee \geq 0
\end{align*}
\]

Hsuan-Tien Lin (NTU CSIE)
Support Vector Regression

Support Vector Regression Dual

Sparsity of SVR Solution

- \(\mathbf{w} = \sum_{n=1}^{N} (\alpha_n^\wedge - \alpha_n^\vee) \beta_n \mathbf{z}_n \)

- Complementary slackness:
 \[
 \alpha_n^\wedge (\epsilon + \xi_n^\wedge - y_n + \mathbf{w}^T \mathbf{z}_n + b) = 0 \\
 \alpha_n^\vee (\epsilon + \xi_n^\vee + y_n - \mathbf{w}^T \mathbf{z}_n - b) = 0
 \]

- Strictly within tube \(|\mathbf{w}^T \mathbf{z}_n + b - y_n| < \epsilon \):
 \[
 \implies \xi_n^\wedge = 0 \text{ and } \xi_n^\vee = 0 \\
 \implies (\epsilon + \xi_n^\wedge - y_n + \mathbf{w}^T \mathbf{z}_n + b) \neq 0 \text{ and } (\epsilon + \xi_n^\vee + y_n - \mathbf{w}^T \mathbf{z}_n - b) \neq 0 \\
 \implies \alpha_n^\wedge = 0 \text{ and } \alpha_n^\vee = 0 \\
 \implies \beta_n = 0
 \]

- SVs \(\beta_n \neq 0 \): on or outside tube

SVR: allows sparse \(\beta \)
What is the number of variables within the QP problem of SVR dual?

1. \(\tilde{d} + 1 \)
2. \(\tilde{d} + 1 + 2N \)
3. \(N \)
4. \(2N \)
What is the number of variables within the QP problem of SVR dual?

- 1. $\tilde{d} + 1$
- 2. $\tilde{d} + 1 + 2N$
- 3. N
- 4. $2N$

Reference Answer: 4

There are N variables within α^\vee, and another N in α^\wedge.
Map of Linear Models

PLA/pocket
minimize $\text{err}_0/1$ specially

linear SVR
minimize regularized err_{TUBE} by QP

linear soft-margin SVM
minimize regularized $\hat{\text{err}}_{\text{SVM}}$ by QP

linear ridge regression
minimize regularized err_{SQR} analytically

regularized logistic regression
minimize regularized err_{CE} by GD/SGD

second row: popular in **LIBLINEAR**
Summary of Kernel Models

Map of Linear/Kernel Models

- PLA/pocket
- Linear soft-margin SVM
- SVM: minimize SVM dual by QP
- SVR: minimize SVR dual by QP
- linear SVR
- linear ridge regression
- kernel ridge regression
- kernel logistic regression
- regularized logistic regression
- kernelized linear ridge regression
- kernelized regularized logistic regression
- probabilistic SVM: run SVM-transformed logistic regression

fourth row: popular in LIBSVM
Support Vector Regression

Summary of Kernel Models

Map of Linear/Kernel Models

- PLA/pocket
- linear soft-margin SVM
- SVM
- linear SVR
- linear ridge regression
- kernel ridge regression
- SVM
- SVR
- regularized logistic regression
- kernel logistic regression
- probabilistic SVM

First row: less used due to worse performance

Third row: less used due to dense β
possible kernels:

polynomial, Gaussian, . . ., your design (with Mercer’s condition),
coupled with

kernel ridge regression

kernel logistic regression

SVM

SVR

probabilistic SVM

powerful extension of linear models

— with great power comes great responsibility in Spiderman, remember? :-)
Which of the following model is less used in practice?

1. pocket
2. ridge regression
3. (linear or kernel) soft-margin SVM
4. regularized logistic regression

Reference Answer:

The pocket algorithm generally does not perform better than linear soft-margin SVM, and hence is less used in practice.
Which of the following model is less used in practice?

1. pocket
2. ridge regression
3. (linear or kernel) soft-margin SVM
4. regularized logistic regression

Reference Answer: 1

The pocket algorithm generally does not perform better than linear soft-margin SVM, and hence is less used in practice.
Summary

1. Embedding Numerous Features: Kernel Models
 - Lecture 6: Support Vector Regression
 - Kernel Ridge Regression
 * representer theorem on ridge regression
 - Support Vector Regression Primal
 * minimize regularized tube errors
 - Support Vector Regression Dual
 * a QP similar to SVM dual
 - Summary of Kernel Models
 * with great power comes great responsibility

2. Combining Predictive Features: Aggregation Models
 - next: making cocktail from learning models

3. Distilling Implicit Features: Extraction Models