Lecture 2: Dual Support Vector Machine

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering
National Taiwan University (國立台灣大學資訊工程系)
Roadmap

1. Embedding Numerous Features: Kernel Models
 - Lecture 1: Linear Support Vector Machine
 - Linear SVM: more robust and solvable with quadratic programming
 - Lecture 2: Dual Support Vector Machine
 - Motivation of Dual SVM
 - Lagrange Dual SVM
 - Solving Dual SVM
 - Messages behind Dual SVM

2. Combining Predictive Features: Aggregation Models
3. Distilling Implicit Features: Extraction Models
Dual Support Vector Machine

Motivation of Dual SVM

Non-Linear Support Vector Machine Revisited

\[\min_{b,w} \frac{1}{2} w^T w \]

s. t. \[y_n(w^T \phi(x_n) + b) \geq 1, \]

for \(n = 1, 2, \ldots, N \)

Non-Linear Hard-Margin SVM

1. \(Q = \begin{bmatrix} 0 & 0^T \tilde{d} \\ 0_{\tilde{d}} & I_{\tilde{d}} \end{bmatrix}; p = 0_{\tilde{d}+1} \)
 \(a_n^T = y_n \begin{bmatrix} 1 \\ z_n^T \end{bmatrix} \); \(c_n = 1 \)

2. \(\begin{bmatrix} b \\ w \end{bmatrix} \leftarrow \text{QP}(Q, p, A, c) \)

3. return \(b \in \mathbb{R} \) & \(w \in \mathbb{R}^{\tilde{d}} \) with
 \(g_{\text{SVM}}(x) = \text{sign}(w^T \phi(x) + b) \)

- demanded: not many (large-margin), but sophisticated boundary (feature transform)
- QP with \(\tilde{d} + 1 \) variables and \(N \) constraints
 —challenging if \(\tilde{d} \) large, or infinite?! :-)

goal: SVM without dependence on \(\tilde{d} \)
Todo: SVM ‘without’ \tilde{d}

Original SVM
(convex) QP of
- $\tilde{d} + 1$ variables
- N constraints

‘Equivalent’ SVM
(convex) QP of
- N variables
- $N + 1$ constraints

Warning: Heavy Math!!!!!!
- introduce some necessary math without rigor to help understand SVM deeper
- ‘claim’ some results if details unnecessary —like how we ‘claimed’ Hoeffding

‘Equivalent’ SVM: based on some dual problem of Original SVM
Key Tool: Lagrange Multipliers

Regularization by Constrained-Minimizing E_{in}

$$\min_w E_{\text{in}}(w) \text{ s.t. } w^T w \leq C$$

Regularization by Minimizing E_{aug}

$$\min_w E_{\text{aug}}(w) = E_{\text{in}}(w) + \frac{\lambda}{N} w^T w$$

- C equivalent to some $\lambda \geq 0$ by checking optimality condition
 $$\nabla E_{\text{in}}(w) + \frac{2\lambda}{N} w = 0$$

- regularization: view λ as given parameter instead of C, and solve ‘easily’

- dual SVM: view λ’s as unknown given the constraints, and solve them as variables instead

how many λ’s as variables?

N—one per constraint
Starting Point: Constrained to ‘Unconstrained’

\[\begin{align*}
\min_{b, w} & \quad \frac{1}{2} w^T w \\
\text{s.t.} & \quad y_n(w^T z_n + b) \geq 1, \\
& \quad \text{for } n = 1, 2, \ldots, N
\end{align*} \]

Lagrange Function

with Lagrange multipliers \(\alpha_n \),

\[L(b, w, \alpha) = \frac{1}{2} w^T w + \sum_{n=1}^{N} \alpha_n (1 - y_n(w^T z_n + b)) \]

Claim

SVM \(\equiv \min_{b, w} \left(\max_{\alpha_n \geq 0} L(b, w, \alpha) \right) = \min_{b, w} \left(\infty \text{ if violate } ; \frac{1}{2} w^T w \text{ if feasible} \right) \)

- any ‘violating’ \((b, w)\): \(\max_{\alpha_n \geq 0} \left(\Box + \sum_n \alpha_n \text{(some positive)} \right) \rightarrow \infty \)
- any ‘feasible’ \((b, w)\): \(\max_{\alpha_n \geq 0} \left(\Box + \sum_n \alpha_n \text{(all non-positive)} \right) = \Box \)
Consider two transformed examples \((z_1, +1)\) and \((z_2, -1)\) with \(z_1 = z\) and \(z_2 = -z\). What is the Lagrange function \(L(b, w, \alpha)\) of hard-margin SVM?

1. \[\frac{1}{2}w^T w + \alpha_1 (1 + w^T z + b) + \alpha_2 (1 + w^T z + b) \]
2. \[\frac{1}{2}w^T w + \alpha_1 (1 - w^T z - b) + \alpha_2 (1 - w^T z + b) \]
3. \[\frac{1}{2}w^T w + \alpha_1 (1 + w^T z + b) + \alpha_2 (1 + w^T z - b) \]
4. \[\frac{1}{2}w^T w + \alpha_1 (1 - w^T z - b) + \alpha_2 (1 - w^T z - b) \]
Consider two transformed examples \((z_1, +1)\) and \((z_2, -1)\) with \(z_1 = z\) and \(z_2 = -z\). What is the Lagrange function \(L(b, w, \alpha)\) of hard-margin SVM?

1. \[
\frac{1}{2} w^T w + \alpha_1 (1 + w^T z + b) + \alpha_2 (1 + w^T z + b)
\]
2. \[
\frac{1}{2} w^T w + \alpha_1 (1 - w^T z - b) + \alpha_2 (1 - w^T z + b)
\]
3. \[
\frac{1}{2} w^T w + \alpha_1 (1 + w^T z + b) + \alpha_2 (1 + w^T z - b)
\]
4. \[
\frac{1}{2} w^T w + \alpha_1 (1 - w^T z - b) + \alpha_2 (1 - w^T z - b)
\]

Reference Answer: 2

By definition,

\[
L(b, w, \alpha) = \frac{1}{2} w^T w + \alpha_1 (1 - y_1 (w^T z_1 + b)) + \alpha_2 (1 - y_2 (w^T z_2 + b))
\]

with \((z_1, y_1) = (z, +1)\) and \((z_2, y_2) = (-z, -1)\).
for any fixed α' with all $\alpha'_n \geq 0$,

$$\min_{b,w} \left(\max_{\text{all } \alpha_n \geq 0} \mathcal{L}(b, w, \alpha) \right) \geq \min_{b,w} \mathcal{L}(b, w, \alpha')$$

because $\max \geq \text{any}$

for best $\alpha' \geq 0$ on RHS,

$$\min_{b,w} \left(\max_{\text{all } \alpha_n \geq 0} \mathcal{L}(b, w, \alpha) \right) \geq \max_{\text{all } \alpha'_n \geq 0} \min_{b,w} \mathcal{L}(b, w, \alpha')$$

Lagrange dual problem

because best is one of any

Lagrange dual problem:

‘outer’ maximization of α on lower bound of original problem
Strong Duality of Quadratic Programming

\[
\min_{b,w} \left(\max_{\alpha \geq 0} \mathcal{L}(b, w, \alpha) \right) \geq \max_{\alpha \geq 0} \left(\min_{b,w} \mathcal{L}(b, w, \alpha) \right)
\]

equiv. to original (primal) SVM

\[
\text{Lagrange dual}
\]

- ‘\(\geq\)’: weak duality
- ‘\(=\)’: strong duality, true for QP if
 - convex primal
 - feasible primal (true if \(\Phi\)-separable)
 - linear constraints

—called constraint qualification

exists primal-dual optimal solution \((b, w, \alpha)\) for both sides
Solving Lagrange Dual: Simplifications (1/2)

\[
\begin{aligned}
\max_{\alpha \geq 0} & \left(\min_{b,w} \frac{1}{2} w^T w + \sum_{n=1}^{N} \alpha_n \left(1 - y_n (w^T z_n + b) \right) \right) \\
\end{aligned}
\]

- inner problem ‘unconstrained’, at optimal:
 \[
 \frac{\partial \mathcal{L}(b,w,\alpha)}{\partial b} = 0 = - \sum_{n=1}^{N} \alpha_n y_n
 \]
- no loss of optimality if solving with constraint \(\sum_{n=1}^{N} \alpha_n y_n = 0 \)

but wait, \(b \) can be removed

\[
\begin{aligned}
\max_{\alpha \geq 0, \sum y_n \alpha_n = 0} & \left(\min_{b,w} \frac{1}{2} w^T w + \sum_{n=1}^{N} \alpha_n \left(1 - y_n (w^T z_n) \right) - \sum_{n=1}^{N} \alpha_n y_n \cdot b \right) \\
\end{aligned}
\]
Solving Lagrange Dual: Simplifications (2/2)

\[
\max_{\alpha_n \geq 0, \sum y_n \alpha_n = 0} \left(\min_{b, w} \frac{1}{2} w^T w + \sum_{n=1}^{N} \alpha_n (1 - y_n(w^T z_n)) \right)
\]

- **inner problem** ‘unconstrained’, at optimal:
 \[
 \frac{\partial \mathcal{L}(b, w, \alpha)}{\partial w_i} = 0 = w_i - \sum_{n=1}^{N} \alpha_n y_n z_n, i
 \]

- no loss of optimality if solving with constraint \(w = \sum_{n=1}^{N} \alpha_n y_n z_n \)

but wait!

\[
\max_{\alpha_n \geq 0, \sum y_n \alpha_n = 0, w=\sum \alpha_n y_n z_n} \left(\min_{b, w} \frac{1}{2} w^T w + \sum_{n=1}^{N} \alpha_n - w^T w \right)
\]

\[\iff\]

\[
\max_{\alpha_n \geq 0, \sum y_n \alpha_n = 0, w=\sum \alpha_n y_n z_n} -\frac{1}{2} \left\| \sum_{n=1}^{N} \alpha_n y_n z_n \right\|^2 + \sum_{n=1}^{N} \alpha_n
\]
Dual Support Vector Machine

Lagrange Dual SVM

KKT Optimality Conditions

\[
\max_{\alpha_n \geq 0, \sum y_n \alpha_n = 0, w = \sum \alpha_n y_n z_n} \quad -\frac{1}{2} \left\| \sum_{n=1}^{N} \alpha_n y_n z_n \right\|^2 + \sum_{n=1}^{N} \alpha_n
\]

if primal-dual optimal \((b, w, \alpha)\),

- primal feasible: \(y_n(w^T z_n + b) \geq 1\)
- dual feasible: \(\alpha_n \geq 0\)
- dual-inner optimal: \(\sum y_n \alpha_n = 0; w = \sum \alpha_n y_n z_n\)
- primal-inner optimal (at optimal all ‘Lagrange terms’ disappear):
 \[
 \alpha_n (1 - y_n (w^T z_n + b)) = 0
 \]

—called Karush-Kuhn-Tucker (KKT) conditions, necessary for optimality [& sufficient here]

will use KKT to ‘solve’ \((b, w)\) from optimal \(\alpha\)
For a single variable w, consider minimizing $\frac{1}{2}w^2$ subject to two linear constraints $w \geq 1$ and $w \leq 3$. We know that the Lagrange function $L(w, \alpha) = \frac{1}{2}w^2 + \alpha_1(1 - w) + \alpha_2(w - 3)$. Which of the following equations that contain α are among the KKT conditions of the optimization problem?

1. $\alpha_1 \geq 0$ and $\alpha_2 \geq 0$
2. $w = \alpha_1 - \alpha_2$
3. $\alpha_1(1 - w) = 0$ and $\alpha_2(w - 3) = 0.$
4. all of the above
For a single variable w, consider minimizing $\frac{1}{2}w^2$ subject to two linear constraints $w \geq 1$ and $w \leq 3$. We know that the Lagrange function $\mathcal{L}(w, \alpha) = \frac{1}{2}w^2 + \alpha_1(1 - w) + \alpha_2(w - 3)$. Which of the following equations that contain α are among the KKT conditions of the optimization problem?

1. $\alpha_1 \geq 0$ and $\alpha_2 \geq 0$
2. $w = \alpha_1 - \alpha_2$
3. $\alpha_1(1 - w) = 0$ and $\alpha_2(w - 3) = 0$.
4. all of the above

Reference Answer: 4

1. contains dual-feasible constraints;
2. contains dual-inner-optimal constraints;
3. contains primal-inner-optimal constraints.
Dual Formulation of Support Vector Machine

\[
\begin{align*}
\text{max} & \quad \sum_{n=1}^{N} \alpha_n y_n z_n - \frac{1}{2} \sum_{n=1}^{N} \alpha_n y_n z_n \\
\text{subject to} & \quad \sum_{n=1}^{N} y_n \alpha_n = 0; \\
& \quad \alpha_n \geq 0, \text{ for } n = 1, 2, \ldots, N
\end{align*}
\]

Standard hard-margin SVM dual

\[
\begin{align*}
\text{min} & \quad \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m z_n^T z_m - \sum_{n=1}^{N} \alpha_n \\
\text{subject to} & \quad \sum_{n=1}^{N} y_n \alpha_n = 0; \\
& \quad \alpha_n \geq 0, \text{ for } n = 1, 2, \ldots, N
\end{align*}
\]

(Convex) QP of \(N \) variables & \(N + 1 \) constraints, as promised

how to solve? yeah, we know QP! :-)
Dual SVM with QP Solver

optimal $\alpha = \text{?}$

\[
\begin{align*}
\min_{\alpha} & \quad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m z_n^T z_m \\
- & \sum_{n=1}^{N} \alpha_n \\
\text{subject to} & \quad \sum_{n=1}^{N} y_n \alpha_n = 0; \\
& \quad \alpha_n \geq 0, \\
& \quad \text{for } n = 1, 2, \ldots, N
\end{align*}
\]

optimal $\alpha \leftarrow \text{QP}(Q, p, A, c)$

\[
\begin{align*}
\min_{\alpha} & \quad \frac{1}{2} \alpha^T Q \alpha + p^T \alpha \\
\text{subject to} & \quad a_i^T \alpha \geq c_i, \\
& \quad \text{for } i = 1, 2, \ldots \\
& \quad q_{n,m} = y_n y_m z_n^T z_m \\
& \quad p = -1_N \\
& \quad a_\geq = y, \quad a_\leq = -y; \\
& \quad a_n^T = n\text{-th unit direction} \\
& \quad c_\geq = 0, \quad c_\leq = 0; \quad c_n = 0
\end{align*}
\]

note: many solvers treat equality (a_\geq, a_\leq) & bound (a_n) constraints specially for numerical stability
Dual SVM with Special QP Solver

Optimal $\alpha \leftarrow \text{QP}(Q_D, p, A, c)$

$$\min_{\alpha} \frac{1}{2} \alpha^T Q_D \alpha + p^T \alpha$$

subject to special equality and bound constraints

- $q_{n,m} = y_n y_m z_n^T z_m$, often non-zero
- if $N = 30,000$, dense Q_D (N by N symmetric) takes > 3G RAM
- need special solver for
 - not storing whole Q_D
 - utilizing special constraints properly

usually better to use special solver in practice
KKT conditions

If primal-dual optimal (b, w, α),

- **primal feasible**: $y_n(w^Tz_n + b) \geq 1$
- **dual feasible**: $\alpha_n \geq 0$
- **dual-inner optimal**: $\sum y_n \alpha_n = 0$; $w = \sum \alpha_n y_n z_n$
- **primal-inner optimal** (at optimal all ‘Lagrange terms’ disappear):

$$\alpha_n (1 - y_n(w^Tz_n + b)) = 0$$ (complementary slackness)

- optimal $\alpha \implies$ optimal w? easy above!
- optimal $\alpha \implies$ optimal b? a range from primal feasible & equality from comp. slackness if one $\alpha_n > 0 \implies b = y_n - w^Tz_n$

comp. slackness:

$$\alpha_n > 0 \implies \text{on fat boundary (SV!)}$$
Consider two transformed examples \((z_1, +1)\) and \((z_2, -1)\) with \(z_1 = z\) and \(z_2 = -z\). After solving the dual problem of hard-margin SVM, assume that the optimal \(\alpha_1\) and \(\alpha_2\) are both strictly positive. What is the optimal \(b\)?

1. \(-1\)
2. \(0\)
3. \(1\)
4. not certain with the descriptions above
Consider two transformed examples \((z_1, +1)\) and \((z_2, -1)\) with \(z_1 = z\) and \(z_2 = -z\). After solving the dual problem of hard-margin SVM, assume that the optimal \(\alpha_1\) and \(\alpha_2\) are both strictly positive. What is the optimal \(b\)?

\begin{itemize}
 \item[1] \(-1\)
 \item[2] \(0\)
 \item[3] \(1\)
 \item[4] not certain with the descriptions above
\end{itemize}

Reference Answer: 2

With the descriptions, at the optimal \((b, w)\),

\[b = 1 - w^T z = -1 + w^T z \]

That is, \(w^T z = 1\) and \(b = 0\).
Support Vectors Revisited

- on boundary: ‘locates’ fattest hyperplane; others: not needed
- examples with $\alpha_n > 0$: on boundary
- call $\alpha_n > 0$ examples (z_n, y_n) support vectors (candidates)
- SV (positive α_n) \subseteq SV candidates (on boundary)

- only SV needed to compute w: $w = \sum_{n=1}^{N} \alpha_n y_n z_n = \sum_{SV} \alpha_n y_n z_n$
- only SV needed to compute b: $b = y_n - w^T z_n$ with any SV (z_n, y_n)

SVM: learn fattest hyperplane by identifying support vectors with dual optimal solution
Dual Support Vector Machine

Messages behind Dual SVM

Representation of Fattest Hyperplane

SVM

\[\mathbf{w}_{\text{SVM}} = \sum_{n=1}^{N} \alpha_n (y_n \mathbf{z}_n) \]

\(\alpha_n \) from dual solution

PLA

\[\mathbf{w}_{\text{PLA}} = \sum_{n=1}^{N} \beta_n (y_n \mathbf{z}_n) \]

\(\beta_n \) by # mistake corrections

\[\mathbf{w} = \text{linear combination of } y_n \mathbf{z}_n \]

- also true for GD/SGD-based LogReg/LinReg when \(\mathbf{w}_0 = 0 \)
- call \(\mathbf{w} \) ‘represented’ by data

SVM: represent \(\mathbf{w} \) by SVs only
Summary: Two Forms of Hard-Margin SVM

Primal Hard-Margin SVM

\[
\begin{align*}
\min_{b,w} & \quad \frac{1}{2} w^T w \\
\text{sub. to} & \quad y_n(w^T z_n + b) \geq 1, \\
& \quad \text{for } n = 1, 2, \ldots, N
\end{align*}
\]

- \(\tilde{d} + 1\) variables, \(N\) constraints
 —suitable when \(\tilde{d} + 1\) small
- physical meaning: locate **specially-scaled** \((b, w)\)

Dual Hard-Margin SVM

\[
\begin{align*}
\min_{\alpha} & \quad \frac{1}{2} \alpha^T Q_D \alpha - 1^T \alpha \\
\text{s.t.} & \quad y^T \alpha = 0; \\
& \quad \alpha_n \geq 0 \text{ for } n = 1, \ldots, N
\end{align*}
\]

- \(N\) variables, \(N + 1\) simple constraints
 —suitable when \(N\) small
- physical meaning: locate **SVs** \((z_n, y_n)\) & their \(\alpha_n\)

both eventually result in optimal \((b, w)\) for fattest hyperplane

\[g_{\text{SVM}}(x) = \text{sign}(w^T \Phi(x) + b)\]
Are We Done Yet?

goal: SVM **without dependence on** \tilde{d}

$$\min_{\alpha} \frac{1}{2} \alpha^T Q_D \alpha - 1^T \alpha$$

subject to
$$y^T \alpha = 0;$$
$$\alpha_n \geq 0, \text{ for } n = 1, 2, \ldots, N$$

- **N** variables, **N** + 1 constraints: no dependence on \tilde{d}?
- $q_{n,m} = y_n y_m z_n^T z_m$: inner product in $\mathbb{R}^{\tilde{d}}$
 — $O(\tilde{d})$ via naïve computation!

no dependence only if
avoiding naïve computation (**next lecture :-])**
Fun Time

Consider applying dual hard-margin SVM on $N = 5566$ examples and getting 1126 SVs. Which of the following can be the number of examples that are on the fat boundary—that is, SV candidates?

1. 0
2. 1024
3. 1234
4. 9999

Reference Answer: 3

Because SVs are always on the fat boundary, $\# \text{SVs} \leq \# \text{SV candidates} \leq N$.
Consider applying dual hard-margin SVM on $N = 5566$ examples and getting 1126 SVs. Which of the following can be the number of examples that are on the fat boundary—that is, SV candidates?

1. 0
2. 1024
3. 1234
4. 9999

Reference Answer: 3

Because SVs are always on the fat boundary,

$$\# \text{ SVs} \leq \# \text{ SV candidates} \leq N.$$
Dual Support Vector Machine

Summary

1 Embedding Numerous Features: Kernel Models

Lecture 2: Dual Support Vector Machine

- Motivation of Dual SVM
 - want to remove dependence on \tilde{d}
- Lagrange Dual SVM
 - KKT conditions link primal/dual
- Solving Dual SVM
 - another QP, better solved with special solver
- Messages behind Dual SVM
 - SVs represent fattest hyperplane

- next: computing inner product in $\mathbb{R}^{\tilde{d}}$ efficiently

2 Combining Predictive Features: Aggregation Models

3 Distilling Implicit Features: Extraction Models