Machine Learning Foundations

（機器學習基石）

Lecture 15：Validation
Hsuan－Tien Lin（林軒田） htlin＠csie．ntu．edu．tw

Department of Computer Science \＆Information Engineering
National Taiwan University （國立台灣大學資訊工程系）

Roadmap

(1) When Can Machines Learn?
(2) Why Can Machines Learn?
(3) How Can Machines Learn?
4. How Can Machines Learn Better?

Lecture 14: Regularization minimizes augmented error, where the added regularizer effectively limits model complexity

Lecture 15: Validation

- Model Selection Problem
- Validation
- Leave-One-Out Cross Validation
- V-Fold Cross Validation

So Many Models Learned

Even Just for Binary Classification ..

$\mathcal{A} \in\{$ PLA, pocket, linear regression, logistic regression $\}$

So Many Models Learned

Even Just for Binary Classification . . .

$\mathcal{A} \in\{$ PLA, pocket, linear regression, logistic regression $\}$

$$
T \in\{100,1000,10000\}
$$

So Many Models Learned

Even Just for Binary Classification . . .

$\mathcal{A} \in\{$ PLA, pocket, linear regression, logistic regression $\}$

$$
\begin{gathered}
T \in\{100,1000,10000\} \\
\times \\
\eta \in\{1,0.01,0.0001\}
\end{gathered}
$$

So Many Models Learned

Even Just for Binary Classification . . .

$\mathcal{A} \in\{$ PLA, pocket, linear regression, logistic regression $\}$

$$
\begin{gathered}
T \in\{100,1000,10000\} \\
\times \\
\eta \in\{1,0.01,0.0001\}
\end{gathered}
$$

$\boldsymbol{\Phi} \in\{$ linear, quadratic, poly-10, Legendre-poly-10\}

So Many Models Learned

Even Just for Binary Classification . . .

$\mathcal{A} \in\{$ PLA, pocket, linear regression, logistic regression $\}$

$$
\begin{gathered}
T \in\{100,1000,10000\} \\
\times \\
\eta \in\{1,0.01,0.0001\}
\end{gathered}
$$

$\boldsymbol{\Phi} \in\{$ linear, quadratic, poly-10, Legendre-poly-10\}
$\Omega(\mathbf{w}) \in\{$ L2 regularizer, L1 regularizer, symmetry regularizer $\}$

So Many Models Learned

Even Just for Binary Classification . . .

$\mathcal{A} \in\{$ PLA, pocket, linear regression, logistic regression $\}$

$$
\begin{gathered}
T \in\{100,1000,10000\} \\
\times \\
\eta \in\{1,0.01,0.0001\}
\end{gathered}
$$

$\boldsymbol{\Phi} \in\{$ linear, quadratic, poly-10, Legendre-poly-10\}
$\Omega(\mathbf{w}) \in\{$ L2 regularizer, L1 regularizer, symmetry regularizer $\}$

$$
\lambda \in\{0,0.01,1\}
$$

So Many Models Learned

Even Just for Binary Classification . . .

$\mathcal{A} \in\{$ PLA, pocket, linear regression, logistic regression $\}$

$$
\begin{gathered}
T \in\{100,1000,10000\} \\
\times \\
\eta \in\{1,0.01,0.0001\}
\end{gathered}
$$

$\boldsymbol{\Phi} \in\{$ linear, quadratic, poly-10, Legendre-poly-10\}
$\Omega(\mathbf{w}) \in\{$ L2 regularizer, L1 regularizer, symmetry regularizer $\}$

$$
\lambda \in\{0,0.01,1\}
$$

in addition to your favorite combination, may need to try other combinations to get a good g

Model Selection Problem

Model Selection Problem

- given: M models $\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{M}$, each with corresponding algorithm $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{M}$

Model Selection Problem

\mathcal{H}_{1}

which one do you prefer? :-)

\mathcal{H}_{2}

- given: M models $\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{M}$, each with corresponding algorithm $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{M}$
- goal: select $\mathcal{H}_{m^{*}}$ such that $g_{m^{*}}=\mathcal{A}_{m^{*}}(\mathcal{D})$ is of low $E_{\text {out }}\left(g_{m^{*}}\right)$

Model Selection Problem

\mathcal{H}_{1}

which one do you prefer? :-)

\mathcal{H}_{2}

- given: M models $\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{M}$, each with corresponding algorithm $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{M}$
- goal: select $\mathcal{H}_{m^{*}}$ such that $g_{m^{*}}=\mathcal{A}_{m^{*}}(\mathcal{D})$ is of low $E_{\text {out }}\left(g_{m^{*}}\right)$
- unknown $E_{\text {out }}$ due to unknown $P(\mathbf{x}) \& P(y \mid \mathbf{x})$, as always :-)

Model Selection Problem

\mathcal{H}_{1}

which one do you prefer? :-)

- given: M models $\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{M}$, each with corresponding algorithm $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{M}$
- goal: select $\mathcal{H}_{m^{*}}$ such that $g_{m^{*}}=\mathcal{A}_{m^{*}}(\mathcal{D})$ is of low $E_{\text {out }}\left(g_{m^{*}}\right)$
- unknown $E_{\text {out }}$ due to unknown $P(\mathbf{x}) \& P(y \mid \mathbf{x})$, as always :-)
- arguably the most important practical problem of ML

Model Selection Problem

\mathcal{H}_{1}

which one do you prefer? :-)

- given: M models $\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{M}$, each with corresponding algorithm $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{M}$
- goal: select $\mathcal{H}_{m^{*}}$ such that $g_{m^{*}}=\mathcal{A}_{m^{*}}(\mathcal{D})$ is of low $E_{\text {out }}\left(g_{m^{*}}\right)$
- unknown $E_{\text {out }}$ due to unknown $P(\mathbf{x}) \& P(y \mid \mathbf{x})$, as always :-)
- arguably the most important practical problem of ML
how to select?

Model Selection Problem

\mathcal{H}_{1}

which one do you prefer? :-)

- given: M models $\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{M}$, each with corresponding algorithm $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{M}$
- goal: select $\mathcal{H}_{m^{*}}$ such that $g_{m^{*}}=\mathcal{A}_{m^{*}}(\mathcal{D})$ is of low $E_{\text {out }}\left(g_{m^{*}}\right)$
- unknown $E_{\text {out }}$ due to unknown $P(\mathbf{x}) \& P(y \mid \mathbf{x})$, as always :-)
- arguably the most important practical problem of ML
how to select? visually?

Model Selection Problem

\mathcal{H}_{1}

which one do you prefer? :-)

- given: M models $\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{M}$, each with corresponding algorithm $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{M}$
- goal: select $\mathcal{H}_{m^{*}}$ such that $g_{m^{*}}=\mathcal{A}_{m^{*}}(\mathcal{D})$ is of low $E_{\text {out }}\left(g_{m^{*}}\right)$
- unknown $E_{\text {out }}$ due to unknown $P(\mathbf{x}) \& P(y \mid \mathbf{x})$, as always :-)
- arguably the most important practical problem of ML
how to select? visually?
—no, remember Lecture 12? :-)

Model Selection by Best $E_{\text {in }}$

\mathcal{H}_{1}
select by best $E_{\text {in }}$?
$m^{*}=\underset{1 \leq m \leq M}{\operatorname{argmin}}\left(E_{m}=E_{\text {in }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)$
$1 \leq m \leq M$

\mathcal{H}_{2}

Model Selection by Best $E_{\text {in }}$

\mathcal{H}_{1}
select by best $E_{\text {in }}$?
$m^{*}=\operatorname{argmin}\left(E_{m}=E_{\text {in }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)$ $1 \leq m \leq M$

Model Selection by Best $E_{\text {in }}$

\mathcal{H}_{1}

select by best $E_{\text {in }}$?
$m^{*}=\operatorname{argmin}\left(E_{m}=E_{\text {in }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)$ $1 \leq m \leq M$

$$
-
$$

Model Selection by Best $E_{\text {in }}$

\mathcal{H}_{1}
select by best $E_{\text {in }}$?
$m^{*}=\operatorname{argmin}\left(E_{m}=E_{\text {in }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)$ $1 \leq m \leq M$

$$
1 \leq m \leq W
$$

(

- $\boldsymbol{\Phi}_{1126}$ always more preferred over $\boldsymbol{\Phi}_{1}$;
$\lambda=0$ always more preferred over $\lambda=0.1$-overfitting?
- if \mathcal{A}_{1} minimizes $E_{\text {in }}$ over \mathcal{H}_{1}

Model Selection by Best $E_{\text {in }}$

\mathcal{H}_{1}
select by best $E_{\text {in }}$?
$m^{*}=\operatorname{argmin}\left(E_{m}=E_{\text {in }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)$ $1 \leq m \leq M$

\mathcal{H}_{2}

- $\boldsymbol{\Phi}_{1126}$ always more preferred over $\boldsymbol{\Phi}_{1}$;
$\lambda=0$ always more preferred over $\lambda=0.1$-overfitting?
- if \mathcal{A}_{1} minimizes $E_{\text {in }}$ over \mathcal{H}_{1} and \mathcal{A}_{2} minimizes $E_{\text {in }}$ over \mathcal{H}_{2},

Model Selection by Best $E_{\text {in }}$

\mathcal{H}_{1}
select by best $E_{\text {in }}$?
$m^{*}=\operatorname{argmin}\left(E_{m}=E_{\text {in }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)$ $1 \leq m \leq M$

$$
T \leq m \leq m b
$$

\mathcal{H}_{2}

- $\boldsymbol{\Phi}_{1126}$ always more preferred over $\boldsymbol{\Phi}_{1}$;
$\lambda=0$ always more preferred over $\lambda=0.1$-overfitting?
- if \mathcal{A}_{1} minimizes $E_{\text {in }}$ over \mathcal{H}_{1} and \mathcal{A}_{2} minimizes $E_{\text {in }}$ over \mathcal{H}_{2},
$\Longrightarrow g_{m^{*}}$ achieves minimal $E_{\text {in }}$ over $\mathcal{H}_{1} \cup \mathcal{H}_{2}$

Model Selection by Best $E_{\text {in }}$

\mathcal{H}_{1}
select by best $E_{\text {in }}$?
$m^{*}=\operatorname{argmin}\left(E_{m}=E_{\text {in }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)$ $1 \leq m \leq M$

$$
1 \leq m \leq M W
$$

\mathcal{H}_{2}

- $\boldsymbol{\Phi}_{1126}$ always more preferred over $\boldsymbol{\Phi}_{1}$;
$\lambda=0$ always more preferred over $\lambda=0.1$-overfitting?
- if \mathcal{A}_{1} minimizes $E_{\text {in }}$ over \mathcal{H}_{1} and \mathcal{A}_{2} minimizes $E_{\text {in }}$ over \mathcal{H}_{2},
$\Longrightarrow g_{m^{*}}$ achieves minimal $E_{\text {in }}$ over $\mathcal{H}_{1} \cup \mathcal{H}_{2}$
\Longrightarrow 'model selection + learning' pays $d_{\mathrm{vc}}\left(\mathcal{H}_{1} \cup \mathcal{H}_{2}\right)$

Model Selection by Best $E_{\text {in }}$

\mathcal{H}_{1}
select by best $E_{\text {in }}$?
$m^{*}=\operatorname{argmin}\left(E_{m}=E_{\text {in }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)$ $1 \leq m \leq M$

$$
1 \leq I I \leq N I
$$

\mathcal{H}_{2}

- $\boldsymbol{\Phi}_{1126}$ always more preferred over $\boldsymbol{\Phi}_{1}$;
$\lambda=0$ always more preferred over $\lambda=0.1$-overfitting?
- if \mathcal{A}_{1} minimizes $E_{\text {in }}$ over \mathcal{H}_{1} and \mathcal{A}_{2} minimizes $E_{\text {in }}$ over \mathcal{H}_{2},
$\Longrightarrow g_{m^{*}}$ achieves minimal $E_{\text {in }}$ over $\mathcal{H}_{1} \cup \mathcal{H}_{2}$
\Longrightarrow 'model selection + learning' pays $d_{\mathrm{vc}}\left(\mathcal{H}_{1} \cup \mathcal{H}_{2}\right)$
-bad generalization?

Model Selection by Best $E_{\text {in }}$

\mathcal{H}_{1}
select by best $E_{\text {in }}$?
$m^{*}=\operatorname{argmin}\left(E_{m}=E_{\text {in }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)$ $1 \leq m \leq M$

$$
1 \leq I I=N I
$$

\mathcal{H}_{2}

- $\boldsymbol{\Phi}_{1126}$ always more preferred over $\boldsymbol{\Phi}_{1}$;
$\lambda=0$ always more preferred over $\lambda=0.1$-overfitting?
- if \mathcal{A}_{1} minimizes $E_{\text {in }}$ over \mathcal{H}_{1} and \mathcal{A}_{2} minimizes $E_{\text {in }}$ over \mathcal{H}_{2},
$\Longrightarrow g_{m^{*}}$ achieves minimal $E_{\text {in }}$ over $\mathcal{H}_{1} \cup \mathcal{H}_{2}$
\Longrightarrow 'model selection + learning' pays $d_{\mathrm{vc}}\left(\mathcal{H}_{1} \cup \mathcal{H}_{2}\right)$
-bad generalization?
selecting by $E_{\text {in }}$ is dangerous

Model Selection by Best $E_{\text {test }}$

\mathcal{H}_{1}
select by best $E_{\text {test }}$, which is evaluated on a fresh $\mathcal{D}_{\text {test }}$?
$m^{*}=\underset{1 \leq m \leq M}{\operatorname{argmin}}\left(E_{m}=E_{\text {test }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)$ $1 \leq m \leq M$

Model Selection by Best $E_{\text {test }}$

\mathcal{H}_{1}
select by best $E_{\text {test }}$, which is evaluated on a fresh $\mathcal{D}_{\text {test }}$?
$m^{*}=\underset{\operatorname{argmin}}{\arg }\left(E_{m}=E_{\text {test }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)$ $1 \leq m \leq M$

- generalization guarantee (finite-bin Hoeffding):

Model Selection by Best $E_{\text {test }}$

\mathcal{H}_{1}
select by best $E_{\text {test }}$, which is evaluated on a fresh $\mathcal{D}_{\text {test }}$?
$m^{*}=\operatorname{argmin}\left(E_{m}=E_{\text {test }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)$ $1 \leq m \leq M$

- generalization guarantee (finite-bin Hoeffding):

$$
E_{\text {out }}\left(g_{m^{*}}\right) \leq E_{\text {test }}\left(g_{m^{*}}\right)+O\left(\sqrt{\frac{\log M}{N_{\text {test }}}}\right)
$$

Model Selection by Best $E_{\text {test }}$

\mathcal{H}_{1}
select by best $E_{\text {test }}$, which is evaluated on a fresh $\mathcal{D}_{\text {test }}$?
$m^{*}=\operatorname{argmin}\left(E_{m}=E_{\text {test }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)$ $1 \leq m \leq M$

- generalization guarantee (finite-bin Hoeffding):

$$
E_{\text {out }}\left(g_{m^{*}}\right) \leq E_{\text {test }}\left(g_{m^{*}}\right)+O\left(\sqrt{\frac{\log M}{N_{\text {test }}}}\right)
$$

-yes! strong guarantee :-)

Model Selection by Best $E_{\text {test }}$

\mathcal{H}_{1}
select by best $E_{\text {test }}$, which is evaluated on a fresh $\mathcal{D}_{\text {test }}$?

$$
m^{*}=\underset{1 \leq m \leq M}{\operatorname{argmin}}\left(E_{m}=E_{\text {test }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)
$$

$$
\longrightarrow
$$

- generalization guarantee (finite-bin Hoeffding):

$$
E_{\text {out }}\left(g_{m^{*}}\right) \leq E_{\text {test }}\left(g_{m^{*}}\right)+O\left(\sqrt{\frac{\log M}{N_{\text {test }}}}\right)
$$

-yes! strong guarantee :-)

- but where is $\mathcal{D}_{\text {test }}$?

Model Selection by Best $E_{\text {test }}$

\mathcal{H}_{1}
select by best $E_{\text {test }}$, which is evaluated on a fresh $\mathcal{D}_{\text {test }}$?

$$
m^{*}=\underset{1 \leq m \leq M}{\operatorname{argmin}}\left(E_{m}=E_{\text {test }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)
$$

- generalization guarantee (finite-bin Hoeffding):

$$
E_{\text {out }}\left(g_{m^{*}}\right) \leq E_{\text {test }}\left(g_{m^{*}}\right)+O\left(\sqrt{\frac{\log M}{N_{\text {test }}}}\right)
$$

-yes! strong guarantee :-)

- but where is $\mathcal{D}_{\text {test }}$?-your boss's safe, maybe? :-(

Model Selection by Best $E_{\text {test }}$

\mathcal{H}_{1}
select by best $E_{\text {test }}$, which is evaluated on a fresh $\mathcal{D}_{\text {test }}$?
$m^{*}=\underset{1 \leq m \leq M}{\operatorname{argmin}}\left(E_{m}=E_{\text {test }}\left(\mathcal{A}_{m}(\mathcal{D})\right)\right)$

- generalization guarantee (finite-bin Hoeffding):

$$
E_{\text {out }}\left(g_{m^{*}}\right) \leq E_{\text {test }}\left(g_{m^{*}}\right)+O\left(\sqrt{\frac{\log M}{N_{\text {test }}}}\right)
$$

—yes! strong guarantee :-)

- but where is $\mathcal{D}_{\text {test }}$?-your boss's safe, maybe? :-(

selecting by $E_{\text {test }}$ is infeasible and cheating

Comparison between $E_{\text {in }}$ and $E_{\text {test }}$

in-sample error

- calculated from \mathcal{D}

Comparison between $E_{\text {in }}$ and $E_{\text {test }}$

in-sample error

- calculated from \mathcal{D}

test error $E_{\text {test }}$

- calculated from $\mathcal{D}_{\text {test }}$

Comparison between $E_{\text {in }}$ and $E_{\text {test }}$

in-sample error

- calculated from \mathcal{D}
- feasible on hand

test error $E_{\text {test }}$

- calculated from $\mathcal{D}_{\text {test }}$

Comparison between $E_{\text {in }}$ and $E_{\text {test }}$

in-sample error

- calculated from \mathcal{D}
- feasible on hand

test error $E_{\text {test }}$

- calculated from $\mathcal{D}_{\text {test }}$
- infeasible in boss's safe

Comparison between $E_{\text {in }}$ and $E_{\text {test }}$

in-sample error

- calculated from \mathcal{D}
- feasible on hand
- 'contaminated’ as \mathcal{D} also used by \mathcal{A}_{m} to 'select' g_{m}

test error $E_{\text {test }}$

- calculated from $\mathcal{D}_{\text {test }}$
- infeasible in boss's safe

Comparison between $E_{\text {in }}$ and $E_{\text {test }}$

in-sample error

- calculated from \mathcal{D}
- feasible on hand
- 'contaminated’ as \mathcal{D} also used by \mathcal{A}_{m} to 'select' g_{m}

test error $E_{\text {test }}$

- calculated from $\mathcal{D}_{\text {test }}$
- infeasible in boss's safe
- 'clean' as $\mathcal{D}_{\text {test }}$ never used for selection before

Comparison between $E_{\text {in }}$ and $E_{\text {test }}$

in-sample error

- calculated from \mathcal{D}
- feasible on hand
- 'contaminated’ as \mathcal{D} also used by \mathcal{A}_{m} to 'select' g_{m}

test error $E_{\text {test }}$

- calculated from $\mathcal{D}_{\text {test }}$
- infeasible in boss's safe
- 'clean' as $\mathcal{D}_{\text {test }}$ never used for selection before

something in between: $E_{\text {val }}$

Comparison between $E_{\text {in }}$ and $E_{\text {test }}$

in-sample error

- calculated from \mathcal{D}
- feasible on hand
- 'contaminated' as \mathcal{D} also used by \mathcal{A}_{m} to 'select' g_{m}

test error $E_{\text {test }}$

- calculated from $\mathcal{D}_{\text {test }}$
- infeasible in boss's safe
- 'clean' as $\mathcal{D}_{\text {test }}$ never used for selection before

something in between: $E_{\text {val }}$

- calculated from $\mathcal{D}_{\text {val }} \subset \mathcal{D}$
- feasible on hand

Comparison between $E_{\text {in }}$ and $E_{\text {test }}$

in-sample error

- calculated from \mathcal{D}
- feasible on hand
- 'contaminated' as \mathcal{D} also used by \mathcal{A}_{m} to 'select' g_{m}

test error $E_{\text {test }}$

- calculated from $\mathcal{D}_{\text {test }}$
- infeasible in boss's safe
- 'clean' as $\mathcal{D}_{\text {test }}$ never used for selection before

something in between: $E_{\text {val }}$

- calculated from $\mathcal{D}_{\text {val }} \subset \mathcal{D}$
- feasible on hand
- 'clean' if $\mathcal{D}_{\text {val }}$ never used by \mathcal{A}_{m} before

Comparison between $E_{\text {in }}$ and $E_{\text {test }}$

in-sample error

- calculated from \mathcal{D}
- feasible on hand
- 'contaminated' as \mathcal{D} also used by \mathcal{A}_{m} to 'select' g_{m}

test error $E_{\text {test }}$

- calculated from $\mathcal{D}_{\text {test }}$
- infeasible in boss's safe
- 'clean' as $\mathcal{D}_{\text {test }}$ never used for selection before

something in between: $E_{\text {val }}$

- calculated from $\mathcal{D}_{\text {val }} \subset \mathcal{D}$
- feasible on hand
- 'clean' if $\mathcal{D}_{\text {val }}$ never used by \mathcal{A}_{m} before
selecting by $E_{\text {val }}$: legal cheating :-)

Fun Time

For $\mathcal{X}=\mathbb{R}^{d}$, consider two hypothesis sets, \mathcal{H}_{+}and \mathcal{H}_{-}. The first hypothesis set contains all perceptrons with $w_{1} \geq 0$, and the second hypothesis set contains all perceptrons with $w_{1} \leq 0$. Denote g_{+}and g_{-} as the minimum- $E_{\text {in }}$ hypothesis in each hypothesis set, respectively. Which statement below is true?
(1) If $E_{\text {in }}\left(g_{+}\right)<E_{\text {in }}\left(g_{-}\right)$, then g_{+}is the minimum- $E_{\text {in }}$ hypothesis of all perceptrons in \mathbb{R}^{d}.
(2) If $E_{\text {test }}\left(g_{+}\right)<E_{\text {test }}\left(g_{-}\right)$, then g_{+}is the minimum- $E_{\text {test }}$ hypothesis of all perceptrons in \mathbb{R}^{d}.
(3) The two hypothesis sets are disjoint.
(4) None of the above

Fun Time

For $\mathcal{X}=\mathbb{R}^{d}$, consider two hypothesis sets, \mathcal{H}_{+}and \mathcal{H}_{-}. The first hypothesis set contains all perceptrons with $w_{1} \geq 0$, and the second hypothesis set contains all perceptrons with $w_{1} \leq 0$. Denote g_{+}and g_{-} as the minimum- $E_{\text {in }}$ hypothesis in each hypothesis set, respectively. Which statement below is true?
(1) If $E_{\text {in }}\left(g_{+}\right)<E_{\text {in }}\left(g_{-}\right)$, then g_{+}is the minimum- $E_{\text {in }}$ hypothesis of all perceptrons in \mathbb{R}^{d}.
(2) If $E_{\text {test }}\left(g_{+}\right)<E_{\text {test }}\left(g_{-}\right)$, then g_{+}is the minimum- $E_{\text {test }}$ hypothesis of all perceptrons in \mathbb{R}^{d}.
(3) The two hypothesis sets are disjoint.
(4) None of the above

Reference Answer:

 (1)Note that the two hypothesis sets are not disjoint (sharing ' $w_{1}=0$ ' perceptrons) but their union is all perceptrons.

Validation Set $\mathcal{D}_{\text {val }}$

- $\mathcal{D}_{\text {val }} \subset \mathcal{D}$: called validation set-'on-hand' simulation of test set

Validation Set $\mathcal{D}_{\text {val }}$

$$
\begin{gathered}
E_{\text {val }}(h) \\
\underbrace{\mathcal{D}_{\text {val }}}_{\text {size } K}
\end{gathered}
$$

- $\mathcal{D}_{\text {val }} \subset \mathcal{D}$: called validation set-'on-hand' simulation of test set

Validation Set $\mathcal{D}_{\text {val }}$

- $\mathcal{D}_{\text {val }} \subset \mathcal{D}$: called validation set-'on-hand' simulation of test set
- to connect $E_{\text {val }}$ with $E_{\text {out }}$:
$\mathcal{D}_{\text {val }} \stackrel{\text { iid }}{\sim} P(\mathbf{x}, y) \Longleftarrow$ select K examples from \mathcal{D} at random

Validation Set $\mathcal{D}_{\text {val }}$

- $\mathcal{D}_{\text {val }} \subset \mathcal{D}$: called validation set-'on-hand' simulation of test set
- to connect $E_{\text {val }}$ with $E_{\text {out }}$:
$\mathcal{D}_{\text {val }} \stackrel{\text { iid }}{\sim} P(\mathbf{x}, y) \Longleftarrow$ select K examples from \mathcal{D} at random

Validation Set $\mathcal{D}_{\text {val }}$

- $\mathcal{D}_{\text {val }} \subset \mathcal{D}$: called validation set-'on-hand' simulation of test set
- to connect $E_{\text {val }}$ with $E_{\text {out }}$:
$\mathcal{D}_{\text {val }} \stackrel{\text { iid }}{\sim} P(\mathbf{x}, y) \Longleftarrow$ select K examples from \mathcal{D} at random
- to make sure $\mathcal{D}_{\text {val }}$ 'clean': feed only $\mathcal{D}_{\text {train }}$ to \mathcal{A}_{m} for model selection

Validation Set $\mathcal{D}_{\text {val }}$

- $\mathcal{D}_{\text {val }} \subset \mathcal{D}$: called validation set-'on-hand' simulation of test set
- to connect $E_{\text {val }}$ with $E_{\text {out }}$:
$\mathcal{D}_{\text {val }} \stackrel{\text { iid }}{\sim} P(\mathbf{x}, y) \Longleftarrow$ select K examples from \mathcal{D} at random
- to make sure $\mathcal{D}_{\text {val }}$ 'clean': feed only $\mathcal{D}_{\text {train }}$ to \mathcal{A}_{m} for model selection

$$
E_{\text {out }}\left(g_{m}^{-}\right) \leq E_{\text {val }}\left(g_{m}^{-}\right)+O\left(\sqrt{\frac{\log M}{K}}\right)
$$

Model Selection by Best $E_{\text {val }}$

$$
m^{*}=\underset{1 \leq m \leq M}{\operatorname{argmin}}\left(E_{m}=E_{\text {val }}\left(\mathcal{A}_{m}\left(\mathcal{D}_{\text {train }}\right)\right)\right)
$$

Model Selection by Best $E_{\text {val }}$

$$
m^{*}=\underset{1 \leq m \leq M}{\operatorname{argmin}}\left(E_{m}=E_{\text {val }}\left(\mathcal{A}_{m}\left(\mathcal{D}_{\text {train }}\right)\right)\right)
$$

- generalization guarantee for all m :

$$
E_{\mathrm{out}}\left(g_{m}^{-}\right) \leq E_{\mathrm{val}}\left(g_{m}^{-}\right)+O\left(\sqrt{\frac{\log M}{K}}\right)
$$

Model Selection by Best $E_{\text {val }}$

$$
m^{*}=\underset{1 \leq m \leq M}{\operatorname{argmin}}\left(E_{m}=E_{\text {val }}\left(\mathcal{A}_{m}\left(\mathcal{D}_{\text {train }}\right)\right)\right)
$$

- generalization guarantee for all m :

$$
E_{\mathrm{out}}\left(g_{m}^{-}\right) \leq E_{\mathrm{val}}\left(g_{m}^{-}\right)+O\left(\sqrt{\frac{\log M}{K}}\right)
$$

- heuristic gain from $N-K$ to N :

$$
E_{\text {out }}(\underbrace{g_{m^{*}}}_{\mathcal{A}_{m^{*}}(\mathcal{D})}) \leq E_{\text {out }}(\underbrace{-}_{\mathcal{A}_{m^{*}\left(\mathcal{D}_{\text {train }}\right)}^{g_{m}^{*}}})
$$

Model Selection by Best $E_{\text {val }}$

$$
m^{*}=\underset{1 \leq m \leq M}{\operatorname{argmin}}\left(E_{m}=E_{\text {val }}\left(\mathcal{A}_{m}\left(\mathcal{D}_{\text {train }}\right)\right)\right)
$$

- generalization guarantee for all m :

$$
E_{\mathrm{out}}\left(g_{m}^{-}\right) \leq E_{\mathrm{val}}\left(g_{m}^{-}\right)+O\left(\sqrt{\frac{\log M}{K}}\right)
$$

- heuristic gain from $N-K$ to N :

-learning curve, remember? :-)

Model Selection by Best $E_{\text {val }}$

$$
m^{*}=\underset{1 \leq m \leq M}{\operatorname{argmin}}\left(E_{m}=E_{\text {val }}\left(\mathcal{A}_{m}\left(\mathcal{D}_{\text {train }}\right)\right)\right)
$$

- generalization guarantee for all m :

$$
E_{\mathrm{out}}\left(g_{m}^{-}\right) \leq E_{\mathrm{val}}\left(g_{m}^{-}\right)+O\left(\sqrt{\frac{\log M}{K}}\right)
$$

- heuristic gain from $N-K$ to N :

—learning curve, remember? :-)

Model Selection by Best $E_{\text {val }}$

$$
m^{*}=\underset{1 \leq m \leq M}{\operatorname{argmin}}\left(E_{m}=E_{\text {val }}\left(\mathcal{A}_{m}\left(\mathcal{D}_{\text {train }}\right)\right)\right)
$$

- generalization guarantee for all m :

$$
E_{\mathrm{out}}\left(g_{m}^{-}\right) \leq E_{\mathrm{val}}\left(g_{m}^{-}\right)+O\left(\sqrt{\frac{\log M}{K}}\right)
$$

- heuristic gain from $N-K$ to N :

-learning curve, remember? :-)

$$
E_{\text {out }}\left(g_{m^{*}}\right) \leq E_{\text {out }}\left(g_{m^{*}}^{-}\right) \leq E_{\text {val }}\left(g_{m^{*}}^{-}\right)+O\left(\sqrt{\frac{\log M}{K}}\right)
$$

Validation in Practice

 use validation to select between $\mathcal{H}_{\boldsymbol{\Phi}_{5}}$ and $\mathcal{H}_{\boldsymbol{\Phi}_{10}}$
Validation in Practice

 use validation to select between $\mathcal{H}_{\boldsymbol{\Phi}_{5}}$ and $\mathcal{H}_{\boldsymbol{\Phi}_{10}}$

Validation in Practice

 use validation to select between $\mathcal{H}_{\boldsymbol{\Phi}_{5}}$ and $\mathcal{H}_{\boldsymbol{\Phi}_{10}}$

- in-sample: selection with $E_{\text {in }}$

Validation in Practice

 use validation to select between $\mathcal{H}_{\boldsymbol{\Phi}_{5}}$ and $\mathcal{H}_{\boldsymbol{\Phi}_{10}}$

- in-sample: selection with $E_{\text {in }}$
- optimal: cheating-selection with $E_{\text {test }}$

Validation in Practice

 use validation to select between $\mathcal{H}_{\boldsymbol{\Phi}_{5}}$ and $\mathcal{H}_{\boldsymbol{\Phi}_{10}}$

- in-sample: selection with $E_{\text {in }}$
- optimal: cheating-selection with $E_{\text {test }}$
- sub- g : selection with $E_{\text {val }}$ and report $g_{m^{*}}^{-}$

Validation in Practice

 use validation to select between $\mathcal{H}_{\boldsymbol{\Phi}_{5}}$ and $\mathcal{H}_{\boldsymbol{\Phi}_{10}}$

- in-sample: selection with $E_{\text {in }}$
- optimal: cheating-selection with $E_{\text {test }}$
- sub-g: selection with $E_{\text {val }}$ and report $g_{m^{*}}^{-}$
- full-g: selection with $E_{\text {val }}$ and report $g_{m^{*}}$

Validation in Practice

 use validation to select between $\mathcal{H}_{\boldsymbol{\Phi}_{5}}$ and $\mathcal{H}_{\boldsymbol{\Phi}_{10}}$

- in-sample: selection with $E_{\text {in }}$
- optimal: cheating-selection with $E_{\text {test }}$
- sub-g: selection with $E_{\text {val }}$ and report $g_{m^{*}}^{-}$
- full-g: selection with $E_{\text {val }}$ and report $g_{m^{*}}$
— $E_{\text {out }}\left(g_{m^{*}}\right) \leq E_{\text {out }}\left(g_{m^{*}}^{-}\right)$ indeed

Validation in Practice

use validation to select between $\mathcal{H}_{\boldsymbol{\Phi}_{5}}$ and $\mathcal{H}_{\boldsymbol{\Phi}_{10}}$

- in-sample: selection with $E_{\text {in }}$
- optimal: cheating-selection with $E_{\text {test }}$
- sub-g: selection with $E_{\text {val }}$ and report $g_{m^{*}}^{-}$
- full-g: selection with $E_{\text {val }}$ and report $g_{m^{*}}$
— $E_{\text {out }}\left(g_{m^{*}}\right) \leq E_{\text {out }}\left(g_{m^{*}}^{-}\right)$ indeed
why is sub-g worse than in-sample some time?

The Dilemma about K

reasoning of validation:

$$
E_{\text {out }}(g) \approx E_{\text {out }}\left(g^{-}\right) \approx E_{\text {val }}\left(g^{-}\right)
$$

The Dilemma about K

reasoning of validation:

$$
E_{\text {out }}(g) \underset{(\mathrm{small} K)}{\approx} E_{\text {out }}\left(g^{-}\right) \underset{(\text { large } K)}{\approx} E_{\text {val }}\left(g^{-}\right)
$$

The Dilemma about K

reasoning of validation:

$E_{\text {out }}(g) \underset{(\text { small } K)}{\approx} E_{\text {out }}\left(g^{-}\right) \underset{\text { (large } K)}{\approx} E_{\text {val }}\left(g^{-}\right)$

- large K : every $E_{\text {val }} \approx E_{\text {out }}$,

The Dilemma about K

reasoning of validation:

$E_{\text {out }}(g) \underset{\text { ont }}{\approx} \quad E_{\text {out }}\left(g^{-}\right) \underset{\text { val }}{ }\left(g^{-}\right)$

- large K : every $E_{\text {val }} \approx E_{\text {out }}$, but all g_{m}^{-}much worse than g_{m}

The Dilemma about K

reasoning of validation:

- large K : every $E_{\text {val }} \approx E_{\text {out }}$, but all g_{m}^{-}much worse than g_{m}
- small K : every $g_{m}^{-} \approx g_{m}$,

The Dilemma about K

reasoning of validation:

- large K : every $E_{\text {val }} \approx E_{\text {out }}$, but all g_{m}^{-}much worse than g_{m}
- small K : every $g_{m}^{-} \approx g_{m}$, but $E_{\text {val }}$ far from $E_{\text {out }}$

The Dilemma about K

reasoning of validation:

- large K : every $E_{\text {val }} \approx E_{\text {out }}$, but all g_{m}^{-}much worse than g_{m}
- small K : every $g_{m}^{-} \approx g_{m}$, but $E_{\text {val }}$ far from $E_{\text {out }}$

practical rule of thumb: $K=\frac{N}{5}$

Fun Time

For a learning model that takes N^{2} seconds of training when using N examples, what is the total amount of seconds needed when running the whole validation procedure with $K=\frac{N}{5}$ on 25 such models with different parameters to get the final $g_{m^{*}}$?
(1) $6 N^{2}$
(2) $17 N^{2}$
(3) $25 N^{2}$
(4) $26 N^{2}$

Fun Time

For a learning model that takes N^{2} seconds of training when using N examples, what is the total amount of seconds needed when running the whole validation procedure with $K=\frac{N}{5}$ on 25 such models with different parameters to get the final $g_{m^{*}}$?
(1) $6 N^{2}$
(2) $17 N^{2}$
(3) $25 N^{2}$
(4) $26 N^{2}$

Reference Answer: (2)

To get all the g_{m}^{-}, we need $\frac{16}{25} N^{2} \cdot 25$ seconds. Then to get $g_{m^{*}}$, we need another N^{2} seconds. So in total we need $17 N^{2}$ seconds.

Extreme Case: $K=1$

reasoning of validation:

$E_{\text {out }}(g) \underset{(\text { small } K)}{\approx} E_{\text {out }}\left(g^{-}\right) \underset{(\text { large } K)}{\approx} E_{\text {val }}\left(g^{-}\right)$

- take $K=1$?

Extreme Case: $K=1$

reasoning of validation:

$E_{\text {out }}(g) \underset{(\text { small } K)}{\approx} E_{\text {out }}\left(g^{-}\right) \underset{(\text { large } K)}{\approx} E_{\text {val }}\left(g^{-}\right)$

- take $K=1$? $\mathcal{D}_{\text {val }}^{(n)}=\left\{\left(\mathbf{x}_{n}, y_{n}\right)\right\}$

Extreme Case: $K=1$

reasoning of validation:

$E_{\text {out }}(g) \underset{(\text { small } K)}{\approx} E_{\text {out }}\left(g^{-}\right) \underset{(\text { large } K)}{\approx} E_{\text {val }}\left(g^{-}\right)$

- take $K=1 ? \mathcal{D}_{\text {val }}^{(n)}=\left\{\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ and $E_{\text {val }}^{(n)}\left(g_{n}^{-}\right)=\operatorname{err}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right)=e_{n}$

Extreme Case: $K=1$

reasoning of validation:

$$
E_{\text {out }}(g) \underset{(\text { small } K)}{\approx} E_{\text {out }}\left(g^{-}\right) \underset{(\text { large } K)}{\approx} E_{\text {val }}\left(g^{-}\right)
$$

- take $K=1 ? \mathcal{D}_{\text {val }}^{(n)}=\left\{\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ and $E_{\text {val }}^{(n)}\left(g_{n}^{-}\right)=\operatorname{err}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right)=e_{n}$
- make e_{n} closer to $E_{\text {out }}(g)$?

Extreme Case: $K=1$

reasoning of validation:

$$
E_{\text {out }(g)}^{(\mathrm{small} K)} \underset{(\text { large } K)}{\approx} E_{\text {out }}\left(g^{-}\right) \underset{\text { val }\left(g^{-}\right)}{\approx}
$$

- take $K=1 ? \mathcal{D}_{\text {val }}^{(n)}=\left\{\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ and $E_{\text {val }}^{(n)}\left(g_{n}^{-}\right)=\operatorname{err}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right)=e_{n}$
- make e_{n} closer to $E_{\text {out }}(g)$?-average over possible $E_{\text {val }}^{(n)}$

Extreme Case: $K=1$

reasoning of validation:

$$
E_{\text {out }}(g) \underset{(\text { small } K)}{\approx} E_{\text {out }}\left(g^{-}\right) \underset{(\text { large } K)}{\approx} E_{\text {val }}\left(g^{-}\right)
$$

- take $K=1 ? \mathcal{D}_{\text {val }}^{(n)}=\left\{\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ and $E_{\text {val }}^{(n)}\left(g_{n}^{-}\right)=\operatorname{err}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right)=e_{n}$
- make e_{n} closer to $E_{\text {out }}(g)$?-average over possible $E_{\text {val }}^{(n)}$
- leave-one-out cross validation estimate:

$$
E_{\text {loocv }}(\mathcal{H}, \mathcal{A})=\frac{1}{N} \sum_{n=1}^{N} e_{n}=\frac{1}{N} \sum_{n=1}^{N} \operatorname{err}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right)
$$

Extreme Case: $K=1$

reasoning of validation:

$$
E_{\text {out }}(g) \underset{(\mathrm{small} K)}{\approx} E_{\text {out }}\left(g^{-}\right) \underset{(\text { large } K)}{\approx} E_{\text {val }}\left(g^{-}\right)
$$

- take $K=1 ? \mathcal{D}_{\text {val }}^{(n)}=\left\{\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ and $E_{\text {val }}^{(n)}\left(g_{n}^{-}\right)=\operatorname{err}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right)=e_{n}$
- make e_{n} closer to $E_{\text {out }}(g)$?-average over possible $E_{\text {val }}^{(n)}$
- leave-one-out cross validation estimate:

$$
E_{\text {loocv }}(\mathcal{H}, \mathcal{A})=\frac{1}{N} \sum_{n=1}^{N} e_{n}=\frac{1}{N} \sum_{n=1}^{N} \operatorname{err}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right)
$$

Illustration of Leave-One-Out

Illustration of Leave-One-Out

Illustration of Leave-One-Out

Illustration of Leave-One-Out

$E_{\text {loocv }}($ linear $)=\frac{1}{3}\left(e_{1}+e_{2}+e_{3}\right)$

Illustration of Leave-One-Out

Illustration of Leave-One-Out

Illustration of Leave-One-Out

$($ linear $)=\frac{1}{3}\left(e_{1}+e_{2}+e_{3}\right)$

Illustration of Leave-One-Out

Illustration of Leave-One-Out

Illustration of Leave-One-Out

Theoretical Guarantee of Leave-One-Out Estimate does $E_{\text {loocv }}(\mathcal{H}, \mathcal{A})$ say something about $E_{\text {out }}(g)$?

Theoretical Guarantee of Leave-One-Out Estimate does $E_{\text {loocv }}(\mathcal{H}, \mathcal{A})$ say something about $E_{\text {out }}(g)$? yes, for average $E_{\text {out }}$ on size- $(N-1)$ data

$$
\mathcal{E}_{\mathcal{D}} E_{\text {loocv }}(\mathcal{H}, \mathcal{A})=\mathcal{E} \frac{1}{N} \sum_{n=1}^{N} e_{n}=
$$

$$
=\overline{E_{\text {out }}}(N-1)
$$

Theoretical Guarantee of Leave-One-Out Estimate does $E_{\text {loocv }}(\mathcal{H}, \mathcal{A})$ say something about $E_{\text {out }}(g)$? yes, for average $E_{\text {out }}$ on size- $(N-1)$ data

$$
\begin{aligned}
\mathcal{E}_{\mathcal{D}} E_{\text {loocv }}(\mathcal{H}, \mathcal{A})=\mathcal{E} & \frac{1}{\mathcal{N}} \sum_{n=1}^{N} e_{n}
\end{aligned}=\frac{1}{N} \sum_{n=1}^{N} \mathcal{E} e_{n} .
$$

$$
=\overline{E_{\text {out }}}(N-1)
$$

Theoretical Guarantee of Leave-One-Out Estimate does $E_{\text {loocv }}(\mathcal{H}, \mathcal{A})$ say something about $E_{\text {out }}(g)$? yes, for average $E_{\text {out }}$ on size- $(N-1)$ data

$$
\begin{aligned}
\mathcal{E}_{\mathcal{D}} E_{\mathrm{loocv}}(\mathcal{H}, \mathcal{A})=\mathcal{E} & \frac{1}{N} \sum_{n=1}^{N} e_{n}
\end{aligned}=\frac{1}{N} \sum_{n=1}^{N} \mathcal{E} e_{n}, ~\left(\frac{1}{N} \sum_{n=1}^{N} \underset{\mathcal{D}_{n}\left(\mathbf{x}_{n}, y_{n}\right)}{\mathcal{E}} .\right.
$$

$=\overline{E_{\text {out }}}(N-1)$

Theoretical Guarantee of Leave-One-Out Estimate does $E_{\text {loocv }}(\mathcal{H}, \mathcal{A})$ say something about $E_{\text {out }}(g)$? yes, for average $E_{\text {out }}$ on size- $(N-1)$ data

$$
\begin{aligned}
\mathcal{E}_{\mathcal{D}} E_{\text {loocv }}(\mathcal{H}, \mathcal{A})=\mathcal{E}_{\mathcal{D}} \frac{1}{N} \sum_{n=1}^{N} e_{n} & =\frac{1}{N} \sum_{n=1}^{N} \mathcal{E} e_{n} \\
& =\frac{1}{N} \sum_{n=1}^{N} \mathcal{E} \mathcal{D}_{n\left(\mathbf{x}_{n}, y_{n}\right)}^{\mathcal{E}} \operatorname{err}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N} \mathcal{E} \mathcal{D}_{n}
\end{aligned}
$$

$$
=\overline{E_{\text {out }}}(N-1)
$$

Theoretical Guarantee of Leave-One-Out Estimate

 does $E_{\text {loocv }}(\mathcal{H}, \mathcal{A})$ say something about $E_{\text {out }}(g)$? yes, for average $E_{\text {out }}$ on size- $(N-1)$ data$$
\begin{aligned}
{\underset{\mathcal{E}}{\mathcal{E}}}^{E_{\text {loocv }}(\mathcal{H}, \mathcal{A})=\mathcal{E}} \frac{1}{\mathcal{D}} \sum_{n=1}^{N} e_{n} & =\frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{\mathcal{D}} e_{n} \\
& =\frac{1}{N} \sum_{n=1}^{N} \underset{\mathcal{D}_{n(}\left(\mathbf{x}_{n}, y_{n}\right)}{ } \mathcal{E r r}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{\mathcal{D}_{n}} E_{\text {out }}\left(g_{n}^{-}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N} \quad=\overline{E_{\text {out }}}(N-1)
\end{aligned}
$$

Theoretical Guarantee of Leave-One-Out Estimate

 does $E_{\text {loocv }}(\mathcal{H}, \mathcal{A})$ say something about $E_{\text {out }}(g)$? yes, for average $E_{\text {out }}$ on size- $(N-1)$ data$$
\begin{aligned}
\mathcal{E}_{\mathcal{D}} E_{\text {loocv }}(\mathcal{H}, \mathcal{A})=\mathcal{E}_{\mathcal{D}} \frac{1}{N} \sum_{n=1}^{N} e_{n} & =\frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{\mathcal{D}} e_{n} \\
& =\frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{\mathcal{D}_{n}\left(\mathbf{x}_{n}, y_{n}\right)} \operatorname{err}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{\mathcal{D}_{n}} E_{\text {out }}\left(g_{n}^{-}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N} \overline{E_{\text {out }}}(N-1)=\overline{E_{\text {out }}}(N-1)
\end{aligned}
$$

Theoretical Guarantee of Leave-One-Out Estimate does $E_{\text {loocv }}(\mathcal{H}, \mathcal{A})$ say something about $E_{\text {out }}(g)$? yes, for average $E_{\text {out }}$ on size- $(N-1)$ data

$$
\begin{aligned}
\mathcal{E}_{\mathcal{D}} E_{\text {loocv }}(\mathcal{H}, \mathcal{A})=\mathcal{E}_{\mathcal{D}} \frac{1}{N} \sum_{n=1}^{N} e_{n} & =\frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{\mathcal{D}} e_{n} \\
& =\frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{\mathcal{D}_{n(}\left(\mathbf{E}_{n}, y_{n}\right)} \operatorname{err}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{\mathcal{D}_{n}} E_{\text {out }}\left(g_{n}^{-}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N} \overline{E_{\text {out }}}(N-1)=\overline{E_{\text {out }}}(N-1)
\end{aligned}
$$

expected $E_{\text {loocv }}(\mathcal{H}, \mathcal{A})$ says something about expected $E_{\text {out }}\left(g^{-}\right)$ -often called 'almost unbiased estimate of $E_{\text {out }}(g)$ '

Leave-One-Out in Practice

Average Intensity

Leave-One-Out in Practice

Average Intensity

Leave-One-Out in Practice

Average Intensity

Average Intensity
select by $E_{\text {in }}$

Leave-One-Out in Practice

Average Intensity

Average Intensity
select by $E_{\text {in }}$

Average Intensity
select by $E_{\text {loocv }}$

Leave-One-Out in Practice

Average Intensity

Average Intensity
select by $E_{\text {in }}$

Average Intensity
select by $E_{\text {loocv }}$

$E_{\text {loocv }}$ much better than $E_{\text {in }}$

Fun Time

Consider three examples $\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right),\left(\mathbf{x}_{3}, y_{3}\right)$ with $y_{1}=1, y_{2}=5$, $y_{3}=7$. If we use $E_{\text {loocv }}$ to estimate the performance of a learning algorithm that predicts with the average y value of the data set-the optimal constant prediction with respect to the squared error. What is $E_{\text {loocv }}$ (squared error) of the algorithm?
(1) 0
(2) $\frac{56}{9}$
(3) $\frac{60}{9}$
(4) 14

Fun Time

Consider three examples $\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right),\left(\mathbf{x}_{3}, y_{3}\right)$ with $y_{1}=1, y_{2}=5$, $y_{3}=7$. If we use $E_{\text {loocv }}$ to estimate the performance of a learning algorithm that predicts with the average y value of the data set-the optimal constant prediction with respect to the squared error. What is $E_{\text {loocv }}$ (squared error) of the algorithm?
(1) 0
(2) $\frac{56}{9}$
(3) $\frac{60}{9}$
(4) 14

Reference Answer: (4)

This is based on a simple calculation of
$e_{1}=(1-6)^{2}, e_{2}=(5-4)^{2}, e_{3}=(7-3)^{2}$.

Disadvantages of Leave-One-Out Estimate

Computation

$$
E_{\mathrm{loocv}}(\mathcal{H}, \mathcal{A})=\frac{1}{N} \sum_{n=1}^{N} e_{n}=\frac{1}{N} \sum_{n=1}^{N} \operatorname{err}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right)
$$

- N 'additional' training per model, not always feasible in practice

Disadvantages of Leave-One-Out Estimate

Computation

$$
E_{\text {loocv }}(\mathcal{H}, \mathcal{A})=\frac{1}{N} \sum_{n=1}^{N} e_{n}=\frac{1}{N} \sum_{n=1}^{N} \operatorname{err}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right)
$$

- N 'additional' training per model, not always feasible in practice
- except 'special case' like analytic solution for linear regression

Disadvantages of Leave-One-Out Estimate

Computation

$$
E_{\text {loocv }}(\mathcal{H}, \mathcal{A})=\frac{1}{N} \sum_{n=1}^{N} e_{n}=\frac{1}{N} \sum_{n=1}^{N} \operatorname{err}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right)
$$

- N 'additional' training per model, not always feasible in practice
- except 'special case' like analytic solution for linear regression

Stability

Disadvantages of Leave-One-Out Estimate

Computation

$$
E_{\text {loocv }}(\mathcal{H}, \mathcal{A})=\frac{1}{N} \sum_{n=1}^{N} e_{n}=\frac{1}{N} \sum_{n=1}^{N} \operatorname{err}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right)
$$

- N 'additional' training per model, not always feasible in practice
- except 'special case' like analytic solution for linear regression

Stability-due to variance of single-point estimates

Disadvantages of Leave-One-Out Estimate

Computation

$$
E_{\text {loocv }}(\mathcal{H}, \mathcal{A})=\frac{1}{N} \sum_{n=1}^{N} e_{n}=\frac{1}{N} \sum_{n=1}^{N} \operatorname{err}\left(g_{n}^{-}\left(\mathbf{x}_{n}\right), y_{n}\right)
$$

- N 'additional' training per model, not always feasible in practice
- except 'special case' like analytic solution for linear regression

Stability-due to variance of single-point estimates

$E_{\text {loocv: }}$ not often used practically

V-fold Cross Validation how to decrease computation need for cross validation? how to decrease computation need for cross validation?

- essence of leave-one-out cross validation: partition \mathcal{D} to N parts,
- essence of leave-one-out cross validation: partition \mathcal{D} to N parts, taking $N-1$ for training and 1 for validation orderly
- essence of leave-one-out cross validation: partition \mathcal{D} to N parts, taking $N-1$ for training and 1 for validation orderly
- V-fold cross-validation: random-partition of \mathcal{D} to V equal parts, D

- essence of leave-one-out cross validation: partition \mathcal{D} to N parts, taking $N-1$ for training and 1 for validation orderly
- V-fold cross-validation: random-partition of \mathcal{D} to V equal parts, D

take $V-1$ for training and 1 for validation orderly
- essence of leave-one-out cross validation: partition \mathcal{D} to N parts, taking $N-1$ for training and 1 for validation orderly
- V-fold cross-validation: random-partition of \mathcal{D} to V equal parts, D

take $V-1$ for training and 1 for validation orderly

$$
E_{\mathrm{cv}}(\mathcal{H}, \mathcal{A})=\frac{1}{V} \sum_{v=1}^{V} E_{\mathrm{val}}^{(v)}\left(g_{v}^{-}\right)
$$

- essence of leave-one-out cross validation: partition \mathcal{D} to N parts, taking $N-1$ for training and 1 for validation orderly
- V-fold cross-validation: random-partition of \mathcal{D} to V equal parts, D

take $V-1$ for training and 1 for validation orderly

$$
E_{\mathrm{cv}}(\mathcal{H}, \mathcal{A})=\frac{1}{V} \sum_{v=1}^{V} E_{\mathrm{val}}^{(v)}\left(g_{v}^{-}\right)
$$

- selection by $E_{\mathrm{cv}}: m^{*}=\underset{1 \leq m \leq M}{\operatorname{argmin}}\left(E_{m}=E_{\mathrm{cv}}\left(\mathcal{H}_{m}, \mathcal{A}_{m}\right)\right)$

$$
1 \leq m \leq M
$$

- essence of leave-one-out cross validation: partition \mathcal{D} to N parts, taking $N-1$ for training and 1 for validation orderly
- V-fold cross-validation: random-partition of \mathcal{D} to V equal parts, D

take $V-1$ for training and 1 for validation orderly

$$
E_{\mathrm{cv}}(\mathcal{H}, \mathcal{A})=\frac{1}{V} \sum_{v=1}^{V} E_{\mathrm{val}}^{(v)}\left(g_{v}^{-}\right)
$$

- selection by $E_{\mathrm{cv}}: m^{*}=\underset{1 \leq m \leq M}{\operatorname{argmin}}\left(E_{m}=E_{\mathrm{cv}}\left(\mathcal{H}_{m}, \mathcal{A}_{m}\right)\right)$

$$
1 \leq m \leq M
$$

practical rule of thumb: $V=10$

Final Words on Validation

'Selecting' Validation Tool

Final Words on Validation

'Selecting' Validation Tool

- V-Fold generally preferred over single validation if computation allows

Final Words on Validation

'Selecting' Validation Tool

- V-Fold generally preferred over single validation if computation allows
- 5-Fold or 10-Fold generally works well: not necessary to trade V-Fold with Leave-One-Out

Final Words on Validation

'Selecting' Validation Tool

- V-Fold generally preferred over single validation if computation allows
- 5-Fold or 10-Fold generally works well: not necessary to trade V-Fold with Leave-One-Out

Nature of Validation

- all training models: select among hypotheses

Final Words on Validation

'Selecting' Validation Tool

- V-Fold generally preferred over single validation if computation allows
- 5-Fold or 10-Fold generally works well: not necessary to trade V-Fold with Leave-One-Out

Nature of Validation

- all training models: select among hypotheses
- all validation schemes: select among finalists

Final Words on Validation

'Selecting' Validation Tool

- V-Fold generally preferred over single validation if computation allows
- 5-Fold or 10-Fold generally works well: not necessary to trade V-Fold with Leave-One-Out

Nature of Validation

- all training models: select among hypotheses
- all validation schemes: select among finalists
- all testing methods: just evaluate

Final Words on Validation

'Selecting' Validation Tool

- V-Fold generally preferred over single validation if computation allows
- 5-Fold or 10-Fold generally works well: not necessary to trade V-Fold with Leave-One-Out

Nature of Validation

- all training models: select among hypotheses
- all validation schemes: select among finalists
- all testing methods: just evaluate
validation still more optimistic than testing

Final Words on Validation

'Selecting' Validation Tool

- V-Fold generally preferred over single validation if computation allows
- 5-Fold or 10-Fold generally works well: not necessary to trade V-Fold with Leave-One-Out

Nature of Validation

- all training models: select among hypotheses
- all validation schemes: select among finalists
- all testing methods: just evaluate
validation still more optimistic than testing
do not fool yourself and others :-), report test result, not best validation result

Fun Time

For a learning model that takes N^{2} seconds of training when using N examples, what is the total amount of seconds needed when running 10 -fold cross validation on 25 such models with different parameters to get the final $g_{m^{*}}$?
(1) $\frac{47}{2} N^{2}$
(2) $47 N^{2}$
(3) $\frac{407}{2} N^{2}$
(4) $407 N^{2}$

Fun Time

For a learning model that takes N^{2} seconds of training when using N examples, what is the total amount of seconds needed when running 10 -fold cross validation on 25 such models with different parameters to get the final $g_{m^{*}}$?
(1) $\frac{47}{2} N^{2}$
(2) $47 N^{2}$
(3) $\frac{407}{2} N^{2}$
(4) $407 N^{2}$

Reference Answer: (3)

To get all the E_{cv}, we need $\frac{81}{100} N^{2} \cdot 10 \cdot 25$ seconds. Then to get $g_{m^{*}}$, we need another N^{2} seconds. So in total we need $\frac{407}{2} N^{2}$ seconds.

Summary

(1) When Can Machines Learn?
(2) Why Can Machines Learn?
(3) How Can Machines Learn?
(4) How Can Machines Learn Better?

Lecture 14: Regularization
 Lecture 15: Validation

- Model Selection Problem dangerous by $E_{\text {in }}$ and dishonest by $E_{\text {test }}$
- Validation
select with $E_{\text {val }}\left(\mathcal{A}_{m}\left(\mathcal{D}_{\text {train }}\right)\right)$ while returning $\mathcal{A}_{m^{*}}(\mathcal{D})$
- Leave-One-Out Cross Validation
huge computation for almost unbiased estimate
- V-Fold Cross Validation
reasonable computation and performance
- next: something 'up my sleeve’

