Machine Learning Foundations (機器學習基石)

Lecture 13: Hazard of Overfitting

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?

Lecture 12: Nonlinear Transform

nonlinear
via nonlinear feature transform Φ
plus linear
with price of model complexity

4 How Can Machines Learn Better?

Lecture 13: Hazard of Overfitting

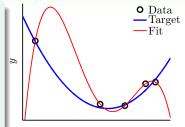
- What is Overfitting?
- The Role of Noise and Data Size
- Deterministic Noise
- Dealing with Overfitting

What is Overfitting?

Bad Generalization

- regression for $x \in \mathbb{R}$ with N = 5 examples
- target f(x) = 2nd order polynomial
- label $y_n = f(x_n) + \text{very small noise}$
- linear regression in *Z*-space +
 Φ = 4th order polynomial
- unique solution passing all examples $\implies E_{in}(g) = 0$
- *E*_{out}(*g*) huge

bad generalization: low E_{in} , high E_{out}

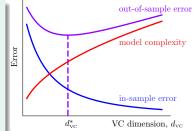


x

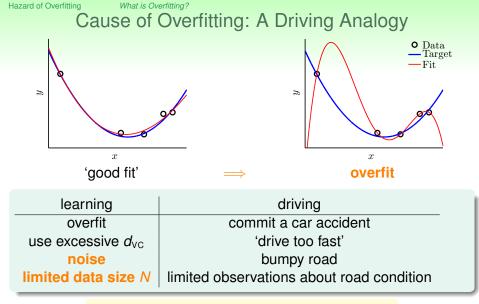
What is Overfitting?

Bad Generalization and Overfitting

- take d_{VC} = 1126 for learning: bad generalization --(E_{out} - E_{in}) large
- switch from d_{vc} = d^{*}_{vc} to d_{vc} = 1126:
 overfitting
 —*E*_{in} ↓, *E*_{out} ↑
- switch from d_{vc} = d^{*}_{vc} to d_{vc} = 1: underfitting —E_{in} ↑, E_{out} ↑



bad generalization: low *E*_{in}, high *E*_{out}; overfitting: lower *E*_{in}, higher *E*_{out}



next: how does **noise** & **data size** affect overfitting?

Hsuan-Tien Lin (NTU CSIE)

Based on our discussion, for data of fixed size, which of the following situation is relatively of the lowest risk of overfitting?

- **1** small noise, fitting from small d_{VC} to median d_{VC}
- 2 small noise, fitting from small d_{VC} to large d_{VC}
- **(3)** large noise, fitting from small d_{VC} to median d_{VC}
- 4 large noise, fitting from small $d_{\rm VC}$ to large $d_{\rm VC}$

Based on our discussion, for data of fixed size, which of the following situation is relatively of the lowest risk of overfitting?

- **1** small noise, fitting from small d_{VC} to median d_{VC}
- 2 small noise, fitting from small d_{VC} to large d_{VC}
- **3** large noise, fitting from small d_{VC} to median d_{VC}
- 4 large noise, fitting from small $d_{\rm VC}$ to large $d_{\rm VC}$

Reference Answer: (1)

Two causes of overfitting are noise and excessive d_{VC} . So if both are relatively 'under control', the risk of overfitting is smaller.

The Role of Noise and Data Size

Case Study (1/2)

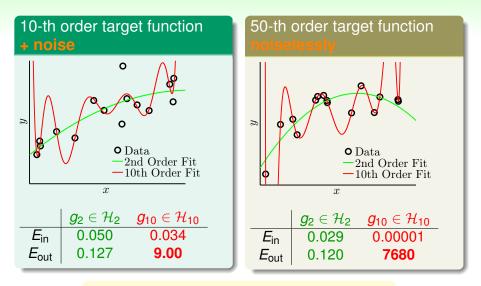


overfitting from best $g_2 \in \mathcal{H}_2$ to best $g_{10} \in \mathcal{H}_{10}$?

Hsuan-Tien Lin (NTU CSIE)

The Role of Noise and Data Size

Case Study (2/2)



overfitting from g_2 to g_{10} ? both yes!

Hsuan-Tien Lin (NTU CSIE)

The Role of Noise and Data Size Irony of Two Learners



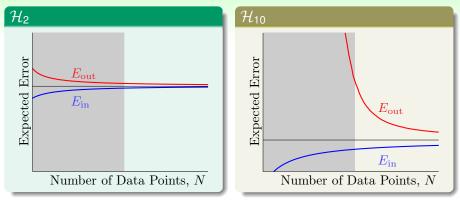
but *R* wins in *E*_{out} a lot! philosophy: concession for advantage? :-)

Hsuan-Tien Lin (NTU CSIE)

Hazard of Overfitting

The Role of Noise and Data Size

Learning Curves Revisited



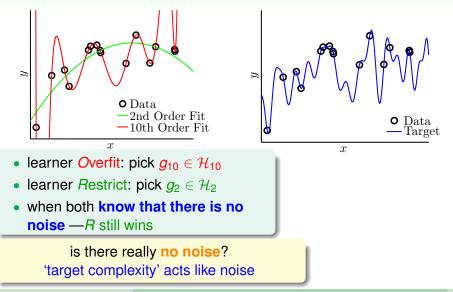
- \mathcal{H}_{10} : lower $\overline{E_{out}}$ when $N \to \infty$, but much larger generalization error for small N
- gray area : *O* overfits! $(\overline{E_{in}} \downarrow, \overline{E_{out}} \uparrow)$

R always wins in $\overline{E_{out}}$ if *N* small!

Hsuan-Tien Lin (NTU CSIE)

The Role of Noise and Data Size

The 'No Noise' Case



Hsuan-Tien Lin (NTU CSIE)

When having limited data, in which of the following case would learner R perform better than learner O?

- 1 limited data from a 10-th order target function with some noise
- 2 limited data from a 1126-th order target function with no noise
- 3 limited data from a 1126-th order target function with some noise
- 4 all of the above

When having limited data, in which of the following case would learner R perform better than learner O?

- limited data from a 10-th order target function with some noise
- 2 limited data from a 1126-th order target function with no noise
- 3 limited data from a 1126-th order target function with some noise
- 4 all of the above

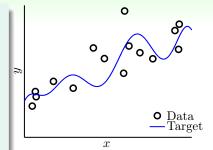
Reference Answer: (4)

We discussed about (1) and (2), but you shall be able to 'generalize' :-) that *R* also wins in the more difficult case of (3). Deterministic Noise

A Detailed Experiment

$$y = f(x) + \epsilon$$

~ Gaussian $\left(\sum_{q=0}^{Q_f} \alpha_q x^q, \sigma^2\right)$



- Gaussian iid noise ϵ with level σ^2
- some 'uniform' distribution on f(x)with complexity level Q_f

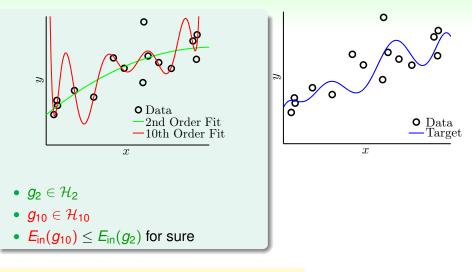
data size N

different (N, σ^2) and (N, Q_f) ?

Hsuan-Tien Lin (NTU CSIE)

Deterministic Noise

The Overfit Measure

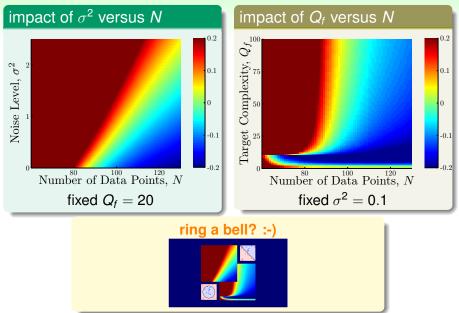


overfit measure $E_{out}(g_{10}) - E_{out}(g_2)$

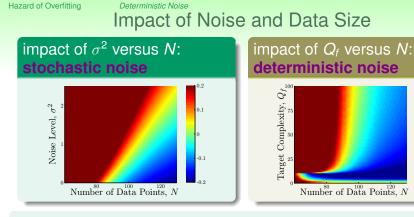
Hsuan-Tien Lin (NTU CSIE)

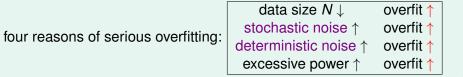
Deterministic Noise

The Results



Hsuan-Tien Lin (NTU CSIE)





overfitting 'easily' happens

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Foundations

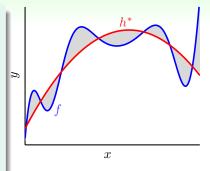
0.2

0.1

-0.1

Deterministic Noise

- if *f* ∉ *H*: something of *f* cannot be captured by *H*
- deterministic noise : difference between best $h^* \in \mathcal{H}$ and f
- acts like 'stochastic noise'—not new to CS: pseudo-random generator
- difference to stochastic noise:
 - depends on *H*
 - fixed for a given x



philosophy: when teaching a kid, perhaps better not to use examples from a complicated target function? :-)

Consider the target function being sin(1126x) for $x \in [0, 2\pi]$. When x is uniformly sampled from the range, and we use all possible linear hypotheses $h(x) = w \cdot x$ to approximate the target function with respect to the squared error, what is the level of deterministic noise for each x?

1 | sin(1126*x*)|

- **3** $|\sin(1126x) + x|$
- $4 |\sin(1126x) 1126x|$

Consider the target function being sin(1126x) for $x \in [0, 2\pi]$. When x is uniformly sampled from the range, and we use all possible linear hypotheses $h(x) = w \cdot x$ to approximate the target function with respect to the squared error, what is the level of deterministic noise for each x?

1 | sin(1126*x*)|

- **3** $|\sin(1126x) + x|$
- $4 |\sin(1126x) 1126x|$

Reference Answer: (1)

You can try a few different *w* and convince yourself that the best hypothesis h^* is $h^*(x) = 0$. The deterministic noise is the difference between *f* and h^* . Dealing with Overfitting

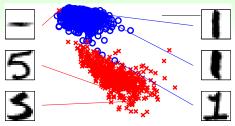
Driving Analogy Revisited

learning	driving
overfit	commit a car accident
use excessive d_{VC}	'drive too fast'
noise	bumpy road
limited data size N	limited observations about road condition
start from simple model	drive slowly
data cleaning/pruning	use more accurate road information
data hinting	exploit more road information
regularization	put the brakes
validation	monitor the dashboard

all very practical techniques to combat overfitting

Dealing with Overfitting

Data Cleaning/Pruning

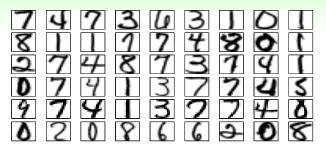


- if 'detect' the outlier 5 at the top by
 - too close to other \circ , or too far from other \times
 - wrong by current classifier
 - ...
- possible action 1: correct the label (data cleaning)
- possible action 2: remove the example (data pruning)

possibly helps, but effect varies

Hsuan-Tien Lin (NTU CSIE)

Data Hinting



- slightly shifted/rotated digits carry the same meaning
- possible action: add virtual examples by shifting/rotating the given digits (data hinting)

possibly helps, but watch out

-virtual example not $\stackrel{iid}{\sim} P(\mathbf{x}, y)!$

Hsuan-Tien Lin (NTU CSIE)

Assume we know that f(x) is symmetric for some 1D regression application. That is, f(x) = f(-x). One possibility of using the knowledge is to consider symmetric hypotheses only. On the other hand, you can also generate virtual examples from the original data $\{(x_n, y_n)\}$ as hints. What virtual examples suit your needs best? 1 $\{(x_n, -y_n)\}$ 2 $\{(-x_n, -y_n)\}$ 3 $\{(-x_n, y_n)\}$ 4 $\{(2x_n, 2y_n)\}$

Assume we know that f(x) is symmetric for some 1D regression application. That is, f(x) = f(-x). One possibility of using the knowledge is to consider symmetric hypotheses only. On the other hand, you can also generate virtual examples from the original data $\{(x_n, y_n)\}$ as hints. What virtual examples suit your needs best? **1** $\{(x_n, -y_n)\}$

2
$$\{(-x_n, -y_n)\}$$

$$\mathbf{3} \{(-x_n, y_n)\}$$

$$(2x_n, 2y_n)$$

Reference Answer: (3)

We want the virtual examples to encode the invariance when $x \rightarrow -x$.

Dealing with Overfitting

Summary

- When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?

Lecture 12: Nonlinear Transform

4 How Can Machines Learn Better?

Lecture 13: Hazard of Overfitting

• What is Overfitting?

lower *E*_{in} but higher *E*_{out}

• The Role of Noise and Data Size

overfitting 'easily' happens!

Deterministic Noise

what $\ensuremath{\mathcal{H}}$ cannot capture acts like noise

• Dealing with Overfitting

data cleaning/pruning/hinting, and more

• next: putting the brakes with regularization