Machine Learning Foundations (機器學習基石)

Lecture 5: Training versus Testing

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

1 When Can Machines Learn?

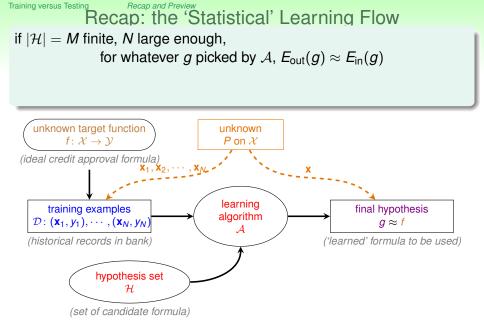
Lecture 4: Feasibility of Learning

learning is PAC-possible if enough statistical data and finite $|\mathcal{H}|$

2 Why Can Machines Learn?

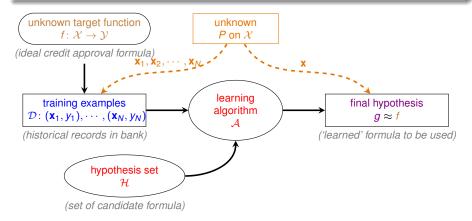
Lecture 5: Training versus Testing

- Recap and Preview
- Effective Number of Lines
- Effective Number of Hypotheses
- Break Point
- **3** How Can Machines Learn?
- 4 How Can Machines Learn Better?



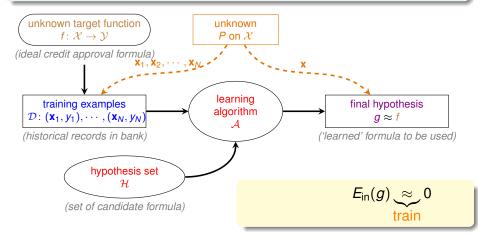
Training versus Testing Recap and Preview Recap: the 'Statistical' Learning Flow if $|\mathcal{H}| = M$ finite, N large enough, for whatever g picked by \mathcal{A} , $E_{out}(g) \approx E_{in}(g)$ if \mathcal{A} finds one g with $E_{in}(g) \approx 0$,

PAC guarantee for $E_{out}(g) \approx 0 \implies$ learning possible :-)



Training versus Testing Recap and Preview Recap: the 'Statistical' Learning Flow if $|\mathcal{H}| = M$ finite, N large enough, for whatever g picked by \mathcal{A} , $E_{out}(g) \approx E_{in}(g)$ if \mathcal{A} finds one g with $E_{in}(g) \approx 0$,

PAC guarantee for $E_{out}(g) \approx 0 \Longrightarrow$ learning possible :-)



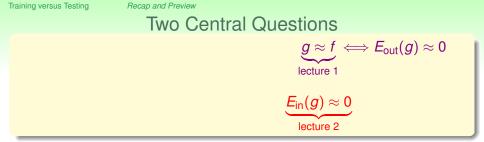
Training versus Testing Recap and Preview Recap: the 'Statistical' Learning Flow if $|\mathcal{H}| = M$ finite, N large enough, for whatever g picked by \mathcal{A} , $E_{out}(g) \approx E_{in}(g)$ if \mathcal{A} finds one g with $E_{in}(g) \approx 0$,

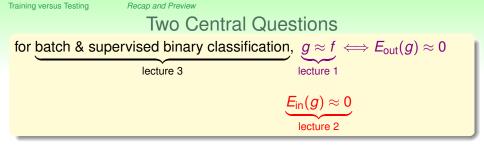
PAC guarantee for $E_{out}(g) \approx 0 \implies$ learning possible :-)

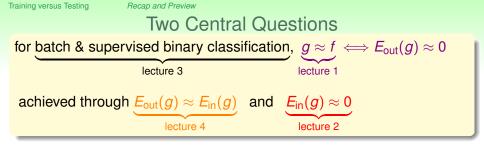


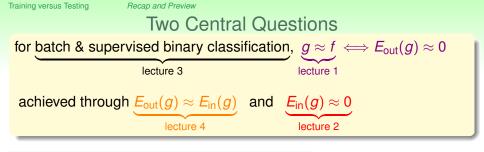
Two Central Questions

 $\underbrace{g \approx f}_{\text{lecture 1}} \Longleftrightarrow E_{\text{out}}(g) \approx 0$



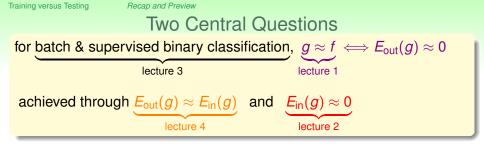






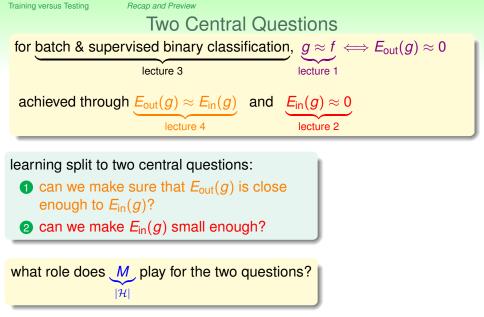
learning split to two central questions:

1 can we make sure that E_{out}(g) is close enough to E_{in}(g)?



learning split to two central questions:

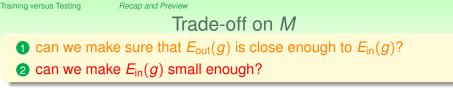
- 1 can we make sure that E_{out}(g) is close enough to E_{in}(g)?
- **2** can we make $E_{in}(g)$ small enough?



Trade-off on M

can we make sure that E_{out}(g) is close enough to E_{in}(g)? can we make E_{in}(g) small enough?

small M	large M



2 No!, too few choices

2 can we make $E_{in}(g)$ small enough?

small M

1 Yes!, $\mathbb{P}[\mathsf{BAD}] \leq 2 \cdot M \cdot \exp(\ldots)$

2 No!, too few choices

large M	
1 No!,	
$\mathbb{P}[BAD] \leq 2 \cdot M \cdot \exp(\ldots)$	
2 Yes!, many choices	

 Training versus Testing
 Recap and Preview

 Trade-off on M

 1 can we make sure that $E_{out}(g)$ is close enough to $E_{in}(g)$?

 2 can we make $E_{in}(g)$ small enough?

small Mlarge M1 Yes!,
 $\mathbb{P}[BAD] \le 2 \cdot M \cdot \exp(...)$ 1 No!,
 $\mathbb{P}[BAD] \le 2 \cdot M \cdot \exp(...)$ 2 No!, too few choices2 Yes!, many choices

using the right *M* (or \mathcal{H}) is important $M = \infty$ doomed?

Preview

Known

$$\mathbb{P}\left[\left|\mathcal{E}_{\mathsf{in}}(g) - \mathcal{E}_{\mathsf{out}}(g)\right| > \epsilon
ight] \leq 2 \cdot M \cdot \exp\left(-2\epsilon^2 N
ight)$$

Preview

Known

$$\mathbb{P}\left[\left|\mathcal{E}_{\mathsf{in}}(g) - \mathcal{E}_{\mathsf{out}}(g)\right| > \epsilon
ight] \leq 2 \cdot M \cdot \exp\left(-2\epsilon^2 N
ight)$$

Todo

establish a finite quantity that replaces M

$$\mathbb{P}\left[\left|\mathcal{E}_{\mathsf{in}}(g) - \mathcal{E}_{\mathsf{out}}(g)\right| > \epsilon\right] \stackrel{\textbf{?}}{\leq} 2 \cdot \underline{m}_{\mathcal{H}} \cdot \exp\left(-2\epsilon^2 N\right)$$

Preview

Known

$$\mathbb{P}\left[\left|\mathcal{E}_{\mathsf{in}}(g) - \mathcal{E}_{\mathsf{out}}(g)\right| > \epsilon
ight] \le 2 \cdot \mathcal{M} \cdot \exp\left(-2\epsilon^2 \mathcal{N}
ight)$$

Todo

establish a finite quantity that replaces M

$$\mathbb{P}\left[\left|m{\mathcal{E}}_{\mathsf{in}}(m{g}) - m{\mathcal{E}}_{\mathsf{out}}(m{g})
ight| > \epsilon
ight] \stackrel{{m{?}}}{\leq} 2 \cdot m{m}_{\mathcal{H}} \cdot \exp\left(-2\epsilon^2 m{N}
ight)$$

• justify the feasibility of learning for infinite M

Preview

Known

$$\mathbb{P}\left[\left|\mathcal{E}_{\mathsf{in}}(g) - \mathcal{E}_{\mathsf{out}}(g)\right| > \epsilon
ight] \le 2 \cdot \mathcal{M} \cdot \exp\left(-2\epsilon^2 \mathcal{N}
ight)$$

Todo

establish a finite quantity that replaces M

$$\mathbb{P}\left[\left|\textit{\textit{E}}_{\mathsf{in}}(\textit{g}) - \textit{\textit{E}}_{\mathsf{out}}(\textit{g})\right| > \epsilon\right] \stackrel{\textbf{?}}{\leq} 2 \cdot \textit{\textit{m}}_{\mathcal{H}} \cdot \exp\left(-2\epsilon^2\textit{\textit{N}}\right)$$

- justify the feasibility of learning for infinite M
- study $m_{\mathcal{H}}$ to understand its trade-off for 'right' \mathcal{H} , just like M

Preview

Known

$$\mathbb{P}\left[\left|\mathcal{E}_{\mathsf{in}}(g) - \mathcal{E}_{\mathsf{out}}(g)\right| > \epsilon
ight] \le 2 \cdot \mathcal{M} \cdot \exp\left(-2\epsilon^2 \mathcal{N}
ight)$$

Todo

establish a finite quantity that replaces M

$$\mathbb{P}\left[\left|\mathcal{E}_{\mathsf{in}}(g) - \mathcal{E}_{\mathsf{out}}(g)\right| > \epsilon\right] \stackrel{\textbf{?}}{\leq} 2 \cdot m_{\mathcal{H}} \cdot \exp\left(-2\epsilon^2 \mathsf{N}\right)$$

- justify the feasibility of learning for infinite M
- study $m_{\mathcal{H}}$ to understand its trade-off for 'right' \mathcal{H} , just like M

mysterious PLA to be fully resolved after 3 more lectures :-)

Fun Time

Data size: how large do we need?

One way to use the inequality

$$\mathbb{P}\left[\left|\mathsf{E}_{\mathsf{in}}(g) - \mathsf{E}_{\mathsf{out}}(g)\right| > \epsilon\right] \leq \underbrace{2 \cdot \mathsf{M} \cdot \exp\left(-2\epsilon^2 \mathsf{N}\right)}_{\delta}$$

is to pick a tolerable difference ϵ as well as a tolerable **BAD** probability δ , and then gather data with size (*N*) large enough to achieve those tolerance criteria. Let $\epsilon = 0.1$, $\delta = 0.05$, and M = 100. What is the data size needed?

Fun Time

Data size: how large do we need?

One way to use the inequality

$$\mathbb{P}\left[\left|\mathsf{E}_{\mathsf{in}}(g) - \mathsf{E}_{\mathsf{out}}(g)\right| > \epsilon\right] \leq \underbrace{2 \cdot \mathsf{M} \cdot \exp\left(-2\epsilon^2 \mathsf{N}\right)}_{\delta}$$

is to pick a tolerable difference ϵ as well as a tolerable **BAD** probability δ , and then gather data with size (*N*) large enough to achieve those tolerance criteria. Let $\epsilon = 0.1$, $\delta = 0.05$, and M = 100. What is the data size needed?

1 215 **2** 415 **3** 615 **4** 815
Reference Answer: 2
We can simply express *N* as a function of those 'known' variables.
Then, the needed
$$N = \frac{1}{2\epsilon^2} \ln \frac{2M}{\delta}$$
.

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Foundations

Effective Number of Lines

Where Did *M* Come From?

$$\mathbb{P}\left[\left|\mathcal{E}_{\mathsf{in}}(g) - \mathcal{E}_{\mathsf{out}}(g)\right| > \epsilon
ight] \leq 2 \cdot M \cdot \exp\left(-2\epsilon^2 N
ight)$$

• **BAD events** \mathcal{B}_m : $|\mathcal{E}_{in}(h_m) - \mathcal{E}_{out}(h_m)| > \epsilon$

Effective Number of Lines

Where Did *M* Come From?

$$\mathbb{P}\left[\left|\mathcal{E}_{\mathsf{in}}(g) - \mathcal{E}_{\mathsf{out}}(g)\right| > \epsilon
ight] \leq 2 \cdot M \cdot \exp\left(-2\epsilon^2 N
ight)$$

- **BAD events** \mathcal{B}_m : $|\mathcal{E}_{in}(h_m) \mathcal{E}_{out}(h_m)| > \epsilon$
- to give \mathcal{A} freedom of choice: bound $\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \dots \mathcal{B}_M]$

Effective Number of Lines

Where Did *M* Come From?

$$\mathbb{P}\left[\left|\mathcal{E}_{\mathsf{in}}(g) - \mathcal{E}_{\mathsf{out}}(g)\right| > \epsilon
ight] \leq 2 \cdot M \cdot \exp\left(-2\epsilon^2 N
ight)$$

- **BAD events** \mathcal{B}_m : $|\mathcal{E}_{in}(h_m) \mathcal{E}_{out}(h_m)| > \epsilon$
- to give \mathcal{A} freedom of choice: bound $\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \dots \mathcal{B}_M]$
- worst case: all \mathcal{B}_m non-overlapping

$$\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \dots \mathcal{B}_M] \underbrace{\leq}_{\substack{\mathsf{union bound}}} \mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \dots + \mathbb{P}[\mathcal{B}_M]$$

Effective Number of Lines

Where Did *M* Come From?

$$\mathbb{P}\left[\left|\mathcal{E}_{\mathsf{in}}(g) - \mathcal{E}_{\mathsf{out}}(g)\right| > \epsilon
ight] \leq 2 \cdot M \cdot \exp\left(-2\epsilon^2 N
ight)$$

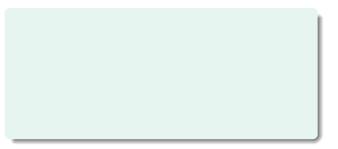
- **BAD events** \mathcal{B}_m : $|\mathcal{E}_{in}(h_m) \mathcal{E}_{out}(h_m)| > \epsilon$
- to give \mathcal{A} freedom of choice: bound $\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \dots \mathcal{B}_M]$
- worst case: all B_m non-overlapping

$$\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \dots \mathcal{B}_M] \underbrace{\leq}_{\substack{\mathsf{union bound}}} \mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \dots + \mathbb{P}[\mathcal{B}_M]$$

where did **union bound fail** to consider for $M = \infty$?

Effective Number of Lines

Where Did Union Bound Fail? union bound $\mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \ldots + \mathbb{P}[\mathcal{B}_M]$



Effective Number of Lines

Where Did Union Bound Fail? union bound $\mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \ldots + \mathbb{P}[\mathcal{B}_M]$

• **BAD events** \mathcal{B}_m : $|\mathcal{E}_{in}(h_m) - \mathcal{E}_{out}(h_m)| > \epsilon$

overlapping for similar hypotheses $h_1 \approx h_2$

Effective Number of Lines

Where Did Union Bound Fail? union bound $\mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \ldots + \mathbb{P}[\mathcal{B}_M]$

• **BAD events** \mathcal{B}_m : $|\mathcal{E}_{in}(h_m) - \mathcal{E}_{out}(h_m)| > \epsilon$

overlapping for similar hypotheses $h_1 \approx h_2$ • why? 1 $E_{out}(h_1) \approx E_{out}(h_2)$ 2 for most \mathcal{D} , $E_{in}(h_1) = E_{in}(h_2)$

Effective Number of Lines

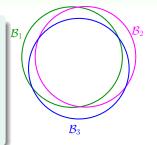
Where Did Union Bound Fail? union bound $\mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \ldots + \mathbb{P}[\mathcal{B}_M]$

• **BAD events** \mathcal{B}_m : $|\mathcal{E}_{in}(h_m) - \mathcal{E}_{out}(h_m)| > \epsilon$

overlapping for similar hypotheses $h_1 \approx h_2$

• why? 1 $E_{out}(h_1) \approx E_{out}(h_2)$ 2 for most \mathcal{D} , $E_{in}(h_1) = E_{in}(h_2)$

union bound over-estimating



Effective Number of Lines

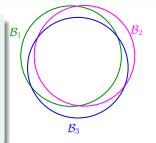
Where Did Union Bound Fail? union bound $\mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \ldots + \mathbb{P}[\mathcal{B}_M]$

• **BAD events** \mathcal{B}_m : $|\mathcal{E}_{in}(h_m) - \mathcal{E}_{out}(h_m)| > \epsilon$

overlapping for similar hypotheses $h_1 \approx h_2$

• why? 1 $E_{out}(h_1) \approx E_{out}(h_2)$ 2 for most \mathcal{D} , $E_{in}(h_1) = E_{in}(h_2)$

union bound over-estimating



to account for overlap, can we group similar hypotheses by kind?

Effective Number of Lines

How Many Lines Are There? (1/2) $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$

• how many lines? ∞

Effective Number of Lines

How Many Lines Are There? (1/2) $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$

- how many lines? ∞
- how many kinds of lines if viewed from one input vector x₁?

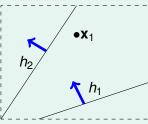
•**x**₁

Hsuan-Tien Lin (NTU CSIE)

Effective Number of Lines

How Many Lines Are There? (1/2) $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$

- how many lines? ∞
- how many kinds of lines if viewed from one input vector x₁?



2 kinds: h_1 -like(\mathbf{x}_1) = \circ or h_2 -like(\mathbf{x}_1) = \times

Effective Number of Lines

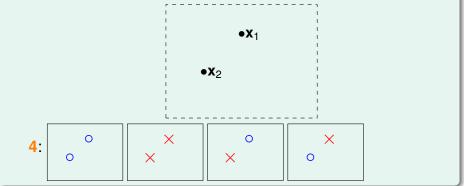
How Many Lines Are There? (2/2) $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$

• how many kinds of lines if viewed from two inputs x1, x2?

Effective Number of Lines

How Many Lines Are There? (2/2) $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$

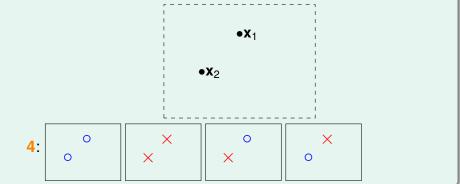
• how many kinds of lines if viewed from two inputs x₁, x₂?



Effective Number of Lines

How Many Lines Are There? (2/2) $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$

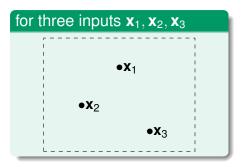
• how many kinds of lines if viewed from two inputs x₁, x₂?



one input: 2; two inputs: 4; three inputs?

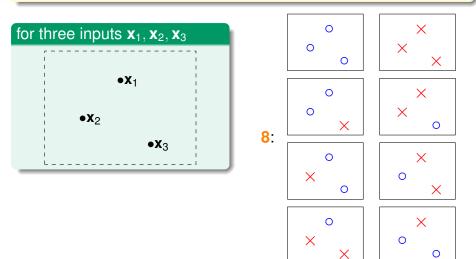
Effective Number of Lines

How Many Kinds of Lines for Three Inputs? (1/2) $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$



Effective Number of Lines

How Many Kinds of Lines for Three Inputs? (1/2) $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$

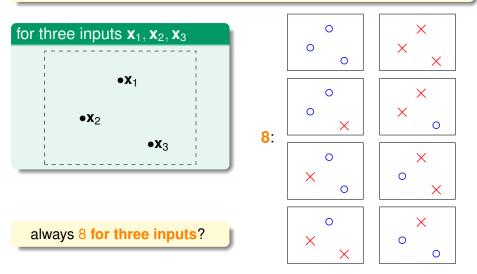


Hsuan-Tien Lin (NTU CSIE)

Machine Learning Foundations

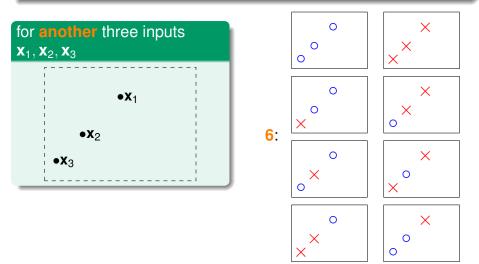
Effective Number of Lines

How Many Kinds of Lines for Three Inputs? (1/2) $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$



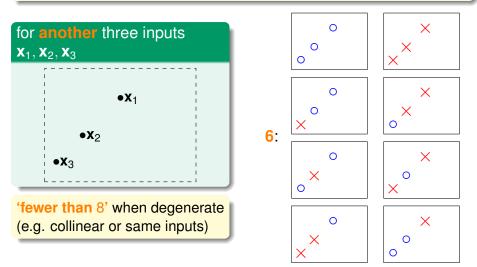
Effective Number of Lines

How Many Kinds of Lines for Three Inputs? (2/2) $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$



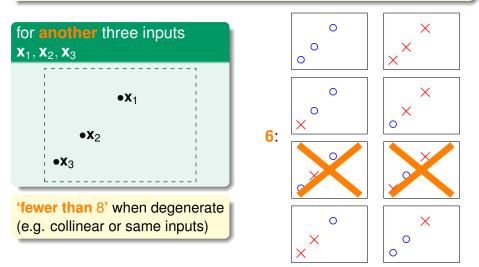
Effective Number of Lines

How Many Kinds of Lines for Three Inputs? (2/2) $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$



Effective Number of Lines

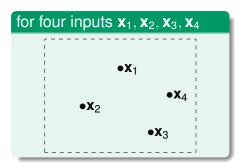
How Many Kinds of Lines for Three Inputs? (2/2) $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$

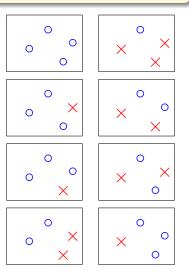


Effective Number of Lines

How Many Kinds of Lines for Four Inputs?

 $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$





Effective Number of Lines

How Many Kinds of Lines for Four Inputs?

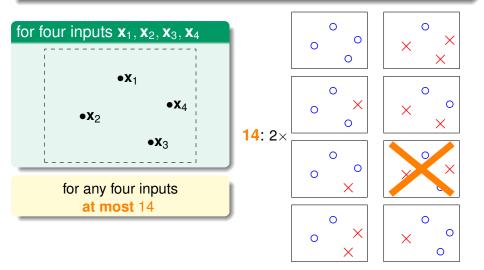
 $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$



Effective Number of Lines

How Many Kinds of Lines for Four Inputs?

 $\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$



Effective Number of Lines

Effective Number of Lines

maximum kinds of lines with respect to N inputs $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N$ \iff effective number of lines

Hsuan-Tien Lin (NTU CSIE)

Effective Number of Lines

Effective Number of Lines

maximum kinds of lines with respect to N inputs $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N$ \iff effective number of lines

Effective Number of Lines

Effective Number of Lines

maximum kinds of lines with respect to N inputs $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N$ \iff effective number of lines

• must be $\leq 2^N$ (why?)

lines in 2D

Effective Number of Lines

Effective Number of Lines

maximum kinds of lines with respect to N inputs $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N$ \iff effective number of lines

- must be $\leq 2^N$ (why?)
- finite 'grouping' of infinitely-many lines $\in \mathcal{H}$



Effective Number of Lines

Effective Number of Lines

maximum kinds of lines with respect to N inputs $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N$ \iff effective number of lines

- must be $\leq 2^N$ (why?)
- finite 'grouping' of infinitely-many lines $\in \mathcal{H}$

wish:

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon\right] \\ \leq 2 \cdot \operatorname{effective}(N) \cdot \exp\left(-2\epsilon^2 N\right)$$

lines in 2D



Effective Number of Lines

Effective Number of Lines

maximum kinds of lines with respect to N inputs $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N$ \iff effective number of lines

- must be $\leq 2^N$ (why?)
- finite 'grouping' of infinitely-many lines $\in \mathcal{H}$

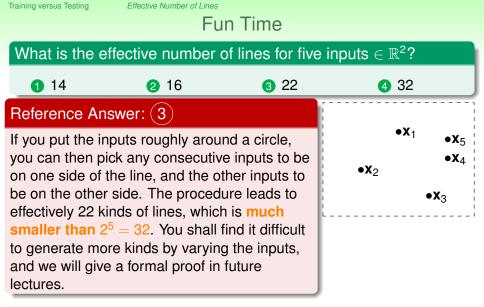
wish:

$$\mathbb{P}\left[\left|E_{in}(g) - E_{out}(g)\right| > \epsilon\right]$$

$$\leq 2 \cdot \text{effective}(N) \cdot \exp\left(-2\epsilon^2 N\right)$$

lines in 2D

if 1 effective(
$$N$$
) can replace M and
2 effective(N) $\ll 2^N$
learning possible with infinite lines :-)



Effective Number of Hypotheses

Dichotomies: Mini-hypotheses

 $\mathcal{H} = \{ \text{hypothesis } h: \mathcal{X} \to \{ \times, \circ \} \}$

Effective Number of Hypotheses

Dichotomies: Mini-hypotheses

$$\mathcal{H} = \{ \text{hypothesis } h: \mathcal{X} \to \{ \times, \circ \} \}$$

call

$$h(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = (h(\mathbf{x}_1), h(\mathbf{x}_2), \dots, h(\mathbf{x}_N)) \in \{\times, \circ\}^N$$

a dichotomy: hypothesis 'limited' to the eyes of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$

Effective Number of Hypotheses

Dichotomies: Mini-hypotheses

 $\mathcal{H} = \{ \text{hypothesis } h \colon \mathcal{X} \to \{ \times, \circ \} \}$

call

$$h(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = (h(\mathbf{x}_1), h(\mathbf{x}_2), \dots, h(\mathbf{x}_N)) \in \{\times, \circ\}^N$$

a dichotomy: hypothesis 'limited' to the eyes of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$

\$\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N)\$:
 all dichotomies 'implemented' by \$\mathcal{H}\$ on \$\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N\$

Effective Number of Hypotheses

Dichotomies: Mini-hypotheses

 $\mathcal{H} = \{ \text{hypothesis } h: \mathcal{X} \to \{ \times, \circ \} \}$

call

$$h(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = (h(\mathbf{x}_1), h(\mathbf{x}_2), \dots, h(\mathbf{x}_N)) \in \{\times, \circ\}^N$$

a dichotomy: hypothesis 'limited' to the eyes of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$

• $\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$: all dichotomies 'implemented' by \mathcal{H} on $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$

	hypotheses \mathcal{H}	dichotomies $\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$	
e.g.	all lines in \mathbb{R}^2	$\{\circ\circ\circ\circ,\circ\circ\circ\times,\circ\circ\times\times,\ldots\}$	
size	possibly infinite	upper bounded by 2 ^N	

Effective Number of Hypotheses

Dichotomies: Mini-hypotheses

$$\mathcal{H} = \{ \text{hypothesis } h: \mathcal{X} \to \{\times, \circ\} \}$$

call

$$h(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = (h(\mathbf{x}_1), h(\mathbf{x}_2), \dots, h(\mathbf{x}_N)) \in \{\times, \circ\}^N$$

a dichotomy: hypothesis 'limited' to the eyes of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$

H(x₁, x₂,..., x_N): all dichotomies 'implemented' by *H* on x₁, x₂,..., x_N

	hypotheses \mathcal{H}	dichotomies $\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$
e.g.	all lines in \mathbb{R}^2	$\{\circ\circ\circ\circ,\circ\circ\circ\times,\circ\circ\times\times,\ldots\}$
size	possibly infinite	upper bounded by 2 ^N

 $|\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)|$: candidate for replacing *M*

Effective Number of Hypotheses

Growth Function

|*H*(**x**₁, **x**₂,..., **x**_N)|: depend on inputs
 (**x**₁, **x**₂,..., **x**_N)

Growth Function

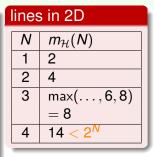
- |*H*(**x**₁, **x**₂, ..., **x**_N)|: depend on inputs (**x**₁, **x**₂, ..., **x**_N)
- growth function: remove dependence by taking max of all possible (x₁, x₂,..., x_N)

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)|$$

Growth Function

- |*H*(**x**₁, **x**₂, ..., **x**_N)|: depend on inputs (**x**₁, **x**₂, ..., **x**_N)
- growth function: remove dependence by taking max of all possible (x₁, x₂,..., x_N)

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)|$$

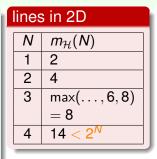


Growth Function

- |*H*(**x**₁, **x**₂, ..., **x**_N)|: depend on inputs (**x**₁, **x**₂, ..., **x**_N)
- growth function: remove dependence by taking max of all possible (x₁, x₂, ..., x_N)

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)|$$

finite, upper-bounded by 2^N



Growth Function

- |*H*(**x**₁, **x**₂, ..., **x**_N)|: depend on inputs (**x**₁, **x**₂, ..., **x**_N)
- growth function: remove dependence by taking max of all possible (x₁, x₂,..., x_N)

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)|$$

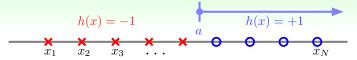
finite, upper-bounded by 2^N

how to 'calculate' the growth function?

$$\begin{array}{|c|c|c|c|} \hline N & m_{\mathcal{H}}(N) \\ \hline 1 & 2 \\ \hline 2 & 4 \\ \hline 3 & \max(\dots, 6, 8) \\ & = 8 \\ \hline 4 & 14 < 2^{N} \end{array}$$

Effective Number of Hypotheses

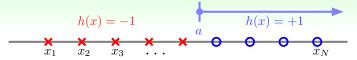
Growth Function for Positive Rays



- $\mathcal{X} = \mathbb{R}$ (one dimensional)
- \mathcal{H} contains *h*, where each $h(x) = \operatorname{sign}(x a)$ for threshold *a*

Effective Number of Hypotheses

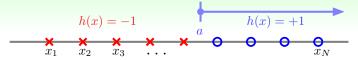
Growth Function for Positive Rays



- $\mathcal{X} = \mathbb{R}$ (one dimensional)
- \mathcal{H} contains *h*, where each $h(x) = \operatorname{sign}(x a)$ for threshold *a*
- 'positive half' of 1D perceptrons

Effective Number of Hypotheses

Growth Function for Positive Rays



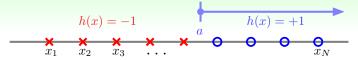
- $\mathcal{X} = \mathbb{R}$ (one dimensional)
- \mathcal{H} contains *h*, where each $h(x) = \operatorname{sign}(x a)$ for threshold *a*
- 'positive half' of 1D perceptrons

one dichotomy for $a \in$ each spot (x_n, x_{n+1}) :

 $m_{\mathcal{H}}(N) = N + 1$

Effective Number of Hypotheses

Growth Function for Positive Rays



- $\mathcal{X} = \mathbb{R}$ (one dimensional)
- \mathcal{H} contains *h*, where each $h(x) = \operatorname{sign}(x a)$ for threshold *a*
- 'positive half' of 1D perceptrons

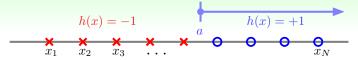
one dichotomy for $a \in \text{each spot}(x_n, x_{n+1})$:

 $m_{\mathcal{H}}(N) = N + 1$

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₄
0	0	0	0
×	0	0	0
×	×	0	0
×	×	×	0
×	×	×	×

Effective Number of Hypotheses

Growth Function for Positive Rays



- $\mathcal{X} = \mathbb{R}$ (one dimensional)
- \mathcal{H} contains *h*, where each $h(x) = \operatorname{sign}(x a)$ for threshold *a*
- 'positive half' of 1D perceptrons

one dichotomy for
$$a \in \text{each spot} (x_n, x_{n+1})$$
:

$$m_{\mathcal{H}}(N) = N + 1$$

$$(N+1) \ll 2^N \text{ when } N \text{ large!}$$

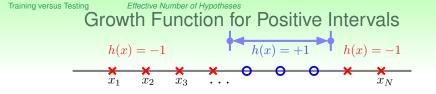
$$N + 1 = \frac{x_1 + x_2 + x_3 + x_4}{0}$$

$$x_1 + x_2 + x_3 + x_4}{0}$$

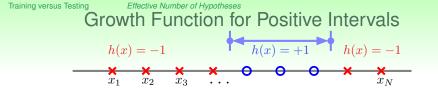
$$x_2 + x_3 + x_4$$

$$x_1 + x_2 + x_3 + x_4$$

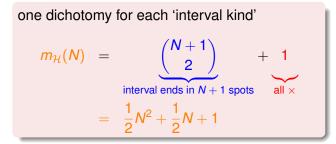
Hsuan-Tien Lin (NTU CSIE)

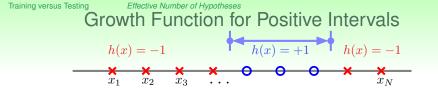


- $\mathcal{X} = \mathbb{R}$ (one dimensional)
- \mathcal{H} contains *h*, where each h(x) = +1 iff $x \in [\ell, r)$, -1 otherwise

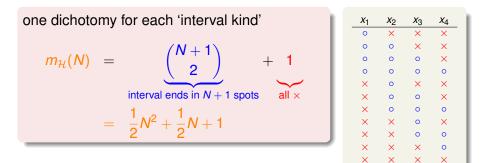


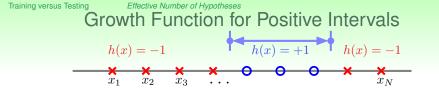
- $\mathcal{X} = \mathbb{R}$ (one dimensional)
- \mathcal{H} contains *h*, where each h(x) = +1 iff $x \in [\ell, r)$, -1 otherwise



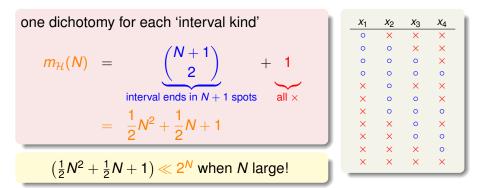


- $\mathcal{X} = \mathbb{R}$ (one dimensional)
- \mathcal{H} contains *h*, where each h(x) = +1 iff $x \in [\ell, r)$, -1 otherwise



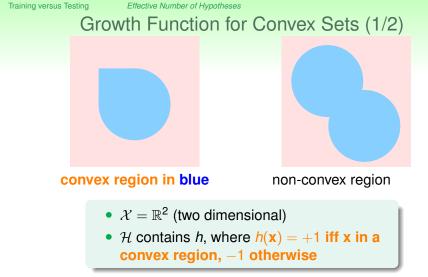


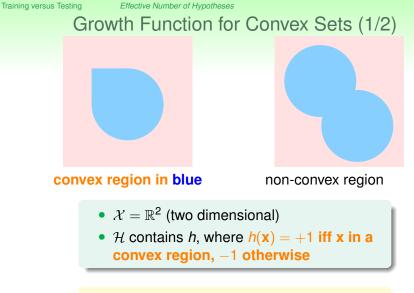
- $\mathcal{X} = \mathbb{R}$ (one dimensional)
- \mathcal{H} contains *h*, where each h(x) = +1 iff $x \in [\ell, r)$, -1 otherwise



Hsuan-Tien Lin (NTU CSIE)

Machine Learning Foundations





what is $m_{\mathcal{H}}(N)$?

Effective Number of Hypotheses

Growth Function for Convex Sets (2/2)

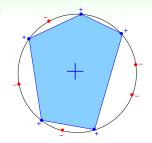
one possible set of N inputs:
 x₁, x₂,..., x_N on a big circle

Effective Number of Hypotheses

Growth Function for Convex Sets (2/2)

- one possible set of N inputs:
 x₁, x₂,..., x_N on a big circle
- every dichotomy can be implemented by \mathcal{H} using a convex region slightly extended from contour of positive inputs

$$m_{\mathcal{H}}(N) = 2^N$$



bottom

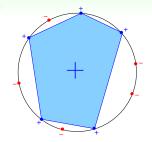
Effective Number of Hypotheses

Growth Function for Convex Sets (2/2)

- one possible set of N inputs:
 x₁, x₂,..., x_N on a big circle
- every dichotomy can be implemented by \mathcal{H} using a convex region slightly extended from contour of positive inputs

 $m_{\mathcal{H}}(N) = 2^N$

• call those N inputs 'shattered' by \mathcal{H}



botton

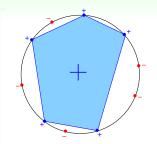
Effective Number of Hypotheses

Growth Function for Convex Sets (2/2)

- one possible set of N inputs:
 x₁, x₂,..., x_N on a big circle
- every dichotomy can be implemented by \mathcal{H} using a convex region slightly extended from contour of positive inputs

 $m_{\mathcal{H}}(N) = 2^N$

• call those N inputs 'shattered' by \mathcal{H}



bottom

 $m_{\mathcal{H}}(N) = 2^N \iff$ exists *N* inputs that can be shattered

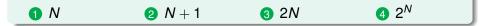
Fun Time

Consider positive **and negative** rays as \mathcal{H} , which is equivalent to the perceptron hypothesis set in 1D. The hypothesis set is often called '**decision stump**' to describe the shape of its hypotheses. What is the growth function $m_{\mathcal{H}}(N)$?

1 N	2 N + 1	3 2N	4 2 ^N	

Fun Time

Consider positive **and negative** rays as \mathcal{H} , which is equivalent to the perceptron hypothesis set in 1D. The hypothesis set is often called **'decision stump'** to describe the shape of its hypotheses. What is the growth function $m_{\mathcal{H}}(N)$?



Reference Answer: (3)

Two dichotomies when threshold in each of the N-1 'internal' spots; two dichotomies for the all- \circ and all- \times cases.

Break Point

The Four Growth Functions

positive rays: $m_{\mathcal{H}}(N) = N + 1$ positive intervals: $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$ convex sets: $m_{\mathcal{H}}(N) = 2^N$ 2D perceptrons: $m_{\mathcal{H}}(N) < 2^N$ in some cases

Break Point

The Four Growth Functions

- positive rays:
- positive intervals:
- convex sets:
- 2D perceptrons:

 $egin{aligned} m_{\mathcal{H}}(N) &= N+1 \ m_{\mathcal{H}}(N) &= rac{1}{2}N^2 + rac{1}{2}N+1 \ m_{\mathcal{H}}(N) &= 2^N \ m_{\mathcal{H}}(N) &< 2^N \ ext{in some cases} \end{aligned}$

what if $m_{\mathcal{H}}(N)$ replaces *M*?

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon\right] \stackrel{?}{\leq} 2 \cdot m_{\mathcal{H}}(N) \cdot \exp\left(-2\epsilon^2 N\right)$$

polynomial: good; exponential: bad

Break Point

The Four Growth Functions

- positive rays:
- positive intervals:
- convex sets:
- 2D perceptrons:

 $egin{aligned} m_{\mathcal{H}}(N) &= N+1 \ m_{\mathcal{H}}(N) &= rac{1}{2}N^2 + rac{1}{2}N+1 \ m_{\mathcal{H}}(N) &= 2^N \ m_{\mathcal{H}}(N) &< 2^N \ ext{in some cases} \end{aligned}$

what if $m_{\mathcal{H}}(N)$ replaces *M*?

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon\right] \stackrel{?}{\leq} 2 \cdot m_{\mathcal{H}}(N) \cdot \exp\left(-2\epsilon^2 N\right)$$

polynomial: good; exponential: bad

for 2D or general perceptrons, $m_{\mathcal{H}}(N)$ polynomial?

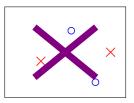
Hsuan-Tien Lin (NTU CSIE)

Break Point

Break Point of \mathcal{H}

what do we know about 2D perceptrons now?

three inputs: 'exists' shatter; four inputs, 'for all' no shatter



Break Point

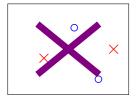
Break Point of H

what do we know about 2D perceptrons now?

three inputs: 'exists' shatter; four inputs, 'for all' no shatter

if no k inputs can be shattered by \mathcal{H} , call k a **break point** for \mathcal{H}

• $m_{\mathcal{H}}(k) < 2^k$



Break Point

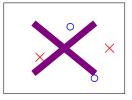
Break Point of H

what do we know about 2D perceptrons now?

three inputs: 'exists' shatter; four inputs, 'for all' no shatter

if no k inputs can be shattered by \mathcal{H} , call k a **break point** for \mathcal{H}

- $m_{\mathcal{H}}(k) < 2^k$
- k + 1, k + 2, k + 3, ... also break points!



Break Point

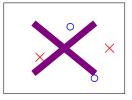
Break Point of H

what do we know about 2D perceptrons now?

three inputs: 'exists' shatter; four inputs, 'for all' no shatter

if no k inputs can be shattered by \mathcal{H} , call k a **break point** for \mathcal{H}

- $m_{\mathcal{H}}(k) < 2^k$
- k + 1, k + 2, k + 3, ... also break points!
- will study minimum break point k



Break Point

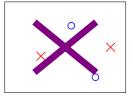
Break Point of H

what do we know about 2D perceptrons now?

three inputs: 'exists' shatter; four inputs, 'for all' no shatter

if no k inputs can be shattered by \mathcal{H} , call k a **break point** for \mathcal{H}

- $m_{\mathcal{H}}(k) < 2^k$
- k + 1, k + 2, k + 3, ... also break points!
- will study minimum break point k



2D perceptrons: break point at 4

Break Point

The Four Break Points

 positive rays: $m_{\mathcal{H}}(N) = N + 1$ break point at 2
 positive intervals: $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$ break point at 3
 convex sets: $m_{\mathcal{H}}(N) = 2^N$ no break point
 2D perceptrons: $m_{\mathcal{H}}(N) < 2^N$ in some cases break point at 4

Break Point

The Four Break Points

 positive rays: $m_{\mathcal{H}}(N) = N + 1 = O(N)$ break point at 2
 positive intervals: $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 = O(N^2)$ break point at 3
 convex sets: $m_{\mathcal{H}}(N) = 2^N$ no break point
 2D perceptrons: $m_{\mathcal{H}}(N) < 2^N$ in some cases break point at 4

Break Point

The Four Break Points

 positive rays: $m_{\mathcal{H}}(N) = N + 1 = O(N)$ break point at 2
 positive intervals: $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 = O(N^2)$ break point at 3
 convex sets: $m_{\mathcal{H}}(N) = 2^N$ no break point
 2D perceptrons: $m_{\mathcal{H}}(N) < 2^N$ in some cases break point at 4

conjecture:

- no break point: $m_{\mathcal{H}}(N) = 2^N$ (sure!)
- break point k: $m_{\mathcal{H}}(N) = O(N^{k-1})$

Break Point

The Four Break Points

 positive rays: $m_{\mathcal{H}}(N) = N + 1 = O(N)$ break point at 2
 positive intervals: $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 = O(N^2)$ break point at 3
 convex sets: $m_{\mathcal{H}}(N) = 2^N$ no break point
 2D perceptrons: $m_{\mathcal{H}}(N) < 2^N$ in some cases break point at 4

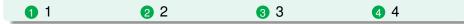
conjecture:

- no break point: $m_{\mathcal{H}}(N) = 2^N$ (sure!)
- break point k: $m_{\mathcal{H}}(N) = O(N^{k-1})$

excited? wait for next lecture :-)

Fun Time

Consider positive and negative rays as \mathcal{H} , which is equivalent to the perceptron hypothesis set in 1D. As discussed in an earlier quiz question, the growth function $m_{\mathcal{H}}(N) = 2N$. What is the minimum break point for \mathcal{H} ?



Fun Time

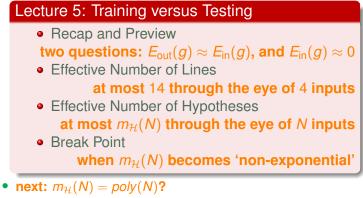
Consider positive and negative rays as \mathcal{H} , which is equivalent to the perceptron hypothesis set in 1D. As discussed in an earlier quiz question, the growth function $m_{\mathcal{H}}(N) = 2N$. What is the minimum break point for \mathcal{H} ?

At
$$k = 3$$
, $m_{\mathcal{H}}(k) = 6$ while $2^k = 8$.

Summary When Can Machines Learn?

Lecture 4: Feasibility of Learning

2 Why Can Machines Learn?



3 How Can Machines Learn?

4 How Can Machines Learn Better?

Hsuan-Tien Lin (NTU CSIE)