Machine Learning Foundations

（機器學習基石）

Lecture 4：Feasibility of Learning
Hsuan－Tien Lin（林軒田）

htlin＠csie．ntu．edu．tw

Department of Computer Science
\＆Information Engineering
National Taiwan University
（國立台灣大學資訊工程系）

Roadmap

(1) When Can Machines Learn?

Lecture 3: Types of Learning

focus: binary classification or regression from a batch of supervised data with concrete features

Lecture 4: Feasibility of Learning

- Learning is Impossible?
- Probability to the Rescue
- Connection to Learning
- Connection to Real Learning

2 Why Can Machines Learn?
(3) How Can Machines Learn?
(4) How Can Machines Learn Better?

A Learning Puzzle

$$
y_{n}=-1
$$

$$
y_{n}=+1
$$

$$
g(\mathbf{x})=?
$$

let's test your 'human learning' with 6 examples :-)

Two Controversial Answers

whatever you say about $g(\mathbf{x})$,

$$
g(\mathbf{x})=?
$$

Two Controversial Answers

whatever you say about $g(\mathbf{x})$,

$$
g(\mathbf{x})=?
$$

truth $f(\mathbf{x})=+1$ because \ldots

- symmetry $\Leftrightarrow+1$

Two Controversial Answers

whatever you say about $g(\mathbf{x})$,

$$
g(\mathbf{x})=?
$$

truth $f(\mathbf{x})=+1$ because ...

- symmetry $\Leftrightarrow+1$

truth $f(\mathbf{x})=-1$ because ...

- left-top black $\Leftrightarrow-1$

Two Controversial Answers

whatever you say about $g(\mathbf{x})$,

*

$y_{n}=-1$
-
$+$

$y_{n}=+1$

$$
g(\mathbf{x})=?
$$

truth $f(\mathbf{x})=+1$ because.. .

- symmetry $\Leftrightarrow+1$
- (black or white count $=3$) or (black count = 4 and middle-top black) $\Leftrightarrow+1$

truth $f(\mathbf{x})=-1$ because

- left-top black $\Leftrightarrow-1$

Two Controversial Answers

whatever you say about $g(\mathbf{x})$,

 $y_{n}=-1$

 \star

 $y_{n}=+1$

$$
g(\mathbf{x})=?
$$

truth $f(\mathbf{x})=+1$ because.. .

- symmetry $\Leftrightarrow+1$
- (black or white count $=3$) or (black count = 4 and middle-top black) $\Leftrightarrow+1$

truth $f(x)=-1$ because

- left-top black $\Leftrightarrow-1$
- middle column contains at most 1 black and right-top white $\Leftrightarrow-1$

Two Controversial Answers

whatever you say about $g(\mathbf{x})$,

a

$y_{n}=-1$
4

$y_{n}=+1$

$$
g(\mathbf{x})=?
$$

truth $f(\mathbf{x})=+1$ because.. .

- symmetry $\Leftrightarrow+1$
- (black or white count $=3$) or (black count = 4 and middle-top black) $\Leftrightarrow+1$

truth $f(x)=-1$ because

- left-top black $\Leftrightarrow-1$
- middle column contains at most 1 black and right-top white $\Leftrightarrow-1$
all valid reasons, your adversarial teacher can always call you ‘didn't learn'. :-(

A 'Simple’ Binary Classification Problem

\mathbf{x}_{n}			$y_{n}=f\left(\mathbf{x}_{n}\right)$
0	0		

- $\mathcal{X}=\{0,1\}^{3}, \mathcal{Y}=\{0, \times\}$, can enumerate all candidate f as \mathcal{H}
pick $g \in \mathcal{H}$ with all $g\left(\mathbf{x}_{n}\right)=y_{n}$ (like PLA), does $g \approx f$?

No Free Lunch

\mathbf{x}	y	g	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}
000	\bigcirc	-								
001	\times									
D 010	\times									
D 011	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
100	\times									
101		?	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times
110		?	\bigcirc	\bigcirc	\times	\times	\bigcirc	\bigcirc	\times	\times
111		?	-	\times	\bigcirc	\times	-	\times	\bigcirc	\times

- $g \approx f$ inside \mathcal{D} : sure!

No Free Lunch

\mathbf{x}	y	g	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}
000	\bigcirc									
001	\times									
D 010	\times									
011	\bigcirc									
100	\times									
101		?	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times
110		?	\bigcirc	\bigcirc	\times	\times	\bigcirc	\bigcirc	\times	\times
111		?	\bigcirc	\times	\bigcirc	\times	\bigcirc	\times	\bigcirc	\times

- $g \approx f$ inside \mathcal{D} : sure!
- $g \approx f$ outside $\mathcal{D}:$ No! (but that's really what we want!)

No Free Lunch

\mathbf{x}	y	g	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}		f_{8}
000	\bigcirc									
001	\times	x	\times							
010	\times									
011	\bigcirc									
100	\times									
101		?	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times
110		?	0	\bigcirc	\times	\times	\bigcirc	\bigcirc	\times	\times
111		?	0	\times	\bigcirc	\times	\bigcirc	\times	\bigcirc	\times

- $g \approx f$ inside \mathcal{D} : sure!
- $g \approx f$ outside $\mathcal{D}:$ No! (but that's really what we want!)
learning from \mathcal{D} (to infer something outside \mathcal{D}) is doomed if any 'unknown' f can happen. :-(

Fun Time

This is a popular 'brain-storming' problem, with a claim that 2% of the world's cleverest population can crack its 'hidden pattern'.

$$
(5,3,2) \rightarrow 151022, \quad(7,2,5) \rightarrow ?
$$

It is like a 'learning problem' with $N=1, \mathbf{x}_{1}=(5,3,2), y_{1}=151022$. Learn a hypothesis from the one example to predict on $\mathbf{x}=(7,2,5)$. What is your answer?
(1) 151026
(2) 143547
(3) I need more examples to get the correct answer
(4) there is no 'correct' answer

Fun Time

This is a popular 'brain-storming' problem, with a claim that 2% of the world's cleverest population can crack its 'hidden pattern'.

$$
(5,3,2) \rightarrow 151022, \quad(7,2,5) \rightarrow ?
$$

It is like a 'learning problem' with $N=1, \mathbf{x}_{1}=(5,3,2), y_{1}=151022$. Learn a hypothesis from the one example to predict on $\mathbf{x}=(7,2,5)$. What is your answer?
(1) 151026
(3) I need more examples to get the correct answer
(2) 143547
(4) there is no 'correct' answer

Reference Answer: (4)

Following the same nature of the no-free-lunch problems discussed, we cannot hope to be correct under this 'adversarial' setting. BTW,
(2) is the designer's answer: the first two digits $=x_{1} \cdot x_{2}$; the next two digits $=x_{1} \cdot x_{3}$; the last two digits $=\left(x_{1} \cdot x_{2}+x_{1} \cdot x_{3}-x_{2}\right)$.

Inferring Something Unknown

 difficult to infer unknown target f outside \mathcal{D} in learning; can we infer something unknown in other scenarios?
Inferring Something Unknown

difficult to infer unknown target f outside \mathcal{D} in learning; can we infer something unknown in other scenarios?

- consider a bin of many many orange and green marbles
- do we know the orange portion (probability)? No!

Inferring Something Unknown

difficult to infer unknown target f outside \mathcal{D} in learning; can we infer something unknown in other scenarios?

- consider a bin of many many orange and green marbles
- do we know the orange portion (probability)? No!
can you infer the orange probability?

Statistics 101: Inferring Orange Probability

Statistics 101: Inferring Orange Probability

Statistics 101: Inferring Orange Probability

bin
 assume

orange probability $=\mu$, green probability $=1-\mu$, with μ unknown

Statistics 101: Inferring Orange Probability

bin

assume
orange probability $=\mu$, green probability $=1-\mu$, with μ unknown

sample

N marbles sampled independently, with orange fraction $=\nu$, green fraction $=1-\nu$, now ν known

Statistics 101: Inferring Orange Probability

bin

assume
orange probability $=\mu$, green probability $=1-\mu$, with μ unknown

sample

N marbles sampled independently, with orange fraction $=\nu$, green fraction $=1-\nu$, now ν known
does in-sample ν say anything about out-of-sample μ ?

Possible versus Probable

 does in-sample ν say anything about out-of-sample μ ?

Possible versus Probable

 does in-sample ν say anything about out-of-sample μ ?
No!

possibly not: sample can be mostly green while bin is mostly orange

Possible versus Probable

 does in-sample ν say anything about out-of-sample μ ?
No!

possibly not: sample can be mostly green while bin is mostly orange

Yes!

probably yes: in-sample ν likely close to unknown μ

Possible versus Probable

 does in-sample ν say anything about out-of-sample μ ?
No!

 possibly not: sample can be mostly green while bin is mostly orange
Yes!

probably yes: in-sample ν likely close to unknown μ

formally, what does ν say about μ ?

Hoeffding's Inequality (1/2)

- in big sample (N large), ν is probably close to μ (within ϵ)

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2 \exp \left(-2 \epsilon^{2} N\right)
$$

Hoeffding's Inequality (1/2)

- in big sample (N large), ν is probably close to μ (within ϵ)

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2 \exp \left(-2 \epsilon^{2} N\right)
$$

- called Hoeffding's Inequality, for marbles, coin, polling, ...

Hoeffding's Inequality (1/2)

$\mu=$ orange

probability in bin
sample of size N

bin
$\nu=$ orange
fraction in sample

- in big sample (N large), ν is probably close to μ (within ϵ)

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2 \exp \left(-2 \epsilon^{2} N\right)
$$

- called Hoeffding's Inequality, for marbles, coin, polling, ...

> the statement ' $\nu=\mu$ ' is probably approximately correct (PAC)

Hoeffding's Inequality (2/2)

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2 \exp \left(-2 \epsilon^{2} N\right)
$$

- valid for all N and ϵ

Hoeffding's Inequality (2/2)

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2 \exp \left(-2 \epsilon^{2} N\right)
$$

- valid for all N and ϵ
- does not depend on μ, no need to 'know' μ

Hoeffding's Inequality (2/2)

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2 \exp \left(-2 \epsilon^{2} N\right)
$$

- valid for all N and ϵ
- does not depend on μ, no need to 'know' μ
- larger sample size N or looser gap ϵ
\Longrightarrow higher probability for ' $\nu \approx \mu$ '

Hoeffding's Inequality (2/2)

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2 \exp \left(-2 \epsilon^{2} N\right)
$$

- valid for all N and ϵ
- does not depend on μ, no need to ‘know' μ
- larger sample size N or looser gap ϵ
\Longrightarrow higher probability for ' $\nu \approx \mu$ '

if large N, can probably infer unknown μ by known ν

Fun Time

Let $\mu=0.4$. Use Hoeffding's Inequality

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2 \exp \left(-2 \epsilon^{2} N\right)
$$

to bound the probability that a sample of 10 marbles will have $\nu \leq 0.1$. What bound do you get?
(1) 0.67
(2) 0.40
(3) 0.33
(4) 0.05

Fun Time

Let $\mu=0.4$. Use Hoeffding's Inequality

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2 \exp \left(-2 \epsilon^{2} N\right)
$$

to bound the probability that a sample of 10 marbles will have $\nu \leq 0.1$. What bound do you get?
(1) 0.67
(2) 0.40
(3) 0.33
(4) 0.05

Reference Answer: (3)
Set $N=10$ and $\epsilon=0.3$ and you get the answer. BTW, (4) is the actual probability and Hoeffding gives only an upper bound to that.

Connection to Learning

bin

- unknown orange prob. μ
- marble • \in bin
- orange •
- green •
- size- N sample from bin of i.i.d. marbles

Connection to Learning

bin

- unknown orange prob. μ
- marble • \in bin
- orange •
- green •
- size- N sample from bin of i.i.d. marbles

Connection to Learning

bin

- unknown orange prob. μ
- marble • \in bin
- orange •
- green •
- size- N sample from bin of i.i.d. marbles

learning

Connection to Learning

bin

- unknown orange prob. μ
- marble • \in bin
- orange •
- green •
- size- N sample from bin of i.i.d. marbles

learning

- fixed hypothesis $h(\mathbf{x}) \stackrel{?}{=}$ target $f(\mathbf{x})$

Connection to Learning

bin

- unknown orange prob. μ
- marble • \in bin
- orange •
- green •
- size- N sample from bin of i.i.d. marbles

learning

- fixed hypothesis $h(\mathbf{x}) \stackrel{?}{=}$ target $f(\mathbf{x})$
- $\mathbf{x} \in \mathcal{X}$

Connection to Learning

bin

- unknown orange prob. μ
- marble • \in bin
- orange •
- green •
- size- N sample from bin of i.i.d. marbles

learning

- fixed hypothesis $h(\mathbf{x}) \stackrel{?}{=}$ target $f(\mathbf{x})$
- $\mathbf{x} \in \mathcal{X}$
- \boldsymbol{h} is wrong $\Leftrightarrow h(\mathbf{x}) \neq f(\mathbf{x})$

Connection to Learning

bin

- unknown orange prob. μ
- marble • \in bin
- orange •
- green •
- size- N sample from bin of i.i.d. marbles

learning

- fixed hypothesis $h(\mathbf{x}) \stackrel{?}{=}$ target $f(\mathbf{x})$
- $\mathbf{x} \in \mathcal{X}$
- \boldsymbol{h} is wrong $\Leftrightarrow h(\mathbf{x}) \neq f(\mathbf{x})$
- h is right $\Leftrightarrow h(\mathbf{x})=f(\mathbf{x})$

Connection to Learning

bin

- unknown orange prob. μ
- marble • \in bin
- orange •
- green •
- size- N sample from bin of i.i.d. marbles

learning

- fixed hypothesis $h(\mathbf{x}) \stackrel{?}{=}$ target $f(\mathbf{x})$
- $\mathbf{x} \in \mathcal{X}$
- \boldsymbol{h} is wrong $\Leftrightarrow h(\mathbf{x}) \neq f(\mathbf{x})$
- h is right $\Leftrightarrow h(\mathbf{x})=f(\mathbf{x})$
- check h on $\mathcal{D}=\{(\mathbf{x}_{n}, \underbrace{y_{n}}_{f\left(\mathbf{x}_{n}\right)})\}$
with i.i.d. \mathbf{x}_{n}

Connection to Learning

bin

- unknown orange prob. μ
- marble • \in bin
- orange •
- green •
- size- N sample from bin
of i.i.d. marbles

learning

- fixed hypothesis $h(\mathbf{x}) \stackrel{?}{=}$ target $f(\mathbf{x})$
- $\mathbf{x} \in \mathcal{X}$
- \boldsymbol{h} is wrong $\Leftrightarrow h(\mathbf{x}) \neq f(\mathbf{x})$
- h is right $\Leftrightarrow h(\mathbf{x})=f(\mathbf{x})$
- check h on $\mathcal{D}=\{(\mathbf{x}_{n}, \underbrace{y_{n}}_{f\left(\mathbf{x}_{n}\right)})\}$ with i.i.d. \mathbf{x}_{n}
if large N \& i.i.d. x_{n}, can probably infer unknown $\llbracket h(\mathbf{x}) \neq f(\mathbf{x}) \rrbracket$ probability by known $\llbracket h\left(\mathbf{x}_{n}\right) \neq y_{n} \rrbracket$ fraction

Added Components

(set of candidate formula)
for any fixed h, can probably infer

$$
\begin{aligned}
& \text { unknown } E_{\text {out }}(\mathrm{h})=\underset{\mathbf{x} \sim p}{\mathcal{E}} \llbracket h(\mathbf{x}) \neq f(\mathbf{x}) \rrbracket \\
& \text { by known } E_{\text {in }}(\mathrm{h})=\frac{1}{N} \sum_{n=1}^{N} \llbracket h\left(\mathbf{x}_{n}\right) \neq y_{n} \rrbracket .
\end{aligned}
$$

The Formal Guarantee

 for any fixed h, in 'big' data (N large),in-sample error $E_{\text {in }}(h)$ is probably close to out-of-sample error $E_{\text {out }}(h)$ (within ϵ)

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 \exp \left(-2 \epsilon^{2} N\right)
$$

The Formal Guarantee

for any fixed h, in 'big' data (N large),

in-sample error $E_{\text {in }}(h)$
out-of-sample error $E_{\text {out }}(h)$ (within ϵ)

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 \exp \left(-2 \epsilon^{2} N\right)
$$

same as the 'bin' analogy ...

- valid for all N and ϵ

The Formal Guarantee

for any fixed h, in 'big' data (N large),

in-sample error $E_{\text {in }}(h)$
is probably close to
out-of-sample error $E_{\text {out }}(h)$ (within ϵ)

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 \exp \left(-2 \epsilon^{2} N\right)
$$

same as the 'bin' analogy . . .

- valid for all N and ϵ
- does not depend on $E_{\text {out }}(h)$, no need to 'know' $E_{\text {out }}(h)$ - f and P can stay unknown

The Formal Guarantee

for any fixed h, in 'big' data (N large),
in-sample error $E_{\text {in }}(h)$ is probably close to out-of-sample error $E_{\text {out }}(h)$ (within ϵ)

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 \exp \left(-2 \epsilon^{2} N\right)
$$

same as the 'bin' analogy ...

- valid for all N and ϵ
- does not depend on $E_{\text {out }}(h)$, no need to 'know' $E_{\text {out }}(h)$ - f and P can stay unknown
- ' $E_{\text {in }}(h)=E_{\text {out }}(h)$ ' is probably approximately correct (PAC)

The Formal Guarantee

for any fixed h, in 'big' data (N large),
in-sample error $E_{\text {in }}(h)$ is probably close to out-of-sample error $E_{\text {out }}(h)$ (within ϵ)

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 \exp \left(-2 \epsilon^{2} N\right)
$$

same as the 'bin' analogy . . .

- valid for all N and ϵ
- does not depend on $E_{\text {out }}(h)$, no need to 'know' $E_{\text {out }}(h)$ - f and P can stay unknown
- ' $E_{\text {in }}(h)=E_{\text {out }}(h)$ ' is probably approximately correct (PAC)

$$
\text { if ' } E_{\text {in }}(h) \approx E_{\text {out }}(h) \text { ' and ' } E_{\text {in }}(h) \text { small' }
$$

$\Longrightarrow E_{\text {out }}(h)$ small

The Formal Guarantee

for any fixed h, in 'big' data (N large),
in-sample error $E_{\text {in }}(h)$ is probably close to out-of-sample error $E_{\text {out }}(h)$ (within ϵ)

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 \exp \left(-2 \epsilon^{2} N\right)
$$

same as the 'bin' analogy . . .

- valid for all N and ϵ
- does not depend on $E_{\text {out }}(h)$, no need to 'know' $E_{\text {out }}(h)$ - f and P can stay unknown
- ' $E_{\text {in }}(h)=E_{\text {out }}(h)$ ' is probably approximately correct (PAC)

$$
\text { if ' } E_{\text {in }}(h) \approx E_{\text {out }}(h) \text { ' and ' } E_{\text {in }}(h) \text { small' }
$$

$\Longrightarrow E_{\text {out }}(h)$ small $\Longrightarrow h \approx f$ with respect to P

Verification of One h

for any fixed h, when data large enough,

$$
E_{\text {in }}(h) \approx E_{\text {out }}(h)
$$

Verification of One h

for any fixed h, when data large enough,

$$
E_{\text {in }}(h) \approx E_{\text {out }}(h)
$$

Can we claim 'good learning' $(g \approx f)$?

Verification of One h

for any fixed h, when data large enough,

$$
E_{\text {in }}(h) \approx E_{\text {out }}(h)
$$

Can we claim 'good learning' $(g \approx f)$?

Yes!

if $E_{\text {in }}(h)$ small for the fixed h and \mathcal{A} pick the h as g
$\Longrightarrow ' g=f^{\prime}$ PAC

Verification of One h

for any fixed h, when data large enough,

$$
E_{\text {in }}(h) \approx E_{\text {out }}(h)
$$

Can we claim 'good learning' $(g \approx f)$?

Yes!
if $E_{\text {in }}(h)$ small for the fixed h
No!
if \mathcal{A} forced to pick THE h as g

Verification of One h

for any fixed h, when data large enough,

$$
E_{\text {in }}(h) \approx E_{\text {out }}(h)
$$

Can we claim 'good learning' $(g \approx f)$?

Yes!
if $E_{\text {in }}(h)$ small for the fixed h and \mathcal{A} pick the h as g
$\Longrightarrow ' g=f$ ' PAC

Verification of One h

for any fixed h, when data large enough,

$$
E_{\text {in }}(h) \approx E_{\text {out }}(h)
$$

Can we claim 'good learning' $(g \approx f)$?

Yes!
if $E_{\text {in }}(h)$ small for the fixed h and \mathcal{A} pick the h as g
$\Longrightarrow ' g=f^{\prime}$ PAC

No!

if \mathcal{A} forced to pick THE h as g
$\Longrightarrow E_{\text {in }}(h)$ almost always not small
$\Longrightarrow ' g \neq f^{\prime}$ PAC!

Verification of One h

for any fixed h, when data large enough,

$$
E_{\text {in }}(h) \approx E_{\text {out }}(h)
$$

Can we claim 'good learning' $(g \approx f)$?

Yes!

if $E_{\text {in }}(h)$ small for the fixed h and \mathcal{A} pick the h as g
$\Longrightarrow ' g=f^{\prime}$ PAC

No!

if \mathcal{A} forced to pick THE h as g
$\Longrightarrow E_{\text {in }}(h)$ almost always not small
$\Longrightarrow ' g \neq f^{\prime}$ PAC!
real learning:
\mathcal{A} shall make choices $\in \mathcal{H}$ (like PLA) rather than being forced to pick one h. :-(

The 'Verification' Flow

can now use 'historical records' (data) to verify 'one candidate formula' h vice versa.' To verify the rule, you chose 100 days uniformly at random from the past 10 years of stock data, and found that 80 of them satisfy the rule. What is the best guarantee that you can get from the verification?
(1) You'll definitely be rich by exploiting the rule in the next 100 days.
(2) You'll likely be rich by exploiting the rule in the next 100 days, if the market behaves similarly to the last 10 years.
(3) You'll likely be rich by exploiting the 'best rule' from 20 more friends in the next 100 days.
4. You'd definitely have been rich if you had exploited the rule in the past 10 years.

Your friend tells you her secret rule in investing in a particular stock:
'Whenever the stock goes down in the morning, it will go up in the afternoon; vice versa.' To verify the rule, you chose 100 days uniformly at random from the past 10 years of stock data, and found that 80 of them satisfy the rule. What is the best guarantee that you can get from the verification?
(1) You'll definitely be rich by exploiting the rule in the next 100 days.
(2) You'll likely be rich by exploiting the rule in the next 100 days, if the market behaves similarly to the last 10 years.
(3) You'll likely be rich by exploiting the 'best rule' from 20 more friends in the next 100 days.
4. You'd definitely have been rich if you had exploited the rule in the past 10 years.

Reference Answer: (2)

(1): no free lunch; (3): no 'learning' guarantee in verification; (4): verifying with only 100 days, possible that the rule is mostly wrong for whole 10 years.

Multiple h

Multiple h

real learning (say like PLA): BINGO when getting $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$?

Coin Game

........

0000000000000

Q: if everyone in size-150 NTU ML class flips a coin 5 times, and one of the students gets 5 heads for her coin ' g '. Is ' g ' really magical?

Coin Game

000000000

Q: if everyone in size-150 NTU ML class flips a coin 5 times, and one of the students gets 5 heads for her coin ' g '. Is ' g ' really magical?

A: No. Even if all coins are fair, the probability that one of the coins results in 5 heads is $1-\left(\frac{31}{32}\right)^{150}>99 \%$.

Coin Game

Q: if everyone in size-150 NTU ML class flips a coin 5 times, and one of the students gets 5 heads for her coin ' g '. Is ' g ' really magical?

A: No. Even if all coins are fair, the probability that one of the coins results in 5 heads is $1-\left(\frac{31}{32}\right)^{150}>99 \%$.

BAD sample: $E_{\text {in }}$ and $E_{\text {out }}$ far away -can get worse when involving 'choice'

BAD Sample and BAD Data

BAD Sample

e.g., $E_{\text {out }}=\frac{1}{2}$, but getting all heads $\left(E_{\text {in }}=0\right)$!

BAD Sample and BAD Data

BAD Sample

e.g., $E_{\text {out }}=\frac{1}{2}$, but getting all heads $\left(E_{\text {in }}=0\right)$!

BAD Data for One h

$E_{\text {out }}(h)$ and $E_{\text {in }}(h)$ far away:
e.g., $E_{\text {out }}$ big (far from f), but $E_{\text {in }}$ small (correct on most examples)

BAD Sample and BAD Data

BAD Sample

e.g., $E_{\text {out }}=\frac{1}{2}$, but getting all heads $\left(E_{\text {in }}=0\right)$!

BAD Data for One h

$E_{\text {out }}(h)$ and $E_{\text {in }}(h)$ far away:
e.g., $E_{\text {out }}$ big (far from f), but $E_{\text {in }}$ small (correct on most examples)

	\mathcal{D}_{1}	\mathcal{D}_{2}	\ldots	\mathcal{D}_{1126}	\ldots	\mathcal{D}_{5678}	\ldots	Hoeffding
h	BAD					BAD		$\mathbb{P}_{\mathcal{D}}[$ BAD \mathcal{D} for $h] \leq \ldots$

BAD Sample and BAD Data

BAD Sample

e.g., $E_{\text {out }}=\frac{1}{2}$, but getting all heads $\left(E_{\text {in }}=0\right)$!

BAD Data for One h

$E_{\text {out }}(h)$ and $E_{\text {in }}(h)$ far away:
e.g., $E_{\text {out }}$ big (far from f), but $E_{\text {in }}$ small (correct on most examples)

	\mathcal{D}_{1}	\mathcal{D}_{2}	\ldots	\mathcal{D}_{1126}	\ldots	\mathcal{D}_{5678}	\ldots	Hoeffding
h	BAD					BAD		$\mathbb{P}_{\mathcal{D}}[$ BAD \mathcal{D} for $h] \leq \ldots$

Hoeffding: small

$$
\mathbb{P}_{\mathcal{D}}[\text { BAD } \mathcal{D}]=\sum_{\text {all possible } \mathcal{D}} \mathbb{P}(\mathcal{D}) \cdot \llbracket \text { BAD } \mathcal{D} \rrbracket
$$

BAD Data for Many h

BAD data for many h

BAD Data for Many h
BAD data for many h
\Longleftrightarrow no 'freedom of choice' by \mathcal{A}

BAD Data for Many h
BAD data for many h
\Longleftrightarrow no 'freedom of choice' by \mathcal{A}
\Longleftrightarrow there exists some h such that $E_{\text {out }}(h)$ and $E_{\text {in }}(h)$ far away

BAD Data for Many h

BAD data for many h
\Longleftrightarrow no 'freedom of choice' by \mathcal{A}
\Longleftrightarrow there exists some h such that $E_{\text {out }}(h)$ and $E_{\text {in }}(h)$ far away

	\mathcal{D}_{1}	\mathcal{D}_{2}	\ldots	\mathcal{D}_{1126}	\ldots	\mathcal{D}_{5678}	Hoeffding
h_{1}	BAD					BAD	$\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{1}\right] \leq \ldots$
h_{2}		BAD					$\mathbb{P}_{\mathcal{D}}\left[\right.$ [AAD \mathcal{D} for $\left.h_{2}\right] \leq \ldots$
h_{3}	BAD	BAD				BAD	$\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{3}\right] \leq \ldots$
\ldots							
h_{M}	BAD					BAD	$\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{M}\right] \leq \ldots$

BAD Data for Many h

BAD data for many h
\Longleftrightarrow no 'freedom of choice' by \mathcal{A}
\Longleftrightarrow there exists some h such that $E_{\text {out }}(h)$ and $E_{\text {in }}(h)$ far away

	\mathcal{D}_{1}	\mathcal{D}_{2}	\ldots	\mathcal{D}_{1126}	\ldots	\mathcal{D}_{5678}	Hoeffding
h_{1}	BAD					BAD	$\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{1}\right] \leq \ldots$
h_{2}		BAD					$\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{2}\right] \leq \ldots$
h_{3}	BAD	BAD				BAD	$\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{3}\right] \leq \ldots$
\ldots							
h_{M}	BAD					BAD	$\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{M}\right] \leq \ldots$
all	BAD	BAD				BAD	$?$

BAD Data for Many h

BAD data for many h
\Longleftrightarrow no 'freedom of choice' by \mathcal{A}
\Longleftrightarrow there exists some h such that $E_{\text {out }}(h)$ and $E_{\text {in }}(h)$ far away

	\mathcal{D}_{1}	\mathcal{D}_{2}	\ldots	\mathcal{D}_{1126}	\ldots	\mathcal{D}_{5678}	Hoeffding
h_{1}	BAD					BAD	$\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{1}\right] \leq \ldots$
h_{2}		BAD					$\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{2}\right] \leq \ldots$
h_{3}	BAD	BAD				BAD	$\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{3}\right] \leq \ldots$
\ldots							
h_{M}	BAD					BAD	$\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{M}\right] \leq \ldots$
all	BAD	BAD				BAD	$?$

for M hypotheses, bound of $\mathbb{P}_{\mathcal{D}}[B A D \mathcal{D}]$?

Bound of BAD Data

```
    \mp@subsup{P}{\mathcal{D}}{}[BAD D]
= 弹 [BAD \mathcal{D for }\mp@subsup{h}{1}{}\mathrm{ or BAD }\mathcal{D}\mathrm{ for }\mp@subsup{h}{2}{}\mathrm{ or }\ldots\mathrm{ or BAD }\mathcal{D}\mathrm{ for }\mp@subsup{h}{M}{}]
```

\leq

Bound of BAD Data

$\mathbb{P}_{\mathcal{D}}[$ BAD $\mathcal{D}]$
$=\mathbb{P}_{\mathcal{D}}$ [BAD \mathcal{D} for h_{1} or BAD \mathcal{D} for h_{2} or \ldots or BAD \mathcal{D} for $\left.h_{M}\right]$
$\leq \mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{1}\right]+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{2}\right]+\ldots+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{M}\right]$

Bound of BAD Data

$$
\begin{aligned}
& \mathbb{P}_{\mathcal{D}}[\text { BAD } \mathcal{D}] \\
= & \mathbb{P}_{\mathcal{D}}\left[\text { BAD } \mathcal{D} \text { for } h_{1} \text { or BAD } \mathcal{D} \text { for } h_{2} \text { or } \ldots \text { or BAD } \mathcal{D} \text { for } h_{M}\right] \\
\leq & \left.\mathbb{P}_{\mathcal{D}} \text { [BAD } \mathcal{D} \text { for } h_{1}\right]+\mathbb{P}_{\mathcal{D}}\left[\text { BAD } \mathcal{D} \text { for } h_{2}\right]+\ldots+\mathbb{P}_{\mathcal{D}}\left[\text { BAD } \mathcal{D} \text { for } h_{M}\right] \\
& \text { (union bound) }
\end{aligned}
$$

Bound of BAD Data

$\mathbb{P}_{\mathcal{D}}[$ BAD $\mathcal{D}]$

$=\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for h_{1} or BAD \mathcal{D} for h_{2} or \ldots or BAD \mathcal{D} for $\left.h_{M}\right]$
$\leq \mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{1}\right]+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{2}\right]+\ldots+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{M}\right]$ (union bound)
\leq

Bound of BAD Data
$\mathbb{P}_{\mathcal{D}}[$ BAD $\mathcal{D}]$
$=\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for h_{1} or BAD \mathcal{D} for h_{2} or \ldots or BAD \mathcal{D} for $\left.h_{M}\right]$
$\leq \mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{1}\right]+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{2}\right]+\ldots+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{M}\right]$ (union bound)
$\leq 2 \exp \left(-2 \epsilon^{2} N\right)+2 \exp \left(-2 \epsilon^{2} N\right)+\ldots+2 \exp \left(-2 \epsilon^{2} N\right)$
$\mathbb{P}_{\mathcal{D}}[$ BAD $\mathcal{D}]$
$=\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for h_{1} or BAD \mathcal{D} for h_{2} or \ldots or BAD \mathcal{D} for $\left.h_{M}\right]$
$\leq \mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{1}\right]+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{2}\right]+\ldots+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{M}\right]$ (union bound)
$\leq 2 \exp \left(-2 \epsilon^{2} N\right)+2 \exp \left(-2 \epsilon^{2} N\right)+\ldots+2 \exp \left(-2 \epsilon^{2} N\right)$
$=2 M \exp \left(-2 \epsilon^{2} N\right)$
$\mathbb{P}_{\mathcal{D}}[$ BAD $\mathcal{D}]$
$=\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for h_{1} or BAD \mathcal{D} for h_{2} or \ldots or BAD \mathcal{D} for $\left.h_{M}\right]$
$\leq \mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{1}\right]+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{2}\right]+\ldots+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{M}\right]$ (union bound)

$$
\begin{aligned}
& \leq 2 \exp \left(-2 \epsilon^{2} N\right)+2 \exp \left(-2 \epsilon^{2} N\right)+\ldots+2 \exp \left(-2 \epsilon^{2} N\right) \\
& =2 M \exp \left(-2 \epsilon^{2} N\right)
\end{aligned}
$$

- finite-bin version of Hoeffding, valid for all M, N and ϵ
$\mathbb{P}_{\mathcal{D}}[$ BAD $\mathcal{D}]$
$=\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for h_{1} or BAD \mathcal{D} for h_{2} or \ldots or BAD \mathcal{D} for $\left.h_{M}\right]$
$\leq \mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{1}\right]+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{2}\right]+\ldots+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{M}\right]$ (union bound)

$$
\begin{aligned}
& \leq 2 \exp \left(-2 \epsilon^{2} N\right)+2 \exp \left(-2 \epsilon^{2} N\right)+\ldots+2 \exp \left(-2 \epsilon^{2} N\right) \\
& =2 M \exp \left(-2 \epsilon^{2} N\right)
\end{aligned}
$$

- finite-bin version of Hoeffding, valid for all M, N and ϵ
- does not depend on any $E_{\text {out }}\left(h_{m}\right)$, no need to 'know' $E_{\text {out }}\left(h_{m}\right)$ - f and P can stay unknown
$\mathbb{P}_{\mathcal{D}}[$ BAD $\mathcal{D}]$
$=\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for h_{1} or BAD \mathcal{D} for h_{2} or \ldots or $\operatorname{BAD} \mathcal{D}$ for $\left.h_{M}\right]$
$\leq \mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{1}\right]+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{2}\right]+\ldots+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{M}\right]$ (union bound)

$$
\begin{aligned}
& \leq 2 \exp \left(-2 \epsilon^{2} N\right)+2 \exp \left(-2 \epsilon^{2} N\right)+\ldots+2 \exp \left(-2 \epsilon^{2} N\right) \\
& =2 M \exp \left(-2 \epsilon^{2} N\right)
\end{aligned}
$$

- finite-bin version of Hoeffding, valid for all M, N and ϵ
- does not depend on any $E_{\text {out }}\left(h_{m}\right)$, no need to 'know' $E_{\text {out }}\left(h_{m}\right)$ - f and P can stay unknown
- ' $E_{\text {in }}(g)=E_{\text {out }}(g)$ ' is PAC, regardless of \mathcal{A}

Bound of BAD Data

$\mathbb{P}_{\mathcal{D}}[$ BAD $\mathcal{D}]$

$=\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for h_{1} or BAD \mathcal{D} for h_{2} or \ldots or BAD \mathcal{D} for $\left.h_{M}\right]$
$\leq \mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{1}\right]+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{2}\right]+\ldots+\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD \mathcal{D} for $\left.h_{M}\right]$ (union bound)

$$
\begin{aligned}
& \leq 2 \exp \left(-2 \epsilon^{2} N\right)+2 \exp \left(-2 \epsilon^{2} N\right)+\ldots+2 \exp \left(-2 \epsilon^{2} N\right) \\
& =2 M \exp \left(-2 \epsilon^{2} N\right)
\end{aligned}
$$

- finite-bin version of Hoeffding, valid for all M, N and ϵ
- does not depend on any $E_{\text {out }}\left(h_{m}\right)$, no need to 'know' $E_{\text {out }}\left(h_{m}\right)$ - f and P can stay unknown
- ' $E_{\text {in }}(g)=E_{\text {out }}(g)$ ' is PAC, regardless of \mathcal{A}

> 'most reasonable' \mathcal{A} (like PLA/pocket): \quad pick the h_{m} with lowest $E_{\text {in }}\left(h_{m}\right)$ as g

The 'Statistical' Learning Flow

if $|\mathcal{H}|=M$ finite, N large enough,
for whatever g picked by $\mathcal{A}, E_{\text {out }}(g) \approx E_{\text {in }}(g)$

(set of candidate formula)

The 'Statistical' Learning Flow

if $|\mathcal{H}|=M$ finite, N large enough,
for whatever g picked by $\mathcal{A}, E_{\text {out }}(g) \approx E_{\text {in }}(g)$
if \mathcal{A} finds one g with $E_{\text {in }}(g) \approx 0$, PAC guarantee for $E_{\text {out }}(g) \approx 0$

(set of candidate formula)

The 'Statistical' Learning Flow

if $|\mathcal{H}|=M$ finite, N large enough,
for whatever g picked by $\mathcal{A}, E_{\text {out }}(g) \approx E_{\text {in }}(g)$
if \mathcal{A} finds one g with $E_{\text {in }}(g) \approx 0$, PAC guarantee for $E_{\text {out }}(g) \approx 0 \Longrightarrow$ learning possible :-)

(set of candidate formula)

The 'Statistical' Learning Flow

if $|\mathcal{H}|=M$ finite, N large enough,
for whatever g picked by $\mathcal{A}, E_{\text {out }}(g) \approx E_{\text {in }}(g)$
if \mathcal{A} finds one g with $E_{\text {in }}(g) \approx 0$, PAC guarantee for $E_{\text {out }}(g) \approx 0 \Longrightarrow$ learning possible :-)

Consider 4 hypotheses.

$$
\begin{array}{cc}
h_{1}(\mathbf{x})=\operatorname{sign}\left(x_{1}\right), & h_{2}(\mathbf{x})=\operatorname{sign}\left(x_{2}\right), \\
h_{3}(\mathbf{x})=\operatorname{sign}\left(-x_{1}\right), & h_{4}(\mathbf{x})=\operatorname{sign}\left(-x_{2}\right) .
\end{array}
$$

For any N and ϵ, which of the following statement is not true?
(1) the BAD data of h_{1} and the BAD data of h_{2} are exactly the same
(2) the BAD data of h_{1} and the BAD data of h_{3} are exactly the same
(3) $\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD for some $\left.h_{k}\right] \leq 8 \exp \left(-2 \epsilon^{2} N\right)$
(4) $\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD for some $\left.h_{k}\right] \leq 4 \exp \left(-2 \epsilon^{2} N\right)$

Consider 4 hypotheses.

$$
\begin{array}{cc}
h_{1}(\mathbf{x})=\operatorname{sign}\left(x_{1}\right), & h_{2}(\mathbf{x})=\operatorname{sign}\left(x_{2}\right), \\
h_{3}(\mathbf{x})=\operatorname{sign}\left(-x_{1}\right), & h_{4}(\mathbf{x})=\operatorname{sign}\left(-x_{2}\right) .
\end{array}
$$

For any N and ϵ, which of the following statement is not true?
(1) the BAD data of h_{1} and the BAD data of h_{2} are exactly the same
(2) the BAD data of h_{1} and the BAD data of h_{3} are exactly the same
(3) $\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD for some $\left.h_{k}\right] \leq 8 \exp \left(-2 \epsilon^{2} N\right)$
(4) $\mathbb{P}_{\mathcal{D}}\left[\right.$ BAD for some $\left.h_{k}\right] \leq 4 \exp \left(-2 \epsilon^{2} N\right)$

Reference Answer: (1)

The important thing is to note that (2) is true, which implies that (4) is true if you revisit the union bound. Similar ideas will be used to conquer the $M=\infty$ case.

Summary

(1) When Can Machines Learn?

Lecture 3: Types of Learning
 Lecture 4: Feasibility of Learning

- Learning is Impossible?
absolutely no free lunch outside \mathcal{D}
- Probability to the Rescue probably approximately correct outside \mathcal{D}
- Connection to Learning verification possible if $E_{\text {in }}(h)$ small for fixed h
- Connection to Real Learning learning possible if $|\mathcal{H}|$ finite and $E_{\text {in }}(g)$ small
(2) Why Can Machines Learn?
- next: what if $|\mathcal{H}|=\infty$?
(3) How Can Machines Learn?

4 How Can Machines Learn Better?

