Lecture 2: Learning to Answer Yes/No

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering

National Taiwan University
(國立台灣大學資訊工程系)
Roadmap

1. **When Can Machines Learn?**

 Lecture 1: The Learning Problem
 \[\mathcal{A} \text{ takes } \mathcal{D} \text{ and } \mathcal{H} \text{ to get } g \]

 Lecture 2: Learning to Answer Yes/No
 - Perceptron Hypothesis Set
 - Perceptron Learning Algorithm (PLA)
 - Guarantee of PLA
 - Non-Separable Data

2. Why Can Machines Learn?
3. How Can Machines Learn?
4. How Can Machines Learn Better?
Credit Approval Problem Revisited

Applicant Information

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>23 years</td>
</tr>
<tr>
<td>gender</td>
<td>female</td>
</tr>
<tr>
<td>annual salary</td>
<td>NTD 1,000,000</td>
</tr>
<tr>
<td>year in residence</td>
<td>1 year</td>
</tr>
<tr>
<td>year in job</td>
<td>0.5 year</td>
</tr>
<tr>
<td>current debt</td>
<td>200,000</td>
</tr>
</tbody>
</table>

unknown target function $f : \mathcal{X} \rightarrow \mathcal{Y}$

(ideal credit approval formula)

training examples $\mathcal{D}: (x_1, y_1), \ldots, (x_N, y_N)$

(historical records in bank)

learning algorithm \mathcal{A}

final hypothesis $g \approx f$

('learned' formula to be used)

hypothesis set \mathcal{H}

(set of candidate formula)
Credit Approval Problem Revisited

Unknown target function $f: \mathcal{X} \rightarrow \mathcal{Y}$

Applicant Information

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>23 years</td>
</tr>
<tr>
<td>Gender</td>
<td>Female</td>
</tr>
<tr>
<td>Annual salary</td>
<td>NTD 1,000,000</td>
</tr>
<tr>
<td>Year in residence</td>
<td>1 year</td>
</tr>
<tr>
<td>Year in job</td>
<td>0.5 year</td>
</tr>
<tr>
<td>Current debt</td>
<td>200,000</td>
</tr>
</tbody>
</table>

Training examples $D: (x_1, y_1), \ldots, (x_N, y_N)$

Learning algorithm \mathcal{A}

Final hypothesis $g \approx f$

What hypothesis set can we use?
A Simple Hypothesis Set: the ‘Perceptron’

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>23 years</td>
</tr>
<tr>
<td>annual salary</td>
<td>NTD 1,000,000</td>
</tr>
<tr>
<td>year in job</td>
<td>0.5 year</td>
</tr>
<tr>
<td>current debt</td>
<td>200,000</td>
</tr>
</tbody>
</table>

- For \(\mathbf{x} = (x_1, x_2, \cdots, x_d) \) ‘features of customer’, compute a weighted ‘score’ and

 - approve credit if \(\sum_{i=1}^{d} w_i x_i > \text{threshold} \)
 - deny credit if \(\sum_{i=1}^{d} w_i x_i < \text{threshold} \)
A Simple Hypothesis Set: the ‘Perceptron’

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>23 years</td>
</tr>
<tr>
<td>annual salary</td>
<td>NTD 1,000,000</td>
</tr>
<tr>
<td>year in job</td>
<td>0.5 year</td>
</tr>
<tr>
<td>current debt</td>
<td>200,000</td>
</tr>
</tbody>
</table>

- For \(\mathbf{x} = (x_1, x_2, \cdots, x_d) \) ‘features of customer’, compute a weighted ‘score’ and

 \[
 \text{approve credit if } \sum_{i=1}^{d} w_i x_i > \text{threshold} \\
 \text{deny credit if } \sum_{i=1}^{d} w_i x_i < \text{threshold}
 \]

- \(\mathcal{Y} : \{+1(\text{good}), -1(\text{bad})\} \), 0 ignored—linear formula \(h \in \mathcal{H} \) are

 \[
 h(\mathbf{x}) = \text{sign} \left(\left(\sum_{i=1}^{d} w_i x_i \right) - \text{threshold} \right)
 \]

called ‘perceptron’ hypothesis historically
Vector Form of Perceptron Hypothesis

\[h(x) = \text{sign} \left(\left(\sum_{i=1}^{d} w_i x_i \right) - \text{threshold} \right) \]

\[= \text{sign} \left(\left(\sum_{i=1}^{d} w_i x_i \right) + \right) \]
Vector Form of Perceptron Hypothesis

\[h(x) = \text{sign} \left(\left(\sum_{i=1}^{d} w_i x_i \right) - \text{threshold} \right) \]

\[= \text{sign} \left(\left(\sum_{i=1}^{d} w_i x_i \right) + \left({-\text{threshold}} \right) \cdot \left({+1} \right) \right) \]

Each 'tall' \(w \) represents a hypothesis \(h \) and is multiplied with 'tall' \(x \)—will use tall versions to simplify notation.
Vector Form of Perceptron Hypothesis

\[h(x) = \text{sign} \left(\left(\sum_{i=1}^{d} w_i x_i \right) - \text{threshold} \right) \]

\[= \text{sign} \left(\left(\sum_{i=1}^{d} w_i x_i \right) + (-\text{threshold}) \cdot (+1) \right) \]

\[= \text{sign} \left(w_i x_i \right) \]
Vector Form of Perceptron Hypothesis

\[h(x) = \text{sign} \left(\sum_{i=1}^{d} w_i x_i - \text{threshold} \right) \]

\[= \text{sign} \left(\sum_{i=1}^{d} w_i x_i + (-\text{threshold}) \cdot (+1) \right) \]

\[= \text{sign} \left(\sum_{i=0}^{d} w_i x_i \right) \]
Vector Form of Perceptron Hypothesis

\[
h(x) = \text{sign} \left(\sum_{i=1}^{d} w_i x_i - \text{threshold} \right)
\]

\[
= \text{sign} \left(\sum_{i=1}^{d} w_i x_i \right) + (-\text{threshold}) \cdot (+1)
\]

\[
= \text{sign} \left(\sum_{i=0}^{d} w_i x_i \right)
\]

\[
= \text{sign} \left(w_0 x_0 \right)
\]
Vector Form of Perceptron Hypothesis

Vector Form of Perceptron Hypothesis

\[h(\mathbf{x}) = \text{sign} \left(\sum_{i=1}^{d} w_i x_i - \text{threshold} \right) \]

\[= \text{sign} \left(\sum_{i=1}^{d} w_i x_i + \left(-\text{threshold} \right) \cdot (1) \right) \]

\[= \text{sign} \left(\sum_{i=0}^{d} w_i x_i \right) \]

\[= \text{sign} \left(\mathbf{w}^T \mathbf{x} \right) \]

- each ‘tall’ \(\mathbf{w} \) represents a hypothesis \(h \) & is multiplied with ‘tall’ \(\mathbf{x} \) —will use tall versions to simplify notation
Vector Form of Perceptron Hypothesis

\[h(x) = \text{sign} \left(\sum_{i=1}^{d} w_i x_i \right) - \text{threshold} \]

\[= \text{sign} \left(\sum_{i=1}^{d} w_i x_i \right) + (-\text{threshold}) \cdot (1) \]

\[= \text{sign} \left(\sum_{i=0}^{d} w_i x_i \right) \]

\[= \text{sign} \left(w^T x \right) \]

- each ‘tall’ \(w \) represents a hypothesis \(h \) & is multiplied with ‘tall’ \(x \) — **will use tall versions to simplify notation**

what do perceptrons \(h \) ‘look like’?
Perceptrons in \mathbb{R}^2

$$h(x) = \text{sign} \left(w_0 + w_1 x_1 + w_2 x_2 \right)$$

- customer features x: points on the plane (or points in \mathbb{R}^d)
- labels y: $\circ (+1), \times (-1)$
- hypothesis h: lines (or hyperplanes in \mathbb{R}^d)
 —positive on one side of a line, negative on the other side
Perceptrons in \mathbb{R}^2

\[h(x) = \text{sign} \left(w_0 + w_1 x_1 + w_2 x_2 \right) \]

- **customer features** x: points on the plane (or points in \mathbb{R}^d)
- **labels** y: ○ (+1), × (-1)
- **hypothesis** h: **lines** (or hyperplanes in \mathbb{R}^d)
 —positive on one side of a line, negative on the other side
- **different line** classifies customers differently

perceptrons \iff **linear (binary) classifiers**
Consider using a perceptron to detect spam messages.

Assume that each email is represented by the frequency of keyword occurrence, and output $+1$ indicates a spam. Which keywords below shall have large positive weights in a good perceptron for the task?

1. coffee, tea, hamburger, steak
2. free, drug, fantastic, deal
3. machine, learning, statistics, textbook
4. national, Taiwan, university, coursera
Fun Time

Consider using a perceptron to detect spam messages.

Assume that each email is represented by the frequency of keyword occurrence, and output $+1$ indicates a spam. Which keywords below shall have large positive weights in a good perceptron for the task?

1. coffee, tea, hamburger, steak
2. free, drug, fantastic, deal
3. machine, learning, statistics, textbook
4. national, Taiwan, university, coursera

Reference Answer: 2

The occurrence of keywords with positive weights increase the ‘spam score’, and hence those keywords should often appear in spams.
Select g from \mathcal{H}

$\mathcal{H} = \text{all possible perceptrons, } g =$?

- want: $g \approx f$ (hard when f unknown)
Select g from \mathcal{H}

$\mathcal{H} = \text{all possible perceptrons, } g =$

- want: $g \approx f$ (hard when f unknown)
- almost necessary: $g \approx f$ on \mathcal{D}, ideally $g(x_n) = f(x_n) = y_n$
Select \(g \) from \(\mathcal{H} \)

\[\mathcal{H} = \text{all possible perceptrons}, \quad g = ? \]

- want: \(g \approx f \) (hard when \(f \) unknown)
- almost necessary: \(g \approx f \) on \(D \), ideally
 \[g(x_n) = f(x_n) = y_n \]
- difficult: \(\mathcal{H} \) is of **infinite** size
Select g from \mathcal{H}

$\mathcal{H} = \text{all possible perceptrons, } g = ?$

- want: $g \approx f$ (hard when f unknown)
- almost necessary: $g \approx f$ on \mathcal{D}, ideally
 $g(x_n) = f(x_n) = y_n$
- difficult: \mathcal{H} is of infinite size
- idea: start from some g_0, and 'correct' its mistakes on \mathcal{D}
Select g from \mathcal{H}

$\mathcal{H} = \text{all possible perceptrons}, \; g = ?$

- want: $g \approx f$ (hard when f unknown)
- almost necessary: $g \approx f$ on \mathcal{D}, ideally $g(x_n) = f(x_n) = y_n$
- difficult: \mathcal{H} is of infinite size
- idea: start from some g_0, and ‘correct’ its mistakes on \mathcal{D}

will represent g_0 by its weight vector w_0
Perceptron Learning Algorithm

start from some w_0 (say, 0), and ‘correct’ its mistakes on D

For $t = 0, 1, \ldots$

1. find a mistake of w_t called $(x_{n(t)}, y_{n(t)})$

$$\text{sign} \left(w_t^T x_{n(t)} \right) \neq y_{n(t)}$$

That's it! — A fault confessed is half redressed. :-)

Hsuan-Tien Lin (NTU CSIE) Machine Learning Foundations
Perceptron Learning Algorithm

start from some w_0 (say, 0), and ‘correct’ its mistakes on \mathcal{D}

For $t = 0, 1, \ldots$

1. find a **mistake** of w_t called $(x_{n(t)}, y_{n(t)})$

 $$\text{sign} \left(w_t^T x_{n(t)} \right) \neq y_{n(t)}$$

2. (try to) correct the mistake by

 $$w_{t+1} \leftarrow w_t + y_{n(t)}x_{n(t)}$$
For $t = 0, 1, \ldots$

1. find a **mistake** of w_t called $(x_n(t), y_n(t))$

 \[\text{sign} \left(w_t^T x_n(t) \right) \neq y_n(t) \]

2. (try to) correct the mistake by

 \[w_{t+1} \leftarrow w_t + y_n(t)x_n(t) \]

 ... until no more mistakes

return last w (called w_{PLA}) as g
Perceptron Learning Algorithm

start from some w_0 (say, 0), and ‘correct’ its mistakes on D

For $t = 0, 1, \ldots$

1. find a mistake of w_t called $(x_n(t), y_n(t))$

$$\text{sign} \left(w_t^T x_n(t) \right) \neq y_n(t)$$

2. (try to) correct the mistake by

$$w_{t+1} \leftarrow w_t + y_n(t)x_n(t)$$

… until no more mistakes

return last w (called w_{PLA}) as g

That’s it!

—A fault confessed is half redressed. :-)

Hsuan-Tien Lin (NTU CSIE)
Practical Implementation of PLA

start from some \(w_0 \) (say, \(0 \)), and ‘correct’ its mistakes on \(D \)

Cyclic PLA

For \(t = 0, 1, \ldots \)

1. find the next mistake of \(w_t \) called \((x_{n(t)}, y_{n(t)})\)

\[
\text{sign}\left(w_t^T x_{n(t)}\right) \neq y_{n(t)}
\]

2. correct the mistake by

\[
w_{t+1} \leftarrow w_t + y_{n(t)} x_{n(t)}
\]

\(\ldots \) until a full cycle of not encountering mistakes

next can follow naïve cycle \((1, \cdots, N)\) or precomputed random cycle
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Seeing is Believing

\[x_1 \]

\[w(t+1) \]

update: 1

\[x_9 \]

\[w(t) \]

\[w(t+1) \]

update: 2

\[x_{14} \]

\[w(t) \]

\[w(t+1) \]

update: 3

\[x_3 \]

\[w(t) \]

\[w(t+1) \]

update: 4

\[x_9 \]

\[w(t) \]

\[w(t+1) \]

update: 5

\[x_{14} \]

\[w(t) \]

\[w(t+1) \]

update: 6

\[x_9 \]

\[w(t) \]

\[w(t+1) \]

update: 7

\[x_{14} \]

\[w(t) \]

\[w(t+1) \]

update: 8

\[x_9 \]

\[w(t) \]

\[w(t+1) \]

update: 9

PLA

finally

worked like a charm with < 20 lines!! (note: made \(x_i \gg x_0 = 1 \) for visual purpose)

Hsuan-Tien Lin (NTU CSIE)
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Seeing is Believing

\[
\begin{align*}
\text{update: 1} & \\
\text{update: 2} & \\
\text{update: 3} & \\
\text{update: 4} & \\
\text{update: 5} & \\
\text{update: 6} & \\
\text{update: 7} & \\
\text{update: 8} & \\
\text{update: 9} & \\
\end{align*}
\]

Finally, the PLA worked like a charm with < 20 lines!!

(Hsuan-Tien Lin (NTU CSIE) Machine Learning Foundations 10/22)
Perceptron Learning Algorithm (PLA)

Seeing is Believing

\[w(t+1) = w(t) + x_9 \]

update: 2

Finally, PLA worked like a charm with < 20 lines!! (note: made \(x_i \gg x_0 = 1 \) for visual purpose)
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Seeing is Believing

\[x_1 \]

\[w(t+1) \]

update: 1

\[x \]

\[w(t) \]

update: 2

\[x \]

\[w(t) \]

update: 3

\[x \]

\[w(t) \]

update: 4

\[x \]

\[w(t) \]

update: 5

\[x \]

\[w(t) \]

update: 6

\[x \]

\[w(t) \]

update: 7

\[x \]

\[w(t) \]

update: 8

\[x \]

\[w(t) \]

update: 9

PLA

finally

worked like a charm with < 20 lines!!

(note: made \[x_i \gg x_0 = 1 \] for visual purpose)
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Seeing is Believing

update: 4

\[w(t+1) = w(t) + x \]

Finally, worked like a charm with <20 lines!! (note: made \(x_i \gg x_0 = 1 \) for visual purpose)
Perceptron Learning Algorithm (PLA)

Seeing is Believing

Learning to Answer Yes/No

Initial Setup
- \(w(t) \) is the weight vector at time \(t \).
- \(x \) is the input vector.
- The goal is to find a separating hyperplane.

Update Rule
- If the prediction is incorrect, update the weight vector as follows:

 \[
 w(t+1) = w(t) + x
 \]

Progress
- Each update moves the decision boundary closer to the correct classification.
- The algorithm terminates when all examples are correctly classified.

Example
- Consider a dataset with \(\mathbf{w}_{t+1} \) as the weight vector after \(t+1 \) updates.
- The final weight vector \(\mathbf{w}_{\text{PLA}} \) works like a charm with less than 20 lines.

\[
\text{(note: made } x_i \gg x_0 = 1 \text{ for visual purpose)}
\]

Hsuan-Tien Lin (NTU CSIE)
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Seeing is Believing

\[x_{14} \]

\[w(t) \]

\[w(t+1) \]

update: 6

\[w \]

finally

worked like a charm with < 20 lines!! (note: made \(x_i \gg x_0 = 1 \) for visual purpose)
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Seeing is Believing

update: 7

w(t)

w(t+1)

x_9

Finally, PLA worked like a charm with <20 lines!! (note: made x_i ≫ x_0 = 1 for visual purpose)
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Seeing is Believing

\[
x_1 \quad w(t+1) \quad \text{update: 1}
\]

\[
x_9 \quad w(t) \quad \text{update: 2}
\]

\[
x_{14} \quad w(t) \quad \text{update: 3}
\]

\[
x_9 \quad w(t) \quad \text{update: 4}
\]

\[
x_{14} \quad w(t) \quad \text{update: 5}
\]

\[
x_9 \quad w(t) \quad \text{update: 6}
\]

\[
x_9 \quad w(t) \quad \text{update: 7}
\]

\[
x_{14} \quad w(t) \quad \text{update: 8}
\]

\[
x_9 \quad w(t) \quad \text{update: 9}
\]

\[
\text{finally}
\]

worked like a charm with \(< 20\) lines!!

(note: made \(x_i \gg x_0 = 1\) for visual purpose)

Hsuan-Tien Lin (NTU CSIE)
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Seeing is Believing

worked like a charm with < 20 lines!!

(note: made $x_i \gg x_0 = 1$ for visual purpose)
Seeing is Believing

worked like a charm with < 20 lines!!
(note: made $x_i \gg x_0 = 1$ for visual purpose)
Some Remaining Issues of PLA

‘correct’ mistakes on D until no mistakes

Algorithmic: halt (with no mistake)?

- naïve cyclic: ??
- random cyclic: ??
- other variant: ??
Some Remaining Issues of PLA

‘correct’ mistakes on \mathcal{D} until no mistakes

Algorithmic: halt (with no mistake)?
- naïve cyclic: ??
- random cyclic: ??
- other variant: ??

Learning: $g \approx f$?
- on \mathcal{D}, if halt, yes (no mistake)
- outside \mathcal{D}: ??
- if not halting: ??
Some Remaining Issues of PLA

`correct` mistakes on \mathcal{D} **until no mistakes**

Algorithmic: halt (with no mistake)?
- naïve cyclic: ??
- random cyclic: ??
- other variant: ??

Learning: $g \approx f$?
- on \mathcal{D}, if halt, yes (no mistake)
- outside \mathcal{D}: ??
- if not halting: ??

[to be shown] if (...), after ‘enough’ corrections, any PLA variant halts
Let’s try to think about why PLA may work.

Let \(n = n(t) \), according to the rule of PLA below, which formula is true?

\[
\text{sign} \left(w_t^T x_n \right) \neq y_n, \quad w_{t+1} \leftarrow w_t + y_n x_n
\]

1. \(w_{t+1}^T x_n = y_n \)
2. \(\text{sign}(w_{t+1}^T x_n) = y_n \)
3. \(y_n w_{t+1}^T x_n \geq y_n w_t^T x_n \)
4. \(y_n w_{t+1}^T x_n < y_n w_t^T x_n \)
Learning to Answer Yes/No

Perceptron Learning Algorithm (PLA)

Fun Time

Let’s try to think about why PLA may work.

Let \(n = n(t) \), according to the rule of PLA below, which formula is true?

\[
\text{sign} \left(w_t^T x_n \right) \neq y_n, \quad w_{t+1} \leftarrow w_t + y_n x_n
\]

1. \(w_{t+1}^T x_n = y_n \)
2. \(\text{sign}(w_{t+1}^T x_n) = y_n \)
3. \(y_n w_{t+1}^T x_n \geq y_n w_t^T x_n \)
4. \(y_n w_{t+1}^T x_n < y_n w_t^T x_n \)

Reference Answer: 3

Simply multiply the second part of the rule by \(y_n x_n \). The result shows that the rule somewhat ‘tries to correct the mistake.’
Linear Separability

- **if** PLA halts (i.e. no more mistakes),
 (necessary condition) \mathcal{D} allows some w to make no mistake
- call such \mathcal{D} **linear separable**
Linear Separability

- if PLA halts (i.e. no more mistakes), (necessary condition) \mathcal{D} allows some w to make no mistake
- call such \mathcal{D} linear separable
Learning to Answer Yes/No Guarantee of PLA

Linear Separability

- **if** PLA halts (i.e. no more mistakes),
 (necessary condition) D allows some \mathbf{w} to make no mistake
- call such D **linear separable**

![Linear separable](image1)
![Not linear separable](image2)
![Not linear separable](image3)
Learning to Answer Yes/No

Guarantee of PLA

Linear Separability

- if PLA halts (i.e. no more mistakes),
 \(\text{(necessary condition)} \) \(\mathcal{D} \) allows some \(w \) to make no mistake
- call such \(\mathcal{D} \) linear separable

assume linear separable \(\mathcal{D} \),
does PLA always \textbf{halt}?
PLA Fact: w_t Gets More Aligned with w_f

linear separable $\mathcal{D} \iff$ exists perfect w_f such that $y_n = \text{sign}(w_f^T x_n)$
PLA Fact: w_t Gets More Aligned with w_f

linear separable $\mathcal{D} \iff$ exists perfect w_f such that $y_n = \text{sign}(w_f^T x_n)$

- w_f perfect hence every x_n correctly away from line:

$$\min_n y_n w_f^T x_n > 0$$
PLA Fact: \(w_t \) Gets More Aligned with \(w_f \)

linear separable \(\mathcal{D} \iff \text{exists perfect } w_f \text{ such that } y_n = \text{sign}(w_f^T x_n) \)

- \(w_f \) perfect hence every \(x_n \) correctly away from line:

\[
y_n(t) w_f^T x_n(t) \geq \min_n y_n w_f^T x_n > 0
\]
PLA Fact: w_t Gets More Aligned with w_f

linear separable $\mathcal{D} \iff$ exists perfect w_f such that $y_n = \text{sign}(w_f^T x_n)$

- w_f perfect hence every x_n correctly away from line:

$$y_{n(t)} w_f^T x_{n(t)} \geq \min_n y_n w_f^T x_n > 0$$

by updating with any $(x_{n(t)}, y_{n(t)})$

$$w_f^T w_{t+1} = w_f^T (w_t + y_{n(t)} x_{n(t)})$$
PLA Fact: w_t Gets More Aligned with w_f

linear separable $\mathcal{D} \iff$ exists perfect w_f such that $y_n = \text{sign}(w_f^T x_n)$

- w_f perfect hence every x_n correctly away from line:

$$y_{n(t)} w_f^T x_{n(t)} \geq \min_n y_n w_f^T x_n > 0$$

by updating with any $(x_{n(t)}, y_{n(t)})$

$$w_f^T w_{t+1} = w_f^T (w_t + y_{n(t)} x_{n(t)})$$

$$w_f^T w_t$$
PLA Fact: w_t Gets More Aligned with w_f

linear separable $\mathcal{D} \iff$ exists perfect w_f such that $y_n = \text{sign}(w_f^T x_n)$

- w_f perfect hence every x_n correctly away from line:

\[y_{n(t)} w_f^T x_{n(t)} \geq \min_n y_n w_f^T x_n > 0 \]

by updating with any $\left(x_{n(t)}, y_{n(t)}\right)$

\[w_f^T w_{t+1} = w_f^T \left(w_t + y_{n(t)} x_{n(t)}\right) \]
\[\geq w_f^T w_t + \min_n y_n w_f^T x_n \]
PLA Fact: w_t Gets More Aligned with w_f

linear separable $\mathcal{D} \iff$ exists perfect w_f such that $y_n = \text{sign}(w_f^T x_n)$

- w_f perfect hence every x_n correctly away from line:

$$y_{n(t)} w_f^T x_{n(t)} \geq \min_n y_n w_f^T x_n > 0$$

by updating with any $(x_{n(t)}, y_{n(t)})$

$$w_f^T w_{t+1} = w_f^T (w_t + y_{n(t)} x_{n(t)})$$

$$\geq w_f^T w_t + \min_n y_n w_f^T x_n$$

$$w_f^T w_t$$
PLA Fact: w_t Gets More Aligned with w_f

linear separable $\mathcal{D} \iff$ exists perfect w_f such that $y_n = \text{sign}(w_f^T x_n)$

- w_f perfect hence every x_n correctly away from line:

$$y_{n(t)} w_f^T x_{n(t)} \geq \min_n y_n w_f^T x_n > 0$$

by updating with any $(x_{n(t)}, y_{n(t)})$

$$w_f^T w_{t+1} = w_f^T (w_t + y_{n(t)} x_{n(t)})$$

$$\geq w_f^T w_t + \min_n y_n w_f^T x_n$$

$$> w_f^T w_t + 0.$$
PLA Fact: w_t Gets MoreAligned with w_f

linear separable $\mathcal{D} \iff$ exists perfect w_f such that $y_n = \text{sign}(w_f^T x_n)$

- w_f perfect hence every x_n correctly away from line:

 $$y_{n(t)} w_f^T x_{n(t)} \geq \min_n y_n w_f^T x_n > 0$$

- $w_f^T w_t$ ↑ by updating with any $(x_{n(t)}, y_{n(t)})$

 $$w_f^T w_{t+1} = w_f^T (w_t + y_{n(t)} x_{n(t)})$$

 $$\geq w_f^T w_t + \min_n y_n w_f^T x_n$$

 $$> w_f^T w_t + 0.$$

w_t appears more aligned with w_f after update (really?)
PLA Fact: \(w_t \) Does Not Grow Too Fast

\[w_t \text{ changed only when mistake} \]

\[\Leftrightarrow \text{sign}\left(\mathbf{w}_t^T \mathbf{x}_{n(t)}\right) \neq y_{n(t)} \Leftrightarrow y_{n(t)} \mathbf{w}_t^T \mathbf{x}_{n(t)} \leq 0 \]
PLA Fact: w_t Does Not Grow Too Fast

- w_t changed only when mistake
 \[\iff \text{sign} (w_t^T x_{n(t)}) \neq y_{n(t)} \iff y_{n(t)} w_t^T x_{n(t)} \leq 0 \]

\[
\begin{align*}
\|w_{t+1}\|^2 &= \|w_t + y_{n(t)} x_{n(t)}\|^2 \\
&= \|w_t\|^2 + \|y_{n(t)} x_{n(t)}\|^2 \\
\end{align*}
\]
PLA Fact: w_t Does Not Grow Too Fast

w_t changed only when mistake

$\Leftrightarrow \text{sign} \left(w_t^T x_{n(t)} \right) \neq y_{n(t)} \Leftrightarrow y_{n(t)} w_t^T x_{n(t)} \leq 0$

\[
\| w_{t+1} \|^2 = \| w_t + y_{n(t)} x_{n(t)} \|^2 \\
= \| w_t \|^2 + 2y_{n(t)} w_t^T x_{n(t)} + \| y_{n(t)} x_{n(t)} \|^2
\]
PLA Fact: w_t Does Not Grow Too Fast

\[w_t \text{ changed only when mistake } \iff \text{sign} \left(w_t^T x_{n(t)} \right) \neq y_{n(t)} \iff y_{n(t)} w_t^T x_{n(t)} \leq 0 \]

- mistake ‘limits’ $\|w_t\|^2$ growth,

\[
\|w_{t+1}\|^2 = \|w_t + y_{n(t)}x_{n(t)}\|^2 = \|w_t\|^2 + 2y_{n(t)}w_t^T x_{n(t)} + \|y_{n(t)}x_{n(t)}\|^2 \\
\leq \|w_t\|^2 + 0 + \|y_{n(t)}x_{n(t)}\|^2
\]
PLA Fact: w_t Does Not Grow Too Fast

\[w_t \text{ changed only when mistake} \]

\[\iff \text{sign} \left(w_t^T x_{n(t)} \right) \neq y_{n(t)} \iff y_{n(t)} w_t^T x_{n(t)} \leq 0 \]

- mistake 'limits' $\|w_t\|^2$ growth,

\[
\begin{align*}
\|w_{t+1}\|^2 &= \|w_t + y_{n(t)}x_{n(t)}\|^2 \\
&= \|w_t\|^2 + 2y_{n(t)}w_t^T x_{n(t)} + \|y_{n(t)}x_{n(t)}\|^2 \\
&\leq \|w_t\|^2 + 0 + \|y_{n(t)}x_{n(t)}\|^2 \\
&\|w_t\|^2
\end{align*}
\]
PLA Fact: w_t Does Not Grow Too Fast

- w_t changed only when mistake
 \[\iff \text{sign} (w_t^T x_{n(t)}) \neq y_{n(t)} \iff y_{n(t)} w_t^T x_{n(t)} \leq 0 \]

- mistake ‘limits’ $\|w_t\|^2$ growth, even when updating with ‘longest’ x_n

\[
\begin{align*}
\|w_{t+1}\|^2 &= \|w_t + y_{n(t)} x_{n(t)}\|^2 \\
&= \|w_t\|^2 + 2y_{n(t)} w_t^T x_{n(t)} + \|y_{n(t)} x_{n(t)}\|^2 \\
&\leq \|w_t\|^2 + 0 + \|y_{n(t)} x_{n(t)}\|^2 \\
&\leq \|w_t\|^2 + \max_n \|y_n x_n\|^2
\end{align*}
\]
PLA Fact: \(w_t \) Does Not Grow Too Fast

\(w_t \) changed only when mistake

\[\iff \text{sign} (w_t^T x_{n(t)}) \neq y_{n(t)} \iff y_{n(t)} w_t^T x_{n(t)} \leq 0 \]

- mistake ‘limits’ \(\|w_t\|^2 \) growth, even when updating with ‘longest’ \(x_n \)

\[
\begin{align*}
\|w_{t+1}\|^2 &= \|w_t + y_{n(t)} x_{n(t)}\|^2 \\
&= \|w_t\|^2 + 2y_{n(t)} w_t^T x_{n(t)} + \|y_{n(t)} x_{n(t)}\|^2 \\
&\leq \|w_t\|^2 + 0 + \|y_{n(t)} x_{n(t)}\|^2 \\
&\leq \|w_t\|^2 + \max_n \|y_n x_n\|^2
\end{align*}
\]

start from \(w_0 = 0 \), after \(T \) mistake corrections,

\[
\frac{w_f^T}{\|w_f\|} \cdot \frac{w_T^T}{\|w_T\|} \geq \sqrt{T} \cdot \text{constant}
\]
Fun Time
Let’s upper-bound T, the number of mistakes that PLA ‘corrects’.

Define $R^2 = \max_n \|x_n\|^2$, $\rho = \min_n y_n \frac{w_f^T}{\|w_f\|} x_n$

We want to show that $T \leq \square$. Express the upper bound \square by the two terms above.

1. R/ρ
2. R^2/ρ^2
3. R/ρ^2
4. ρ^2/R^2
Fun Time

Let’s upper-bound T, the number of mistakes that PLA ‘corrects’.

Define $R^2 = \max_n \|x_n\|^2$ $\rho = \min_n y_n \frac{w_f^T}{\|w_f\|}$ x_n

We want to show that $T \leq \Box$. Express the upper bound \Box by the two terms above.

1. R/ρ
2. R^2/ρ^2
3. R/ρ^2
4. ρ^2/R^2

Reference Answer: 2

The maximum value of $\frac{w_f^T}{\|w_f\|} \frac{w_t}{\|w_t\|}$ is 1. Since T mistake corrections increase the inner product by $\sqrt{T} \cdot \text{constant}$, the maximum number of corrected mistakes is $1/\text{constant}^2$.
More about PLA

Guarantee

as long as linear separable and correct by mistake

- inner product of w_f and w_t grows fast; length of w_t grows slowly
- PLA ‘lines’ are more and more aligned with $w_f \Rightarrow$ halts
More about PLA

Guarantee

as long as linear separable and correct by mistake

- inner product of w_f and w_t grows fast; length of w_t grows slowly
- PLA ‘lines’ are more and more aligned with w_f \Rightarrow halts

Pros

simple to implement, fast, works in any dimension d
More about PLA

Guarantee

as long as linear separable and correct by mistake

- inner product of w_f and w_t grows fast; length of w_t grows slowly
- PLA ‘lines’ are more and more aligned with $w_f \Rightarrow$ halts

Pros

simple to implement, fast, works in any dimension d

Cons

- ‘assumes’ linear separable D to halt
 —property unknown in advance (no need for PLA if we know w_f)
More about PLA

Guarantee

as long as linear separable and correct by mistake

- inner product of \mathbf{w}_f and \mathbf{w}_t grows fast; length of \mathbf{w}_t grows slowly
- PLA ‘lines’ are more and more aligned with $\mathbf{w}_f \Rightarrow$ halts

Pros

simple to implement, fast, works in any dimension d

Cons

- ‘assumes’ linear separable \mathcal{D} to halt
 —property unknown in advance (no need for PLA if we know \mathbf{w}_f)
- not fully sure how long halting takes (ρ depends on \mathbf{w}_f)
 —though practically fast
More about PLA

Guarantee
as long as linear separable and correct by mistake
- inner product of w_f and w_t grows fast; length of w_t grows slowly
- PLA ‘lines’ are more and more aligned with $w_f \Rightarrow$ halts

Pros
simple to implement, fast, works in any dimension d

Cons
- ‘assumes’ linear separable D to halt
 —property unknown in advance (no need for PLA if we know w_f)
- not fully sure how long halting takes (ρ depends on w_f)
 —though practically fast

what if D not linear separable?
Learning with **Noisy Data**

unknown target function
\[f : \mathcal{X} \rightarrow \mathcal{Y} \]
+ noise

(ideal credit approval formula)

training examples
\[\mathcal{D} : (x_1, y_1), \ldots, (x_N, y_N) \]
(historical records in bank)

learning algorithm
\[\mathcal{A} \]

final hypothesis
\[g \approx f \]
(‘learned’ formula to be used)

hypothesis set
\[\mathcal{H} \]
(set of candidate formula)

how to at least get
\[g \approx f \]
on **noisy** \(\mathcal{D} \)?
Line with Noise Tolerance

- assume ‘little’ noise: $y_n = f(x_n)$ usually
- if so, $g \approx f$ on $\mathcal{D} \iff y_n = g(x_n)$ usually
Learning to Answer Yes/No

Non-Separable Data

Line with Noise Tolerance

- assume ‘little’ noise: $y_n = f(x_n)$ usually
- if so, $g \approx f$ on $\mathcal{D} \iff y_n = g(x_n)$ usually
- how about

$$w_g \leftarrow \arg\min_w \sum_{n=1}^{N} \left[y_n \neq \text{sign}(w^T x_n) \right]$$
Learning to Answer Yes/No
Non-Separable Data

Line with Noise Tolerance

- assume ‘little’ noise: $y_n = f(x_n)$ usually
- if so, $g \approx f$ on $\mathcal{D} \iff y_n = g(x_n)$ usually
- how about

$$w_g \leftarrow \text{argmin}_w \sum_{n=1}^{N} \left[y_n \neq \text{sign}(w^T x_n) \right]$$

—NP-hard to solve, unfortunately
Learning to Answer Yes/No
Non-Separable Data

Line with Noise Tolerance

• assume ‘little’ noise: \(y_n = f(x_n) \) usually
• if so, \(g \approx f \) on \(D \) \(\iff \) \(y_n = g(x_n) \) usually
• how about

\[
\mathbf{w}_g \leftarrow \arg\min_{\mathbf{w}} \sum_{n=1}^{N} \left[y_n \neq \sign(\mathbf{w}^T \mathbf{x}_n) \right]
\]

—NP-hard to solve, unfortunately

can we modify PLA to get an ‘approximately good’ \(g \)?
Pocket Algorithm

modify PLA algorithm (black lines) by **keeping best weights in pocket**
Pocket Algorithm

modify PLA algorithm (black lines) by **keeping best weights in pocket**

initialize pocket weights \(\hat{w} \)

For \(t = 0, 1, \ldots \)

1. find a **(random)** mistake of \(w_t \) called \((x_{n(t)}, y_{n(t)})\)
2. (try to) correct the mistake by

\[
 w_{t+1} \leftarrow w_t + y_{n(t)} x_{n(t)}
\]

3. **if** \(w_{t+1} \) **makes fewer mistakes than** \(\hat{w} \), **replace** \(\hat{w} \) **by** \(w_{t+1} \)
modify PLA algorithm (black lines) by keeping best weights in pocket

initialize pocket weights \(\hat{w} \)
For \(t = 0, 1, \cdots \)
1. find a (random) mistake of \(w_t \) called \((x_{n(t)}, y_{n(t)}) \)
2. (try to) correct the mistake by
\[
 w_{t+1} \leftarrow w_t + y_{n(t)}x_{n(t)}
\]
3. if \(w_{t+1} \) makes fewer mistakes than \(\hat{w} \), replace \(\hat{w} \) by \(w_{t+1} \)
...until enough iterations
Pocket Algorithm

modify PLA algorithm (black lines) by **keeping best weights in pocket**

initialize pocket weights \(\hat{w} \)

For \(t = 0, 1, \ldots \)

1. find a (random) mistake of \(w_t \) called \((x_{n(t)}, y_{n(t)})\)
2. (try to) correct the mistake by

\[
\begin{align*}
 w_{t+1} & \leftarrow w_t + y_{n(t)} x_{n(t)} \\
\end{align*}
\]

3. if \(w_{t+1} \) makes fewer mistakes than \(\hat{w} \), replace \(\hat{w} \) by \(w_{t+1} \)

...until **enough iterations**

return \(\hat{w} \) (**called** \(w_{POCKET} \)) as \(g \)
Pocket Algorithm

modify PLA algorithm (black lines) by keeping best weights in pocket

initialize pocket weights \(\hat{w} \)
For \(t = 0, 1, \ldots \)

1. find a (random) mistake of \(w_t \) called \((x_{n(t)}, y_{n(t)})\)
2. (try to) correct the mistake by

\[
 w_{t+1} \leftarrow w_t + y_{n(t)} x_{n(t)}
\]

3. if \(w_{t+1} \) makes fewer mistakes than \(\hat{w} \), replace \(\hat{w} \) by \(w_{t+1} \)

...until enough iterations
return \(\hat{w} \) (called \(w_{\text{POCKET}} \)) as \(g \)

a simple modification of PLA to find (somewhat) ‘best’ weights
Should we use pocket or PLA?

Since we do not know whether \mathcal{D} is linear separable in advance, we may decide to just go with pocket instead of PLA. If \mathcal{D} is actually linear separable, what’s the difference between the two?

1. Pocket on \mathcal{D} is slower than PLA
2. Pocket on \mathcal{D} is faster than PLA
3. Pocket on \mathcal{D} returns a better g in approximating f than PLA
4. Pocket on \mathcal{D} returns a worse g in approximating f than PLA
Should we use pocket or PLA?

Since we do not know whether \mathcal{D} is linear separable in advance, we may decide to just go with pocket instead of PLA. If \mathcal{D} is actually linear separable, what’s the difference between the two?

1. pocket on \mathcal{D} is slower than PLA
2. pocket on \mathcal{D} is faster than PLA
3. pocket on \mathcal{D} returns a better g in approximating f than PLA
4. pocket on \mathcal{D} returns a worse g in approximating f than PLA

Reference Answer: 1

Because pocket need to check whether \mathbf{w}_{t+1} is better than $\hat{\mathbf{w}}$ in each iteration, it is slower than PLA. On linear separable \mathcal{D}, \mathbf{w}_{P} is the same as \mathbf{w}_{PLA}, both making no mistakes.
1. **When Can Machines Learn?**

Lecture 1: The Learning Problem

Lecture 2: Learning to Answer Yes/No

- Perceptron Hypothesis Set
 - hyperplanes/linear classifiers in \mathbb{R}^d
- Perceptron Learning Algorithm (PLA)
 - correct mistakes and improve iteratively
- Guarantee of PLA
 - no mistake eventually if linear separable
- Non-Separable Data
 - hold somewhat ‘best’ weights in pocket

- **next: the zoo of learning problems**

2. Why Can Machines Learn?

3. How Can Machines Learn?

4. How Can Machines Learn Better?