
Object Oriented Software Design (NTU, Spring 2013) instructor: Hsuan-Tien Lin

Midterm Examination Problem Sheet
TIME: 04/15/2013, 10:20–12:20

This is a open-book exam. You can use any printed materials as your reference during the exam. Any
electronic devices are not allowed.
Any form of cheating, lying or plagiarism will not be tolerated. Students can get zero scores and/or get
negative scores and/or fail the class and/or be kicked out of school and/or receive other punishments for
those kinds of misconducts.
Both English and Chinese (if suited) are allowed for answering the questions. We do not accept any
other languages.

There are 6 problems in the exam, each worth 35 points—the full credit is 210 points. Some prob-
lems would be divided to two or three sub-problems. There is another bonus problem with 10 points.
The midterm would be weighted as 2–3 homework sets, but the exact weight would depend on your
performance today. Good luck!

1 Java and C

(1) (20%+15%) Describe to someone who knows C about two differences between C and Java. The
difference can be a big one or a small one, and it is the correctness and clarity of your description
that the TAs will grade on. There is no need to be overly long in your description—an ideal answer
would be concise. Also, we want the differences to be “different” between the two by themselves.
The first difference you list would be worth 20 points, the second would be worth 15 points.

A sample answer would look like (and no, you cannot use these two):

[0] Java uses a "Garbage Collector" to manage memory automatically,

while C assumes that the programmers have the power and the

responsibility to allocate/de-allocate memory slots on their own.

[1] C allows flexible "goto" statements, while Java does not.

2 Constructors

1 class A{ }
2 class B extends A {
3 int u ; C other ;
4 B(int u){ this . u = u ; other = new C(u) ; }
5 B(){ this (2 0) ; }
6 }
7 class C extends A {
8 int v ;
9 C(int v){ this . v = v ; }

10 }
11 class D extends B {
12 double x ;
13 D(int u , double x){ super (u) ; this . x = x ; }
14 }
(1) (15%) Line 1 of the code below would compile normally while line 2 results in HAHAHA (compile

error). Why?

1 A r e f = new A() ;
2 A r e f = new C() ;

(2) (20%) List the order of constructors that are called after executing new D(1, 2.0). You need to
list all the constructors, including the constructor of java.lang.Object and the constructor(s)
automatically added by javac.

1 of 4

Object Oriented Software Design (NTU, Spring 2013) instructor: Hsuan-Tien Lin

3 Mutable versus Immutable

We know that java.lang.String is an immutable class, which makes it “safer” to use the instances of
the class. The following class Color, however, is mutable.

(1) (20%) Rewrite Color such that it is immutable. Your re-written Color must be fully compatible
with the original one in its methods. You can just explain the “differences” of your new class to
the TAs instead of listing every line (unless you really want to).

(2) (15%) Can your re-written Color still be immutable if some other programmers write a ColorChild

that extends your Color class? That is, can someone use a Color-type reference with a ColorChild-
type instance to change some contents of the Color part? If so, how could you prevent such from
happening? If not, why is your Color class safe from such?

1 public class Color {
2 public int red ;
3 public int green ;
4 public int blue ;
5

6 public Color (int red , int green , int b lue){
7 red = red ; green = green ; b lue = b lue ;
8 }
9

10 public int getColor () { return ((red << 16) | (green << 8) | blue) ; }
11 public Color i n v e r t () {
12 red = 255 − red ;
13 green = 255 − green ;
14 blue = 255 − blue ;
15 return this ;
16 }
17 }

4 Lucky-tons

(1) (35%) Consider writing a class License that only allows at most 1126 licenses to be used at the
same time. Each licenses needs to be created when needed for the first time, but can be
re-used (after being released) afterwards. Please complete the following code that does the job.

1 public class License {
2 private stat ic License [] pool = new License [1 1 2 6] ;
3 private stat ic boolean [] used = new boolean [1 1 2 6] ;
4

5 /∗ (1) (10%) You need a cons t ruc t o r to a l l o c a t e your ins tances ,
6 but at the same time preven t ing e x t e rna l code from d i r e c t l y
7 us ing i t . ∗/
8

9 /∗ i f t h e r e i s an unused l i c en s e , re turn t ha t ;
10 i f not , re turn nu l l ∗/
11 public stat ic License ge tL i c en s e (){
12 /∗ (2) (15%) You need code here ∗/
13 }
14

15 /∗ i f t h e r e i s a matching l i c e n s e be ing used , r e l e a s e i t ;
16 i f not , do noth ing ∗/
17 public stat ic void r e l e a s e L i c e n s e (L i cense toRe lease){
18 /∗ (3) (10%) You need code here ∗/
19 }
20 }

2 of 4

Object Oriented Software Design (NTU, Spring 2013) instructor: Hsuan-Tien Lin

5 Encapsulation

(1) (20%) Assume that the class ntu.csie.YoungProfessor extends class ntu.Professor, and the
class ntu.csie.SeniorProfessor extends ntu.Professor as well. Which of the following can be
invoked within an instance method of ntu.csie.YoungProfessor?

(a) a call to a public method of ntu.Professor

(b) a call to a protected method of ntu.Professor

(c) a call to a default method of ntu.Professor

(d) a call to a private method of ntu.Professor

(e) a call to a public method of ntu.csie.SeniorProfessor

(f) a call to a protected method of ntu.csie.SeniorProfessor

(g) a call to a default method of ntu.csie.SeniorProfessor

(h) a call to a private method of ntu.csie.SeniorProfessor

(i) a call to a protected method of ntu.Student

(j) a call to a default method of ntu.Student

(2) (10%) The “finalizer” we discussed in class was actually declared in java.lang.Object with the
protected access modifier, and can be overridden with the finalizing steps of different classes.
Which of the following classes (for simplicity, please just consider regular classes, not the array
types) can call java.lang.Object.finalize()?

(a) classes that are descendants of java.lang.Object

(b) classes that are of package java.lang

(3) (5%) If your answer above include “classes that are descendants of java.lang.Object”, then you
agree that every class in Java shall be able to call the finalizer. Then, guess why the finalizer
shouldn’t just come with the public access modifier (what’s the difference between using public

and protected here?). If your answer above does not include “classes that are descendants of
java.lang.Object”, then describe what classes cannot call java.lang.Object.finalize() in
their methods.

You are almost done with the exam. Only two more problems
on the next page. Hang in there!

3 of 4

Object Oriented Software Design (NTU, Spring 2013) instructor: Hsuan-Tien Lin

6 References and Instances

I know that you guys studied hard for Java night. What did you drink? Java coffee, of course! Let’s
play with Java coffee a bit.

1 class Drink{
2 public double amount ;
3 }
4 class Java extends Drink{
5 public double c a f f e i n e ;
6 public Java (double a , double c){
7 amount = a ;
8 c a f f e i n e = c ;
9 }

10 public Java (){ this (1 . 0 , 2 . 0) ; }
11 }
12 class Milk extends Drink{ }
13 class Fat l e s sMi lk extends Milk{ public double f a t ; }
14 class BlendedJava extends Java{
15 public Milk milk ;
16 public double r a t i o ;
17 }
18

19 public class JavaDemo{
20 public stat ic void main (St r ing [] argv){
21 Milk m1 = new Milk () ;
22 Milk m2 = new Milk () ;
23 Java j1 = new Java (3 . 0 , 2 . 0) ;
24 BlendedJava b1 = new BlendedJava () ;
25 BlendedJava b2 = new BlendedJava () ;
26 b1 . milk = m1;
27 j 1 = b1 ;
28 b1 . milk = new Fat l e s sMi lk () ;
29 Milk [] marr = new Milk [3] ;
30 marr [0] = b1 . milk ;
31 marr [1] = m2;
32 }
33 }

(1) (10%) Assume that you want a line of

1 System . out . p r i n t l n (j 1) ;

around the end of JavaDemo.main(String[]) to print out a line of Java coffee of caffeine

ratio 2/3. How would you do that?

(2) (25%) Illustrate the memory layout of JVM at the end of JavaDemo.main(String[]). You need
to show all the instances and self-defined local variables that are “alive” from the stack frame of
JavaDemo.main(String[]), their connections (references) and states (primitive-variable values).

7 java.lang.Object

(1) (Bonus 10%) In class, we discussed about why java.lang.Object shouldn’t contain abstract meth-
ods — if so, there is a huge burden on programmers when designing their own classes. On the other
hand, the remaining question is why java.lang.Object shouldn’t be an abstract class. Is there
really a need of constructing an instance of java.lang.Object? Please reason why the designers
of Java may have chosen to keep java.lang.Object concrete.

4 of 4

