
Object Oriented Software Design (NTU, Class Even, Spring 2009) instructor: Hsuan-Tien Lin

Homework #6
TA in charge: Te-Kang Jan

RELEASE DATE: 05/26/2009
DUE DATE: 06/09/2009, 14:20

As directed below, you need to upload your submission file to the designated place on the course website.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.
Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

Both English and Traditional Chinese are allowed for writing any part of your homework (if the compiler
recognizes Traditional Chinese, of course). We do not accept any other languages.

1 Description

The boss of the POOCasino is very satisfied with your performance last time. Now, you are asked to
do a more difficult task: Implement a one-deck game in the real-world casino with seven actions for the
players: bet, hit, stand, double-down, split, surrender, and insurance. Check http://en.wikipedia.
org/wiki/Blackjack for some information about the game, which roughly goes (from the Casino’s view)
as follows:

(1) Ask every player to make a bet Bi (a positive integer).

(2) Assign a face-up card and a face-down card to each player and the dealer.

(3) If the dealer’s face-up card is ACE, ask each player whether to buy an insurance of 1
2Bi or not.

(4) Check dealer’s face-down card (hole card), and if the dealer does not get a Blackjack, ask each
player whether to surrender or not.

(5) For each player who did not choose to surrender,

• Flip up (open) the face-down card.

• If the two cards happen to be of equal face value, decide whether to split. If splitting, the player
goes with two separate hands and continues the game with the decisions below. Re-splitting
is not allowed.

• Decide whether to double down.

• Decide whether to hit, until a standing decision or busted, of course.

(6) Faithfully execute the following dealer actions:

• If the total card value is ≤ 16 or is a soft-17, hit.

• Otherwise, stand.

(7) Compare the result of the dealer to the result of the player.

• If player i surrenders, 1
2Bi goes to the casino.

• If player i gets busted, Bi goes to the casino.

• If player i gets a Blackjack, the player gets 3
2Bi more chips unless the dealer also gets a

Blackjack. In the latter case, it is a “push” and the player just get 0 more chips.

1 of 3



Object Oriented Software Design (NTU, Class Even, Spring 2009) instructor: Hsuan-Tien Lin

• If player i doesn’t get a Blackjack, and if the dealer gets busted, each player gets Bi more
chips

• If player i doesn’t get a Blackjack, and if the dealer gets a Blackjack, the bet Bi goes to the
casino. If the player bought an insurance, however, she/he gets Bi back from the insurance,
making it even.

• Finally, if neither player i nor the dealer gets a Blackjack, and neither of them gets busted,
the sum of face values on the dealer’s and on player i’s hands are compared. If the dealer gets
more, the player loses and Bi goes to the casino. If the player gets more, the player wins Bi

more chips. Otherwise it is a “push” and the player just get 0 more chips.

You should carefully check http://en.wikipedia.org/wiki/Blackjack for the definitions of dou-
ble down, split pairs, insurance, and surrender. You are asked to use the following classes to
implement the Blackjack game.

• a Card class that represents one of the 52 cards in a standard deck of playing cards.

• an abstract Player class that to be extended to create your own player.

You can reuse your strategy in HW3, make it better, or create a new one. You can do so by using
the dealer’s face-up card on the table, your own cards on hand, or other players’ cards. You can also
“keep count of” the cards that have been shown so far (see the movie twenty-one?). As in HW3, a
well-explained strategy can allow you to win not only more chips in the game, but also more score points
in real life.

2 Requirements

• Implement a new POOCasino class that allows the abstract Player to play the Blackjack game
with the Card provided. Your POOCasino should be able to allow 6 different players in the
game with the command java POOCasino nRound nChip Player1 Player2 Player3 Player4
Player5 Player6 when Playeri is a subclass of Player. Here nRound is the number of rounds of
the game, and nChip is the amount of chips that each player has in the beginning.

• Implement your own player (like PlayerB86506054) that extends the abstract Player class.

• Write a short report with at most four A4 pages that contains the following items:

(1) your name and school ID
(2) the player’s strategy that you implemented
(3) the design of all the classes related to the casino, and the reason that you chose this design
(4) any part that you implemented that is worth getting “bonus” points

You should submit your report in PDF format. See http://jsc.cc.ntu.edu.tw/ntucc/pcroom/
manual/Word2Pdf.htm for some possible instructions for converting from Word to PDF.

3 Special Notes

• Readability of your source code would be worth 10 points out of 100 this time. The source code
would be read by all the three TAs, each giving points based on the following qualitative measure:

10 very readable
8 readable
6 mostly readable, but with some unreadable parts
4 mostly unreadable, but with some readable parts
2 unreadable
0 very unreadable

Your score in this part would be the average number of points from the three TAs rounded to the
nearest integer.

2 of 3



Object Oriented Software Design (NTU, Class Even, Spring 2009) instructor: Hsuan-Tien Lin

4 Submission File

Please upload a single ZIP encrypted file to CEIBA. The zip file should be like b86506054.zip, where
the file name should be changed to your own school ID. The ZIP file should contain the following items:

• *.java, which represent any other classes that you implemented

• README (optional), which instructs the TA to compile your files

• Your report file in PDF format

3 of 3


