Machine Learning Techniques (機器學習技巧)

Lecture 12: Deep Learning

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Agenda

Lecture 12: Deep Learning

- Optimization and Overfitting
- Auto Encoder
- Principle Component Analysis
- Denoising Auto Encoder
- Deep Neural Network

Optimization and Overfitting

Error Function of Neural Network

$$E_{\rm in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \left(y_n - \theta \left(\cdots \theta \left(\sum_j w_{jk}^{(2)} \cdot \theta \left(\sum_i w_{ij}^{(1)} x_i \right) \right) \right) \right)^2$$

- generally **non-convex** when multiple hidden layers
 - not easy to reach global minimum
 - GD/SGD with backprop only gives local minimum
- different initial $\mathbf{w}_0 \Longrightarrow$ different local minimum
 - somewhat 'sensitive' to initial weights
 - large weights => saturate (small gradient)
 - advice: try some random & small ones

neural network (NNet): difficult to optimize, but practically works

Optimization and Overfitting

VC Dimension of Neural Networks roughly, with θ -like transfer functions: $d_{VC} = O(D \log D)$ where D = # of weights

- can implement 'anything' if enough neurons (*D* large)
 —no need for many layers?
- can overfit if too many neurons

NNet: watch out for overfitting!

Optimization and Overfitting

Regularization for Neural Network

basic choice:

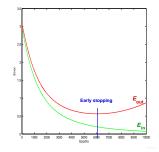
old friend weight-decay (L2) regularizer $\Omega(\mathbf{w}) = \sum \left(\mathbf{w}_{ii}^{(\ell)} \right)^2$

- 'shrink' weights: large weight \rightarrow large shrink; small weight \rightarrow small shrink
- want $w_{ii}^{(\ell)} = 0$ (sparse) to effectively decrease d_{VC}
 - L1 regularizer: $\sum |w_{ij}^{(\ell)}|$, but not differentiable
 - weight-elimination ('scaled' L2) regularizer: large weight → median shrink; small weight → median shrink

weight-elimination regularizer:
$$\sum \frac{\left(w_{ij}^{(\ell)}\right)^2}{\beta^2 + \left(w_{ij}^{(\ell)}\right)^2}$$

Yet Another Regularization: Early Stopping GD/SGD (backprop) visits more weight combinations as *t* increases

- smaller t effectively decrease d_{VC}
- better 'stop in the middle': early stopping



when to stop? validation!

Auto Encoder

Learning the Identity Function

identity function: $\mathbf{f}(\mathbf{x}) = \mathbf{x}$

- a vector function composed of $f_i(\mathbf{x}) = x_i$
- learning each f_i : regression with data $(\mathbf{x}_1, \mathbf{y}_1 = \mathbf{x}_{1,i}), (\mathbf{x}_2, \mathbf{y}_2 = \mathbf{x}_{2,i}), \dots, (\mathbf{x}_N, \mathbf{y}_N = \mathbf{x}_{N,i})$
- learning f: learning f_i jointly with data $(\mathbf{x}_1, \mathbf{y}_1 = \mathbf{x}_1), (\mathbf{x}_2, \mathbf{y}_2 = \mathbf{x}_2), \dots, (\mathbf{x}_N, \mathbf{y}_N = \mathbf{x}_N)$

but wait, why learning something known & easily implemented? :-)

Why Learning Identity Function

if $\mathbf{g}(\mathbf{x}) \approx \mathbf{f}(\mathbf{x})$ using some hidden structures on the observed data \mathbf{x}_n

- for unsupervised learning:
 - density estimation: larger (structure match) when $\mathbf{g}(\mathbf{x}) \approx \mathbf{x}$ better
 - outlier detection: those **x** where $\mathbf{g}(\mathbf{x}) \not\approx \mathbf{x}$
 - -learning 'typical' representation of data
- for supervised learning:
 - hidden structure: essence of **x** that can be used as $\Phi(\mathbf{x})$

-learning 'informative' representation of data

auto-encoder:

NNet for learning identity function

Auto Encoder

Simple Auto-Encoder

simple auto-encoder: a d-d-d NNet

- d outputs: backprop easily applies
- *d̃* < *d*: compressed representation;
 d̃ ≥ *d*: [over]-complete representation
- data: $(\mathbf{x}_1, \mathbf{y}_1 = \mathbf{x}_1), (\mathbf{x}_2, \mathbf{y}_2 = \mathbf{x}_2), \dots, (\mathbf{x}_N, \mathbf{y}_N = \mathbf{x}_N)$ —often categorized as **unsupervised learning technique**
- if x contain binary bits,
 - naïve solution exists (but unwanted) when [over]-complete
 - regularized weights needed in general
- sometimes constrain w⁽¹⁾_{ij} = w⁽²⁾_{ji} as 'regularization' —more sophisticated in calculating gradient

auto-encoder for representation learning: outputs of hidden neurons serve as $\Phi(x)$

Hsuan-Tien Lin (NTU CSIE)

Auto Encoder

Principle Component Analysis

Linear Auto-Encoder Hypothesis

$$h_k(\mathbf{x}) = \theta\left(\sum_j \mathbf{w}_{jk}^{(2)} \cdot \theta\left(\sum_i \mathbf{w}_{ij}^{(1)} x_i\right)\right)$$

consider three special conditions:

- constrain $w_{ij}^{(1)} = w_{ji}^{(2)} = w_{ij}$ as 'regularization' —let $W = [w_{ij}]$ of size $d \times \tilde{d}$
- θ does nothing (like linear regression)
- *d* < *d*

linear auto-encoder hypothesis:

$$\mathbf{h}(\mathbf{x}) = \mathbf{x}^T \mathbf{W} \mathbf{W}^T$$

Hsuan-Tien Lin (NTU CSIE)

Principle Component Analysis

Linear Auto-Encoder Error Function

$$\min_{\mathbf{W}} \quad E_{in}(\mathbf{W}) = \frac{1}{N} \left\| \mathbf{X} - \mathbf{X} \mathbf{W} \mathbf{W}^{\mathsf{T}} \right\|_{\mathsf{F}}^{2}$$

let $WW^T = V \wedge V^T$ such that $V^T V = I$ and \wedge a diagonal matrix of rank at most \tilde{d} (eigenvalue decomposition)

$$\begin{aligned} \left\| \mathbf{X} - \mathbf{X}\mathbf{V}\wedge\mathbf{V}^{\mathsf{T}} \right\|_{\mathsf{F}}^{2} \\ &= \operatorname{trace} \left(\left(\mathbf{X} - \mathbf{X}\mathbf{V}\wedge\mathbf{V}^{\mathsf{T}} \right)^{\mathsf{T}} \left(\mathbf{X} - \mathbf{X}\mathbf{V}\wedge\mathbf{V}^{\mathsf{T}} \right) \right) \\ &= \operatorname{trace} \left(\mathbf{X}^{\mathsf{T}}\mathbf{X} - \mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{V}\wedge\mathbf{V}^{\mathsf{T}} - \mathbf{V}\wedge\mathbf{V}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X} + \mathbf{V}\wedge\mathbf{V}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{V}\wedge\mathbf{V}^{\mathsf{T}} \right) \\ &= \operatorname{trace} \left(\mathbf{X}^{\mathsf{T}}\mathbf{X} - \wedge\mathbf{V}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{V} - \wedge\mathbf{V}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{V} + \wedge\mathbf{V}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{V}\wedge\mathbf{V}^{\mathsf{T}}\mathbf{V} \right) \\ &= \operatorname{trace} \left(\mathbf{V}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{V} - \wedge\mathbf{V}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{V} - \wedge\mathbf{V}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{V} + \wedge^{2}\mathbf{V}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{V} \right) \\ &= \operatorname{trace} \left((\mathbf{I} - \wedge)^{2}\mathbf{V}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{V} \right) \end{aligned}$$

Hsuan-Tien Lin (NTU CSIE)

Principle Component Analysis

Linear Auto-Encoder Algorithm

$$\min_{\mathbf{V},\Lambda} \quad \text{trace}\left(\left(\mathbf{I}-\Lambda\right)^2 \mathbf{V}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}^{\mathsf{V}}\right)$$

- optimal rank- $\tilde{d} \wedge$ contains \tilde{d} '1' and $d \tilde{d}$ '0'
- let X^TX = UΣU^T (eigenvalue decomposition), V = U with (smallest σ_i ⇔ λ_j = 1) is optimal
- so optimal column vectors w_j = v_j = top eigen vectors of X^TX

optimal linear auto-encoding \equiv principal component analysis (PCA) with \mathbf{w}_i being principal components of unshifted data

Principle Component Analysis

Denoising Auto Encoder

Simple Auto-Encoder Revisited simple auto-encoder: a $d - \tilde{d} - d$ NNet

- want: hidden structure to capture essence of x
- naïve solution exists (but unwanted) when [over]-complete
- regularized weights needed in general

regularization towards more robust hidden structure?

Denoising Auto Encoder

Idea of Denoising Auto-Encoder

robust hidden structure should allow $g(\tilde{\mathbf{x}}) \approx \mathbf{x}$ even when $\tilde{\mathbf{x}}$ slightly different from \mathbf{x}

- denoising auto-encoder: run auto-encoder
 with data (x
 ₁, y
 ₁ = x₁), (x
 ₂, y
 ₂ = x₂), ..., (x
 _N, y_N = x_N),
 where x
 _n = x_n + artificial noise
- PCA auto-encoder + Gaussian noise:

$$\min_{\mathbf{W}} \quad E_{\mathsf{in}}(\mathbf{W}) = \frac{1}{N} \left\| \mathbf{X} - (\mathbf{X} + \mathsf{noise}) \mathbf{W} \mathbf{W}^{\mathsf{T}} \right\|_{\mathsf{F}}^{2}$$

-simply L2-regularized PCA

artificial noise as regularization! —practically also useful for other types of NNet

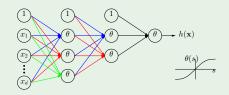
Denoising Auto Encoder

Deep Neural Network

Final remark: hidden layers

learned nonlinear transform

interpretation?



Learning From Data - Lecture 10

21/21

Deep Neural Network

Shallow versus Deep Structures

shallow: few hidden layers; deep: many hidden layers

Shallow	Deep
efficient	 challenging to train
powerful if enough neurons	 needing more structural (model) decisions
	'meaningful'?

deep structure (deep learning) re-gain attention recently

Hsuan-Tien Lin (NTU CSIE)

Key Techniques behind Deep Learning

- (usually) unsupervised pre-training between hidden layers, such as simple/denoising auto-encoder

 viewing hidden layers as 'condensing' low-level representation to high-level one
- fine-tune with backprop after initializing with those 'good' weights
 - -because direct backprop may get stuck more easily
- speed-up: better optimization algorithms, and faster GPU
- generalization issue less serious with big (enough) data

currently very useful for vision and speech recognition

Summary

Lecture 12: Deep Learning

- Optimization and Overfitting
- Auto Encoder
- Principle Component Analysis
- Denoising Auto Encoder
- Deep Neural Network