Machine Learning Techniques (機器學習技法)

Lecture 10: Random Forest Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models

Lecture 9: Decision Tree

recursive branching (purification) for conditional aggregation of constant hypotheses

Lecture 10: Random Forest

- Random Forest Algorithm
- Out-Of-Bag Estimate
- Feature Selection
- Theory versus Practice

Oistilling Implicit Features: Extraction Models

Recall: Bagging and Decision Tree

Bagging

function $Bag(\mathcal{D}, \mathcal{A})$ function $\mathsf{DTree}(\mathcal{D})$ if termination return base g_t For t = 1, 2, ..., Telse **1** request size-N' data $\tilde{\mathcal{D}}_t$ by **1** learn $b(\mathbf{x})$ and split \mathcal{D} to bootstrapping with \mathcal{D} \mathcal{D}_c by $b(\mathbf{x})$ 2 obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$ 2 build $G_c \leftarrow \text{DTree}(\mathcal{D}_c)$ return $G = \text{Uniform}(g_t)$ **3** return $G(\mathbf{x}) =$ $\sum_{r=1}^{\infty} \llbracket b(\mathbf{x}) = c \rrbracket \mathbf{G}_c(\mathbf{x})$ —reduces variance —large variance by voting/averaging especially if fully-grown

> putting them together? (i.e. aggregate of aggregation :-))

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques

Decision Tree

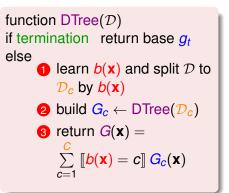
Random Forest (RF)

random forest (RF) = bagging + fully-grown C&RT decision tree

function RandomForest(D) For t = 1, 2, ..., T

- 1 request size-*N'* data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- **2** obtain tree g_t by DTree $(\tilde{\mathcal{D}}_t)$

return $G = \text{Uniform}(g_t)$



- highly parallel/efficient to learn
- inherit pros of C&RT
- eliminate cons of fully-grown tree

Random Forest Algorithm

Diversifying by Feature Projection recall: data randomness for diversity in bagging

randomly sample N' examples from $\mathcal D$

other possibility for diversity:

randomly sample d' features from x

- sampled index $i_1, i_2, ..., i_{d'}$: $\Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, ..., x_{i_{d'}})$
- $\mathcal{Z} \in \mathbb{R}^{d'}$: a random subspace of $\mathcal{X} \in \mathbb{R}^{d}$
- often d' « d, efficient when d large
 —can be generally used for other learning models
- original RF re-sample new subspace for each b(x) in C&RT

RF = bagging + random-subspace C&RT

Random Forest Algorithm

Diversifying by Feature Expansion randomly sample d' features from \mathbf{x} : $\mathbf{\Phi}(\mathbf{x}) = \mathbf{P} \cdot \mathbf{x}$ with row *i* of P picked randomly \in natural basis

more powerful features for diversity: row *i* other than natural basis

low-dimensional random projection (combination) with v:

$$\phi_i(\mathbf{x}) = \sum_{j=1}^{d''} \mathbf{v}_j x_j$$

- includes random subspace as special case: d'' = 1 and $v_1 = 1$
- original RF consider d' random combinations for each b(x) in C&RT

RF = bagging + random-**combination** C&RT —randomness everywhere!

Hsuan-Tien Lin (NTU CSIE)

Within RF that contains random-combination C&RT trees, which of the following hypothesis is equivalent to each branching function $b(\mathbf{x})$ within the tree?

- a constant
- 2 a decision stump
- 3 a perceptron
- 4 none of the other choices

Within RF that contains random-combination C&RT trees, which of the following hypothesis is equivalent to each branching function $b(\mathbf{x})$ within the tree?

- 1 a constant
- 2 a decision stump
- 3 a perceptron
- 4 none of the other choices

Reference Answer: (3)

In each $b(\mathbf{x})$, the input vector \mathbf{x} is first projected by a random vector \mathbf{v} and then thresholded to make a binary decision, which is exactly what a perceptron does.

Bagging Revisited

Bagging

function $Bag(\mathcal{D}, \mathcal{A})$ For t = 1, 2, ..., T

- 1 request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- **2** obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$

return $G = \text{Uniform}(g_t)$

	g 1	g 2	g 3	 g _T
$({\bf x}_1, y_1)$	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$	$\tilde{\mathcal{D}}_{\mathcal{T}}$
(x_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$	$\tilde{\mathcal{D}}_{\mathcal{T}}$
$(\mathbf{x}_3, \mathbf{y}_3)$	*	$\tilde{\mathcal{D}}_1$	*	$\tilde{\mathcal{D}}_{\mathcal{T}}$
$(\mathbf{x}_N, \mathbf{y}_N)$	$\tilde{\mathcal{D}}_1$	$ ilde{\mathcal{D}}_2$	*	*

*: not used for obtaining g_t —called **out-of-bag (OOB) examples**

Out-Of-Bag Estimate

Number of OOB Examples OOB (in \star) \iff not sampled after N' drawings

if N' = N

- probability for (\mathbf{x}_n, y_n) to be OOB for g_t : $(1 \frac{1}{N})^N$
- if N large:

$$\left(1-\frac{1}{N}\right)^{N} = \frac{1}{\left(\frac{N}{N-1}\right)^{N}} = \frac{1}{\left(1+\frac{1}{N-1}\right)^{N}} \approx \frac{1}{e}$$

OOB size per
$$g_t \approx \frac{1}{e}N$$

Out-Of-Bag Estimate

OOB versus Validation

ООВ						Validation				
	g 1	g 2	g 3	•••	gт	[<i>g</i> ₁ ⁻	g_2^-	••••	g_M^-
$({\bf x}_1, y_1)$	$\tilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$		$\tilde{\mathcal{D}}_{\mathcal{T}}$	[\mathcal{D}_{train}	\mathcal{D}_{train}		\mathcal{D}_{train}
(x_2, y_2)	*	*	$ ilde{\mathcal{D}}_3$		$\tilde{\mathcal{D}}_{\mathcal{T}}$		\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}
(x_3, y_3)	*	$\tilde{\mathcal{D}}_1$	*		$\tilde{\mathcal{D}}_{\mathcal{T}}$		\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}
$(\mathbf{x}_N, \mathbf{y}_N)$	$\tilde{\mathcal{D}}_1$	$\tilde{\mathcal{D}}_2$	*		*		\mathcal{D}_{train}	$\mathcal{D}_{\text{train}}$		$\mathcal{D}_{ ext{train}}$

- \star like \mathcal{D}_{val} : 'enough' random examples unused during training
- use * to validate gt? easy, but rarely needed
- use \star to validate *G*? $E_{\text{oob}}(G) = \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, G_n^-(\mathbf{x}_n))$, with G_n^- contains only trees that \mathbf{x}_n is OOB of

E_{oob}: self-validation of bagging/RF

Hsuan-Tien Lin (NTU CSIE)

Out-Of-Bag Estimate

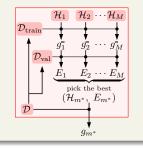
Model Selection by OOB Error

Previously: by Best Eval

$$g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$$

$$m^* = \operatorname*{argmin}_{1 \le m \le M} E_m$$

$$E_m = E_{val}(\mathcal{A}_m(\mathcal{D}_{train}))$$



RF: by Best Eoob

$$G_{m^*} = \mathsf{RF}_{m^*}(\mathcal{D})$$

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}} E_m$$

$$E_m = E_{oob}(\mathsf{RF}_m(\mathcal{D}))$$

Eoob often accurate in practice

Hsuan-Tien Lin (NTU CSIE)

For a data set with N = 1126, what is the probability that $(\mathbf{x}_{1126}, y_{1126})$ is not sampled after bootstrapping N' = N samples from the data set?

- 1 0.113
- 2 0.368
- 3 0.632
- **4** 0.887

For a data set with N = 1126, what is the probability that $(\mathbf{x}_{1126}, y_{1126})$ is not sampled after bootstrapping N' = N samples from the data set?

- 1 0.113
- 2 0.368
- **3** 0.632
- **4** 0.887

Reference Answer: (2)

The value of $(1 - \frac{1}{N})^N$ with N = 1126 is about 0.367716, which is close to $\frac{1}{e} = 0.367879$.

Feature Selection

for $\mathbf{x} = (x_1, x_2, \dots, x_d)$, want to remove

- redundant features: like keeping one of 'age' and 'full birthday'
- irrelevant features: like insurance type for cancer prediction

and only 'learn' subset-transform $\Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, x_{i_{d'}})$ with d' < d for $g(\Phi(\mathbf{x}))$

advantages:

- efficiency: simpler hypothesis and shorter prediction time
- generalization: 'feature noise' removed
- interpretability

disadvantages:

- computation:
 - 'combinatorial' optimization in training
- overfit: 'combinatorial' selection
- mis-interpretability

decision tree: a rare model with built-in feature selection

Hsuan-Tien Lin (NTU CSIE)

Feature Selection

Feature Selection by Importance

idea: if possible to calculate

importance(i) for $i = 1, 2, \ldots, d$

then can select $i_1, i_2, \ldots, i_{d'}$ of top-d' importance

importance by linear model

$$\text{score} = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^d w_i x_i$$

- intuitive estimate: importance(i) = $|w_i|$ with some 'good' w
- getting 'good' w: learned from data
- non-linear models? often much harder

next: 'easy' feature selection in RF

Hsuan-Tien Lin (NTU CSIE)

Feature Importance by Permutation Test

idea: random test

—if feature *i* needed, 'random' values of $x_{n,i}$ degrades performance

- which random values?
 - uniform, Gaussian, ...: $P(x_i)$ changed
 - bootstrap, permutation (of {x_{n,i}}^N_{n=1}): P(x_i) approximately remained
- permutation test:

importance(*i*) = performance(\mathcal{D}) - performance(\mathcal{D}_p)

with \mathcal{D}_p containing permuted $\{x_{n,i}\}_{n=1}^N$

permutation test: a general statistical tool for arbitrary non-linear models like RF

Hsuan-Tien Lin (NTU CSIE)

Feature Selection

Feature Importance in Original Random Forest permutation test:

importance(i) = performance(\mathcal{D}) – performance(\mathcal{D}_p)

with \mathcal{D}_{p} containing permuted $\{x_{n,i}\}_{n=1}^{N}$

- calculating performance needs re-training and validating on each $\mathcal{D}_{\textit{p}}$ in general
- how to 'escape' validation? OOB in RF
- original RF solution:

 $importance(i) = E_{oob}(G, D) - E_{oob}(G, D_p)$

with \mathcal{D}_{p} 'dynamically' containing permuted $\{x_{n,i}: n \text{ OOB}\}$ for g_{t}

original RF solution often efficient and promising in practice

Hsuan-Tien Lin (NTU CSIE)

For RF, if the 1126-th feature within the data set is a constant 5566, what would importance(i) be?

- 3 1126
- 4 5566

For RF, if the 1126-th feature within the data set is a constant 5566, what would importance(i) be?

- 3 1126
- **4** 5566

Reference Answer: (1)

When a feature is a constant, permutation does not change its value. Then, performance(G, D) and performance(G, D_p) are the same, and thus importance(i) = 0.

Hsuan-Tien Lin (NTU CSIE)

Theory: Does Diversity Help?

strength-correlation decomposition (classification):

$$\lim_{T \to \infty} E_{\text{out}}(G) \le \rho \cdot \left(\frac{1 - s^2}{s^2}\right)$$

- strength: average voting margin within G
- correlation: similarity between g_t
- similar for regression (bias-variance decomposition)

RF good if diverse and strong

Theory versus Practice

Practice: How Many Trees Needed?

theory: the more, the 'better'

- NTU KDDCup 2013 Track 1: predicting author-paper relation
- $1 E_{val}$ of thousands of trees: [0.981, 0.985] depending on seed; $1 - E_{out}$ of top 20 teams: [0.98130, 0.98554]
- decision: take 12000 trees with seed 1

cons of RF: may need lots of trees if random process too unstable

The strength *s* is a value between [0, 1]. For a fixed ρ , which value of *s* results in the minimum upper bound for the limiting $E_{out}(G)$?

- 1.0
- 2 0.5
- **3** 0.0
- 4 none of the other choices

The strength *s* is a value between [0, 1]. For a fixed ρ , which value of *s* results in the minimum upper bound for the limiting $E_{out}(G)$?

- 1.0
- 2 0.5
- 3 0.0
- 4 none of the other choices

```
Reference Answer: (1)
```

Too simple, huh? :-)

Summary

Embedding Numerous Features: Kernel Models

2 Combining Predictive Features: Aggregation Models

Lecture 10: Random Forest

- Random Forest Algorithm
 bag of trees on randomly projected subspaces
 Out-Of-Bag Estimate

 self-validation with oob examples

 Feature Selection

 permutation test for feature importance
- Theory versus Practice

more or not? that's the question!

- next: boosted decision trees beyond classification
- 3 Distilling Implicit Features: Extraction Models