Machine Learning Techniques (機器學習技法)

Lecture 5: Kernel Logistic Regression

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

1 Embedding Numerous Features: Kernel Models

Lecture 4: Soft-Margin Support Vector Machine

allow some margin violations ξ_n while penalizing them by *C*; equivalent to upper-bounding α_n by *C*

Lecture 5: Kernel Logistic Regression

- Soft-Margin SVM as Regularized Model
- SVM versus Logistic Regression
- SVM for Soft Binary Classification
- Kernel Logistic Regression
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

Soft-Margin SVM as Regularized Model
Wrap-Up

Soft-Margin Primal Hard-Margin Primal $\min_{b,\mathbf{w},\boldsymbol{\xi}} \qquad \frac{1}{2}\mathbf{w}^T\mathbf{w} + \mathbf{C}\sum_{n=1}^N \xi_n$ $\frac{1}{2}\mathbf{w}^T\mathbf{w}$ min _{b,w} $y_n(\mathbf{w}^T \mathbf{z}_n + b) \geq 1 - \xi_n, \xi_n \geq 0$ $y_n(\mathbf{w}^T\mathbf{z}_n+b)>1$ s.t. s.t. Hard-Margin Dual Soft-Margin Dual $\min_{\alpha} \quad \frac{1}{2} \alpha^T Q \alpha - \mathbf{1}^T \alpha$ $\frac{1}{2}\alpha^T Q\alpha - \mathbf{1}^T \alpha$ min s.t. $\mathbf{y}^T \boldsymbol{\alpha} = \mathbf{0}$ s.t. $\mathbf{v}^T \boldsymbol{\alpha} = \mathbf{0}$ $0 < \alpha_n < C$ $0 < \alpha_n$

> soft-margin preferred in practice; linear: LIBLINEAR; non-linear: LIBSVM

Hsuan-Tien Lin (NTU CSIE)

Soft-Margin SVM as Regularized Model

Slack Variables ξ_n

- record 'margin violation' by ξ_n
- penalize with margin violation

$$\min_{b,\mathbf{w},\boldsymbol{\xi}} \quad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} + \boldsymbol{C} \cdot \sum_{n=1}^{N} \xi_n$$

s.t. $y_n(\mathbf{w}^T \mathbf{z}_n + b) \ge 1 - \xi_n$ and $\xi_n \ge 0$ for all n

on any $(b, \mathbf{w}), \xi_n =$ margin violation $= \max(1 - y_n(\mathbf{w}^T \mathbf{z}_n + b), 0)$

- (\mathbf{x}_n, y_n) violating margin: $\xi_n = 1 y_n(\mathbf{w}^T \mathbf{z}_n + b)$
- $(\mathbf{x}_n, \mathbf{y}_n)$ not violating margin: $\xi_n = \mathbf{0}$

'unconstrained' form of soft-margin SVM:

$$\min_{b,\mathbf{w}} \qquad \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{n=1}^{N} \max(1 - y_n(\mathbf{w}^{T}\mathbf{z}_n + b), 0)$$

Hsuan-Tien Lin (NTU CSIE)

Soft-Margin SVM as Regularized Model

Unconstrained Form

$$\begin{array}{ll} \min_{b,\mathbf{w}} & \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{n=1}^{N}\max(1-y_{n}(\mathbf{w}^{T}\mathbf{z}_{n}+b),0) \\ \end{array}$$
familiar? :-)
$$\begin{array}{l} \text{min} & \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum\widehat{\mathrm{err}} \\ \min & \frac{\lambda}{N}\mathbf{w}^{T}\mathbf{w} + \frac{1}{N}\sum\mathrm{err} \\ \mathrm{with \ shorter \ w, \ another \ parameter, \ and \ special \ err} \end{array}$$

why not solve this? :-)
not QP, no (?) kernel trick
max(.,0) not differentiable, harder to solve

Hsuan-Tien Lin (NTU CSIE)

SVM as Regularized Model

	minimize	constraint
regularization by constraint	E _{in}	$\mathbf{w}^{\mathcal{T}}\mathbf{w} \leq \mathbf{C}$
hard-margin SVM	w ^T w	$E_{in} = 0$ [and more]
L2 regularization	$\frac{\lambda}{N}\mathbf{w}^T\mathbf{w} + E_{in}$	
soft-margin SVM	$\frac{1}{2}\mathbf{w}^T\mathbf{w} + \mathbf{C}N\widehat{E_{in}}$	

large margin \iff fewer hyperplanes \iff L2 regularization of short **w**

soft margin \iff special \widehat{err}

larger C or C \iff smaller $\lambda \iff$ less regularization

viewing SVM as regularized model:

allows extending/connecting to other learning models

Hsuan-Tien Lin (NTU CSIE)

When viewing soft-margin SVM as regularized model, a larger *C* corresponds to

- **1** a larger λ , that is, stronger regularization
- **2** a smaller λ , that is, stronger regularization
- **3** a larger λ , that is, weaker regularization
- 4 a smaller λ , that is, weaker regularization

When viewing soft-margin SVM as regularized model, a larger *C* corresponds to

- **1** a larger λ , that is, stronger regularization
- **2** a smaller λ , that is, stronger regularization
- **3** a larger λ , that is, weaker regularization
- 4 a smaller λ , that is, weaker regularization

Reference Answer: (4)

Comparing the formulations on page 4 of the slides, we see that *C* corresponds to $\frac{1}{2\lambda}$. So larger *C* corresponds to smaller λ , which surely means weaker regularization.

Algorithmic Error Measure of SVM

$$\min_{b,\mathbf{w}} \qquad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^N \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

$\widehat{\operatorname{err}}_{\text{SVM}}$: algorithmic error measure by convex upper bound of $\operatorname{err}_{0/1}$

Algorithmic Error Measure of SVM

$$\min_{b,\mathbf{w}} \qquad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^N \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

$\widehat{\operatorname{err}}_{\text{SVM}}$: algorithmic error measure by convex upper bound of $\operatorname{err}_{0/1}$

Connection between SVM and Logistic Regression

SVM \approx L2-regularized **logistic regression**

Hsuan-Tien Lin (NTU CSIE)

SVM versus Logistic Regression

Linear Models for Binary Classification

PLA	soft-margin SVM	regularized logistic regression for classification
minimize err _{0/1} specially	minimize regularized err _{svм} by QP	minimize regularized err _{SCE} by GD/SGD/
 pros: efficient if lin. separable 	 pros: 'easy' optimization & theoretical guarantee 	 pros: 'easy' optimization & regularization guard
 cons: works only if lin. separable, otherwise needing pocket 	 cons: loose bound of err_{0/1} for very negative ys 	 cons: loose bound of err_{0/1} for very negative ys

regularized LogReg \implies approximate SVM SVM \implies approximate LogReg (?)

We know that $\widehat{\operatorname{err}}_{SVM}(s, y)$ is an upper bound of $\operatorname{err}_{0/1}(s, y)$. When is the upper bound tight? That is, when is $\widehat{\operatorname{err}}_{SVM}(s, y) = \operatorname{err}_{0/1}(s, y)$?

$$2 ys \le 0$$

We know that $\widehat{\operatorname{err}}_{SVM}(s, y)$ is an upper bound of $\operatorname{err}_{0/1}(s, y)$. When is the upper bound tight? That is, when is $\widehat{\operatorname{err}}_{SVM}(s, y) = \operatorname{err}_{0/1}(s, y)$?

- 1 ys \geq 0
- $2 ys \le 0$
- **3** *ys* ≥ 1
- **4** *ys* ≤ 1

Reference Answer: (3)

By plotting the figure, we can easily see that $\widehat{\operatorname{err}}_{SVM}(s, y) = \operatorname{err}_{0/1}(s, y)$ if and only if $ys \ge 1$. In that case, both error functions evaluate to 0.

SVM for Soft Binary Classification

Naïve Idea 1

- 1 run SVM and get (b_{SVM}, w_{SVM})
- **2** return $g(\mathbf{x}) = \theta(\mathbf{w}_{\text{SVM}}^T \mathbf{x} + b_{\text{SVM}})$

- 'direct' use of similarity
 works reasonably well
- no LogReg flavor

Naïve Idea 2

- I run SVM and get (b_{SVM}, ₩_{SVM})
- run LogReg with (b_{SVM}, w_{SVM}) as w₀
- return LogReg solution as g(x)
 - not really 'easier' than original LogReg
 - SVM flavor (kernel?) lost

want: flavors from both sides

A Possible Model: Two-Level Learning

 $g(\mathbf{x}) = \theta(\mathbf{A} \cdot (\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}) + \mathbf{b}_{\text{SVM}}) + \mathbf{B})$

- SVM flavor: fix hyperplane direction by w_{SVM}—kernel applies
- LogReg flavor: fine-tune hyperplane to match maximum likelihood by scaling (*A*) and shifting (*B*)
 - often A > 0 if w_{SVM} reasonably good
 - often $B \approx 0$ if b_{SVM} reasonably good

new LogReg Problem:

$$\min_{\boldsymbol{A},\boldsymbol{B}} \quad \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_n \left(\boldsymbol{A} \cdot \left(\underbrace{\boldsymbol{w}_{\text{SVM}}^{T} \boldsymbol{\Phi}(\boldsymbol{x}_n) + b_{\text{SVM}}}_{\boldsymbol{\Phi}_{\text{SVM}}(\boldsymbol{x}_n)} \right) + \boldsymbol{B} \right) \right) \right)$$

two-level learning: LogReg on SVM-transformed data

Hsuan-Tien Lin (NTU CSIE)

 Kernel Logistic Regression
 SWM for Soft Binary Classification

 Probabilistic SVM

 Platt's Model of Probabilistic SVM for Soft Binary Classification

 1 run SVM on \mathcal{D} to get $(b_{SVM}, \mathbf{w}_{SVM})$ [or the equivalent α], and transform \mathcal{D} to $\mathbf{z}'_n = \mathbf{w}_{SVM}^T \Phi(\mathbf{x}_n) + b_{SVM}$

 —actual model performs this step in a more complicated manner

 2 run LogReg on $\{(\mathbf{z}'_n, y_n)\}_{n=1}^N$ to get (A, B)

 —actual model adds some special regularization here

 3 return $g(\mathbf{x}) = \theta(A \cdot (\mathbf{w}_{SVM}^T \Phi(\mathbf{x}) + b_{SVM}) + B)$

soft binary classifier not having the same boundary as SVM classifier

—because of B

how to solve LogReg: GD/SGD/or better

-because only two variables

kernel SVM \implies approx. LogReg in \mathcal{Z} -space exact LogReg in \mathcal{Z} -space?

Hsuan-Tien Lin (NTU CSIE)

SVM for Soft Binary Classification Fun Time

Recall that the score $\mathbf{w}_{SVM}^{T} \mathbf{\Phi}(\mathbf{x}) + b_{SVM} = \sum_{SV} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b_{SVM}$ for the

kernel SVM. When coupling the kernel SVM with (A, B) to form a probabilistic SVM, which of the following is the resulting $g(\mathbf{x})$?

1
$$\theta\left(\sum_{SV} B\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b_{SVM}\right)$$

2 $\theta\left(\sum_{SV} B\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + Bb_{SVM} + A\right)$
3 $\theta\left(\sum_{SV} A\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b_{SVM}\right)$
4 $\theta\left(\sum_{SV} A\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + Ab_{SVM} + B\right)$

SVM for Soft Binary Classification Fun Time

Recall that the score $\mathbf{w}_{SVM}^{T} \mathbf{\Phi}(\mathbf{x}) + b_{SVM} = \sum_{SV} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b_{SVM}$ for the

kernel SVM. When coupling the kernel SVM with (A, B) to form a probabilistic SVM, which of the following is the resulting $g(\mathbf{x})$?

1
$$\theta\left(\sum_{SV} B\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b_{SVM}\right)$$

2 $\theta\left(\sum_{SV} B\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + Bb_{SVM} + A\right)$
3 $\theta\left(\sum_{SV} A\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b_{SVM}\right)$
4 $\theta\left(\sum_{SV} A\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + Ab_{SVM} + B\right)$

Reference Answer: (4)

We can simply plug the kernel formula of the score into $g(\mathbf{x})$.

Hsuan-Tien Lin (NTU CSIE)

Key behind Kernel Trick

one key behind kernel trick: optimal $\mathbf{w}_* = \sum_{n=1}^N \beta_n \mathbf{z}_n$ because $\mathbf{w}_*^T \mathbf{z} = \sum_{n=1}^N \beta_n \mathbf{z}_n^T \mathbf{z} = \sum_{n=1}^N \beta_n K(\mathbf{x}_n, \mathbf{x})$

when can optimal w_* be represented by z_n ?

Hsuan-Tien Lin (NTU CSIE)

Kernel Logistic Regression

Representer Theorem

claim: for any L2-regularized linear model

$$\min_{\mathbf{w}} \qquad \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y, \mathbf{w}^T \mathbf{z}_n)$$

optimal $\mathbf{w}_* = \sum_{n=1}^N \beta_n \mathbf{z}_n$.

- let optimal $\mathbf{w}_* = \mathbf{w}_{\parallel} + \mathbf{w}_{\perp}$, where $\mathbf{w}_{\parallel} \in \text{span}(\mathbf{z}_n) \& \mathbf{w}_{\perp} \perp \text{span}(\mathbf{z}_n)$ —want $\mathbf{w}_{\perp} = \mathbf{0}$
- what if not? Consider w_{ll}
 - of same err as \mathbf{w}_* : err $(y, \mathbf{w}_*^T \mathbf{z}_n) = \text{err}(y, (\mathbf{w}_{\parallel} + \mathbf{w}_{\perp})^T \mathbf{z}_n)$
 - of smaller regularizer as \mathbf{w}_* : $\mathbf{w}_*^T \mathbf{w}_* = \mathbf{w}_{\parallel}^T \mathbf{w}_{\parallel} + 2\mathbf{w}_{\parallel}^T \mathbf{w}_{\perp} + \mathbf{w}_{\perp}^T \mathbf{w}_{\perp} > \mathbf{w}_{\parallel}^T \mathbf{w}_{\parallel}$
 - -w_{||} 'more optimal' than w_{*} (contradiction!)

any L2-regularized linear model can be **kernelized**!

Hsuan-Tien Lin (NTU CSIE)

Kernel Logistic Regression

Kernel Logistic Regression

solving L2-regularized logistic regression

$$\min_{\mathbf{w}} \qquad \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_n \mathbf{w}^{\mathsf{T}} \mathbf{z}_n \right) \right)$$

yields optimal solution $\mathbf{w}_* = \sum_{n=1}^N \beta_n \mathbf{z}_n$

with out loss of generality, can solve for optimal β instead of w

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_n \beta_m \mathcal{K}(\mathbf{x}_n, \mathbf{x}_m)}{N} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_n \sum_{m=1}^{N} \frac{\beta_m \mathcal{K}(\mathbf{x}_m, \mathbf{x}_n)}{N} \right) \right)$$

-how? GD/SGD/... for unconstrained optimization

kernel logistic regression: use representer theorem for kernel trick on L2-regularized logistic regression

Hsuan-Tien Lin (NTU CSIE)

Kernel Logistic Regression (KLR) : Another View

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_n \beta_m K(\mathbf{x}_n, \mathbf{x}_m)}{N} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_n \sum_{m=1}^{N} \frac{\beta_m K(\mathbf{x}_m, \mathbf{x}_n)}{N} \right) \right)$$

• $\sum_{m=1}^{N} \beta_m K(\mathbf{x}_m, \mathbf{x}_n)$: inner product between variables β and transformed data ($K(\mathbf{x}_1, \mathbf{x}_n), K(\mathbf{x}_2, \mathbf{x}_n), \dots, K(\mathbf{x}_N, \mathbf{x}_n)$)

- $\sum_{n=1}^{N} \sum_{m=1}^{N} \beta_n \beta_m K(\mathbf{x}_n, \mathbf{x}_m)$: a special regularizer $\boldsymbol{\beta}^T \mathbf{K} \boldsymbol{\beta}$
- KLR = linear model of β

with kernel as transform & kernel regularizer;

= linear model of w

with embedded-in-kernel transform & L2 regularizer

similar for SVM

warning: unlike coefficients α_n in SVM, coefficients β_n in KLR often non-zero!

Hsuan-Tien Lin (NTU CSIE)

When viewing KLR as linear model of β with embedded-in-kernel transform & kernel regularizer, what is the dimension of the \mathcal{Z} space that the linear model operates on?

- **1** d, the dimension of the original \mathcal{X} space
- 2 N, the number of training examples
- **3** \tilde{d} , the dimension of some feature transform $\Phi(\mathbf{x})$ that is embedded within the kernel
- **4** λ , the regularization parameter

When viewing KLR as linear model of β with embedded-in-kernel transform & kernel regularizer, what is the dimension of the \mathcal{Z} space that the linear model operates on?

- **1** d, the dimension of the original \mathcal{X} space
- 2 N, the number of training examples
- **3** \tilde{d} , the dimension of some feature transform $\Phi(\mathbf{x})$ that is embedded within the kernel
- **4** λ , the regularization parameter

Reference Answer: (2)

For any \mathbf{x} , the transformed data is $(K(\mathbf{x}_1, \mathbf{x}), K(\mathbf{x}_2, \mathbf{x}), \dots, K(\mathbf{x}_N, \mathbf{x}))$, which is *N*-dimensional.

Summary

Embedding Numerous Features: Kernel Models

- next: kernel models for regression
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models