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Kernel Logistic Regression

Roadmap
© Embedding Numerous Features: Kernel Models

Lecture 4: Soft-Margin Support Vector Machine

allow some margin violations ¢, while penalizing
them by C; equivalent to upper-bounding o, by C

Lecture 5: Kernel Logistic Regression

e Soft-Margin SVM as Regularized Model
e SVM versus Logistic Regression

e SVM for Soft Binary Classification

e Kernel Logistic Regression

® Combining Predictive Features: Aggregation Models
@ Distilling Implicit Features: Extraction Models
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Kernel Logistic Regression

Soft-Margin SVM as Regularized Model

Wrap-Up

Hard-Margin Primal

min L w'w
b,w 2
st ya(w'z,+b)>1

-Margin Primal

N
1
min —w'w+ ngn
n=1

b,w,& 2
Yo(WT'zp+b) >1—€,,6,>0

Hard-Margin Dual

1ozTQac -1'a

-Margin Dual

m0|Ln 5 molzn §a Qa—1'a
s.t. yia=0 s.t. yia=0
0<ap ) 0<ap<C
soft-margin preferred in practice;
linear: LIBLINEAR; non-linear: LIBSVM
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Kernel Logistic Regression Soft-Margin SVM as Regularized Model

Slack Variables &,

e record ‘margin violation’ by &,
¢ penalize with margin violation

N
. 1
m pvweo Y

n=1

st yo(w'z,+b)>1—¢,andé, > 0foralln

on any (b, w), &, = margin violation = max(1 — y,(w'z, + b),0)
o (Xp, yn) violating margin: £, =1 — yp(W'z, + b)
* (Xp, yn) not violating margin: £, =0

‘unconstrained’ form of soft-margin SVM:

N
: 1. 7 T
min  Zw W+ C; max(1 — ys(w'z, + b),0)
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Kernel Logistic Regression Soft-Margin SVM as Regularized Model

Unconstrained Form

b,w

. 1
min §wTw + CZ max(1 — ys(w’z, + b),0)

familiar? :-)

1 _
min - Sw w+CZerr

just L2 regularization
min —w Tw+ — Zerr

with shorter w, another
parameter, and special err

why not solve this? :-)

¢ not QP, no (?) kernel trick
e max(-,0) not differentiable, harder to

solve
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Kernel Logistic Regression Soft-Margin SVM as Regularized Model

SVM as Regularized Model

minimize constraint
regularization by constraint E ww<C
hard-margin SVM w'w Ei, = 0 [and more]
L2 regularization Aww + B,
soft-margin SVM sw'w + CNE;,

large margin < fewer hyperplanes <= L2 regularization of short w
soft margin <= special err

larger C or C <= smaller \ <= less regularization

viewing SVM as regularized model:

allows to other learning models
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Kernel Logistic Regression Soft-Margin SVM as Regularized Model

Fun Time

When viewing soft-margin SVM as regularized model, a larger C
corresponds to

© alarger ), that is, stronger regularization
® a smaller A, that is, stronger regularization
® a larger ), that is, weaker regularization
@ a smaller A, that is, weaker regularization
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Kernel Logistic Regression Soft-Margin SVM as Regularized Model

Fun Time

When viewing soft-margin SVM as regularized model, a larger C
corresponds to

© alarger ), that is, stronger regularization
® a smaller A, that is, stronger regularization
® a larger ), that is, weaker regularization
@ a smaller A, that is, weaker regularization

Reference Answer: @

Comparing the formulations on page 4 of the
slides, we see that C corresponds to ;—A So
larger C corresponds to smaller A\, which
surely means weaker regularization.
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Kernel Logistic Regression SVM versus Logistic Regression

Algorithmic Error Measure of SVM

N
; L T
min  Zw w+CnZ:;max(1 — Yn(w'z, + b),0) J
linear score s=w’z, + b 6 —0/1
e errg/1(s, y) = [ys # 1] 4

o errsym(S, y) = max(1 — ys,0):
upper bound of errq /1

. 1
—often called hinge error measure 0

-3 -2 -1 0 1 2 3
ys

errsyy: algorithmic error measure
by convex upper bound of errg 4
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Kernel Logistic Regression SVM versus Logistic Regression

Algorithmic Error Measure of SVM

N
; L T
min  Zw w+CnZ:;max(1 — Yn(w'z, + b),0) J
linear score s=w'z,+ b 6 —YL
e erro/1(s,y) = [ys # 1] 4

o errsym(S, y) = max(1 — ys,0):
upper bound of errq /1

. 1
—often called hinge error measure 0 ~

-3 -2 -1 0 1 2 3
ys

errsyy: algorithmic error measure
by convex upper bound of errg 4
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Kernel Logistic Regression SVM versus Logistic Regression

Connection between SVM and Logistic Regression

linear score s=w'z, + b 6 =0/
scaled ce
e errg/1(s,y) = [ys # 1] 4\
o errsym(S, y) = max(1 — ys, 0): e »
upper bound of errq /4 f N
o crisee(S, y) =logs(1 + exp(—ys)): 0
another upper bound of erry /4 used in -3 -2 -1 yos 1 2 3
logistic regression )
—00 — ys — +o0
~—ySs ertsvu (S, y) =
~ —ySs (IN2) - errsce(s, y) ~

SVM =~ L2-regularized logistic regression J
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Kernel Logistic Regression

SVM versus Logistic Regression

Linear Models for Binary Classification

PLA

minimize
errg /1 specially
o pros: efficient if
lin. separable

e cons: works only
if lin. separable,
otherwise
needing pocket

soft-margin
SVM

minimize regularized
errgyy by QP
pros: ‘easy’
optimization &
theoretical
guarantee

cons: loose
bound of errg /¢ for
very negative ys

W

regularized

logistic regression
for classification

minimize regularized
errsce by GD/SGDY...

e pros: ‘easy’
optimization &
regularization
guard

e cons: loose

bound of errg /¢ for
very negative ys

regularized LogReg =— approximate SVM
SVM — approximate LogReg (?) J
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Kernel Logistic Regression SVM versus Logistic Regression

Fun Time

We know that errsyu (S, y) is an upper bound of errg /1 (s, y). When is
the upper bound tight? That is, when is ertsyu(s, y) = errg/1(S, ¥)?

®ys>0
® ys<0
®O ys>1
O ys<t
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SVM versus Logistic Regression

Fun Time

Kernel Logistic Regression

We know that errsyu (S, y) is an upper bound of errg /1 (s, y). When is
the upper bound tight? That is, when is ertsyu(s, y) = errg/1(S, ¥)?
©®ys>0
® ys<O0
O ys>1
O ys<t )

Reference Answer: @

By plotting the figure, we can easily see that
errsvm (S, y) = errg 1 (8, y) if and only if ys > 1.
In that case, both error functions evaluate to 0.
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Kernel Logistic Regression SVM for Soft Binary Classification

SVM for Soft Binary Classification

NEWCRER Naive Idea 2

© run SVM and get © run SVM and get
(bsvm, Wsym) (bsym, Wsym)
@ return ® run LogReg with
g(x) = Q(W;-VMX + bsvm) (bsvm, Wsym) @s Wo
® return LogReg solution as
a(x)
« ‘direct’ use of similarity » not really ‘easier’ than
—works reasonably well original LogReg
e no LogReg flavor ) e SVM flavor (kernel?) lost )
want: flavors from both sides )

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 11/20



Kernel Logistic Regression SVM for Soft Binary Classification

A Possible Model: Two-Level Learning
9(%) = 0(A - (WL, ®(X) + bswy) + 5) )

« SVM flavor: fix hyperplane direction by wsy,y—kernel applies

e LogReg flavor: fine-tune hyperplane to match maximum
likelihood by scaling (A) and shifting (B)
e often A > 0 if wgyy reasonably good
e often B ~ 0 if bsyy reasonably good

new LogReg Problem:

N
, 1
min- Z log | 1+exp | —¥n (A : (l’VsTVM"’("V") + bsvw ) + B)

n=1 Dsyy (Xn)

two-level learning:
LogReg on SVM-transformed data J
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Kernel Logistic Regression SVM for Soft Binary Classification

Probabilistic SVM
Platt’s Model of Probabilistic SVM for Soft Binary Classification

© run SVM on D to get (bsym, Wsym) [Or the equivalent a], and
transform D to z), = wl,,,®(Xp) + bsym
—actual model performs this step in a more complicated manner
@® run LogReg on {(z}, yn)}\_, to get (A, B)
—actual model adds some special regularization here

@ return g(x) = (A - (Wyy®(X) + bsvu) + B)

soft binary classifier not having the same boundary as SV
classifier

—because of 5

how to solve LogReqg: GD/SGD/or better

—because only two variables

kernel SVM = approx. LogReg in Z-space
exact LogReg in Z-space? J

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 13/20




Kernel Logistic Regression SVM for Soft Binary Classification

Fun Time
Recall that the score wSTVMtb(x) + bsym = > anynK(%,, X) + bsym for the

kernel SVM. When coupling the kernel SVM with (A, B) to form a
probabilistic SVM, which of the following is the resulting g(x)?

Q9 (ZBan K( ,x)+bSVM)

Z Ban K( ,X) + BbSVM + A)

ee(
® 0 <2Aan K( ,X)+bSVM>
ee<

ZAO[” K( ,X)+Ab3vM+B>
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Kernel Logistic Regression SVM for Soft Binary Classification

Fun Time
Recall that the score wSTVMtb(x) + bsym = > anynK(%,, X) + bsym for the

kernel SVM. When coupling the kernel SVM with (A, B) to form a
probabilistic SVM, which of the following is the resulting g(x)?

(X (z BanyK(%n, X) + bSVM)
oY (z Ban K (%1, X) + Bbsyu + A)

(3 ) <2Aan K( ,x)+bSVM>

e 0 <2Aan K( ,X)+AbSVM+B>

Reference Answer: @

We can simply plug the kernel formula of the

score into g(x).
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Kernel Logistic Regression Kernel Logistic Regression

Key behind Kernel Trick

N
one key behind kernel trick: optimal w, = > (.2,
—1
N N "
because w/z = 3" 8,z2lz= 3 3,K(Xp, X)
n=1 n=1
SVM LogReg by SGD
N N N
Wsym = Z(an}’n)zn Wpia = Z(anyn)ZH W 0GREG = Z(Oén}/n)zn
n=1 n=1 n=1
ap from dual an by # mistake an by total SGD
solutions corrections ) moves

when can optimal w. be represented by z,? ]
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Kernel Logistic Regression Kernel Logistic Regression

Representer Theorem
claim: for any L2-regularized linear model

N
. AT 1 T
min - LGW'W + N ,?1 err(y,w'zp)

optimal w, = >N . 5,2,

let optimal w, = w +w_, where w|| € span(z,) & w, L span(z,)
—wantw, =0
what if not? Consider w
of same err as W, err(y,w/z,) = err(y, (W +w,)"z,)
of smaller regularizer as w,,:
wiw, = w[wH + 2wHTwl +wliw, > w[wu
—w than w.,,

can be kernelized!
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Kernel Logistic Regression Kernel Logistic Regression

Kernel Logistic Regression
solving L2-regularized logistic regression

min —w Tw+ — Zlog( + exp (—yanzn>)

yields optimal solution w.. = >N . 3.z,

with out loss of generality, can solve for optimal 3 instead of w

A N N 1 N N
K/ Z Z BnBmK(Xn, Xm) + N Z log (1 + exp <_Yn Z 5mK(Xm,xn)> )

n=1 m=1 n=1 m=1

—how? GD/SGDY/... for unconstrained optimization

use representer theorem for kernel trick

kernel logistic regression:
on L2-regularized logistic regression J
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Kernel Logistic Regression Kernel Logistic Regression

Kernel Logistic Regression (KLR) : Another View

LY J N N
min 5 >N BaBuK(Xn, Xm) + o > log (1 + exp (—yn > BnK(Xm, x,,)))

n=1 m=1 n=1 m=1

SN BmK (Xm, Xn): inner product between variables 3 and
transformed data (K(x+,Xn), K(X2,Xn), - .., K(Xn, Xn))
Zﬁﬁ Zﬁﬂ BnBmK(Xn, Xm): a special regularizer 3TK3
KLR = linear model of 8
with kernel as transform & kernel regularizer;
= linear model of w
with embedded-in-kernel transform & L2 regularizer

similar for SVM

warning: unlike coefficients a, in SVM,
coefficients 3, in KLR often non-zero! J
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Kernel Logistic Regression Kernel Logistic Regression

Fun Time

When viewing KLR as linear model of 3 with embedded-in-kernel
transform & kernel regularizer, what is the dimension of the Z space
that the linear model operates on?

© 0, the dimension of the original X space
® N, the number of training examples

® d, the dimension of some feature transform ®(x) that is
embedded within the kernel

@ )\, the regularization parameter
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Kernel Logistic Regression Kernel Logistic Regression

Fun Time

When viewing KLR as linear model of 3 with embedded-in-kernel
transform & kernel regularizer, what is the dimension of the Z space
that the linear model operates on?

© 0, the dimension of the original X space
® N, the number of training examples

® d, the dimension of some feature transform ®(x) that is
embedded within the kernel

@ )\, the regularization parameter

Reference Answer: @

For any x, the transformed data is
(K(X1,X), K(X2,X),..., K(Xn, X)), which is
N-dimensional.
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Kernel Logistic Regression Kernel Logistic Regression

Summary
© Embedding Numerous Features: Kernel Models

Lecture 5: Kernel Logistic Regression

e Soft-Margin SVM as Regularized Model
L2-regularization with hinge error measure
@ SVM versus Logistic Regression
~ L2-regularized logistic regression
e SVM for Soft Binary Classification
common approach: two-level learning
o Kernel Logistic Regression
representer theorem on L2-regularized LogRng

¢ next: kernel models for regression

@® Combining Predictive Features: Aggregation Models
@ Distilling Implicit Features: Extraction Models
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