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Kernel Logistic Regression

Roadmap
1 Embedding Numerous Features: Kernel Models

Lecture 4: Soft-Margin Support Vector Machine
allow some margin violations ξn while penalizing
them by C; equivalent to upper-bounding αn by C

Lecture 5: Kernel Logistic Regression
Soft-Margin SVM as Regularized Model
SVM versus Logistic Regression
SVM for Soft Binary Classification
Kernel Logistic Regression

2 Combining Predictive Features: Aggregation Models
3 Distilling Implicit Features: Extraction Models
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Kernel Logistic Regression Soft-Margin SVM as Regularized Model

Wrap-Up

Hard-Margin Primal

min
b,w

1
2

wT w

s.t. yn(wT zn + b) ≥ 1

Soft-Margin Primal

min
b,w,ξ

1
2

wT w + C
N∑

n=1

ξn

s.t. yn(wT zn + b) ≥ 1− ξn, ξn ≥ 0

Hard-Margin Dual

min
α

1
2
αT Qα− 1Tα

s.t. yTα = 0
0 ≤ αn

Soft-Margin Dual

min
α

1
2
αT Qα− 1Tα

s.t. yTα = 0
0 ≤ αn ≤ C

soft-margin preferred in practice;
linear: LIBLINEAR; non-linear: LIBSVM
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Kernel Logistic Regression Soft-Margin SVM as Regularized Model

Slack Variables ξn

• record ‘margin violation’ by ξn

• penalize with margin violation

min
b,w,ξ

1
2

wT w + C ·
N∑

n=1

ξn

s.t. yn(wT zn + b) ≥ 1− ξn and ξn ≥ 0 for all n
Hi

Hi

violation

on any (b,w), ξn = margin violation = max
(
1− yn(wT zn + b),0

)
• (xn, yn) violating margin: ξn = 1− yn(wT zn + b)
• (xn, yn) not violating margin: ξn = 0

‘unconstrained’ form of soft-margin SVM:

min
b,w

1
2

wT w + C
N∑

n=1

max
(
1− yn(wT zn + b),0

)
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Kernel Logistic Regression Soft-Margin SVM as Regularized Model

Unconstrained Form

min
b,w

1
2

wT w + C
N∑

n=1

max
(
1− yn(wT zn + b),0

)

familiar? :-)

min
1
2

wT w + C
∑

êrr

just L2 regularization

min
λ

N
wT w +

1
N

∑
err

with shorter w, another
parameter, and special err

why not solve this? :-)
• not QP, no (?) kernel trick
• max(·,0) not differentiable, harder to

solve
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Kernel Logistic Regression Soft-Margin SVM as Regularized Model

SVM as Regularized Model

minimize constraint
regularization by constraint Ein wT w ≤ C

hard-margin SVM wT w Ein = 0 [and more]
L2 regularization λ

N wT w + Ein

soft-margin SVM 1
2wT w + CNÊin

large margin⇐⇒ fewer hyperplanes⇐⇒ L2 regularization of short w

soft margin⇐⇒ special êrr

larger C or C ⇐⇒ smaller λ⇐⇒ less regularization

viewing SVM as regularized model:

allows extending/connecting to other learning models

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/20



Kernel Logistic Regression Soft-Margin SVM as Regularized Model

Fun Time

When viewing soft-margin SVM as regularized model, a larger C
corresponds to

1 a larger λ, that is, stronger regularization
2 a smaller λ, that is, stronger regularization
3 a larger λ, that is, weaker regularization
4 a smaller λ, that is, weaker regularization

Reference Answer: 4

Comparing the formulations on page 4 of the
slides, we see that C corresponds to 1

2λ . So
larger C corresponds to smaller λ, which
surely means weaker regularization.
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Kernel Logistic Regression SVM versus Logistic Regression

Algorithmic Error Measure of SVM

min
b,w

1
2

wT w + C
N∑

n=1

max
(
1− yn(wT zn + b),0

)

linear score s = wT zn + b

• err0/1(s, y) = Jys 6= 1K
• êrrSVM(s, y) = max(1− ys,0):

upper bound of err0/1
—often called hinge error measure

−3 −2 −1 0 1 2 3

0

1

2

4

6

ys

err

0/1

−3 −2 −1 0 1 2 3

0

1

2

4

6

ys

err

0/1
svm

êrrSVM: algorithmic error measure
by convex upper bound of err0/1
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Kernel Logistic Regression SVM versus Logistic Regression

Connection between SVM and Logistic Regression

linear score s = wT zn + b

• err0/1(s, y) = Jys 6= 1K
• êrrSVM(s, y) = max(1− ys,0):

upper bound of err0/1

• errSCE(s, y) = log2(1 + exp(−ys)):
another upper bound of err0/1 used in
logistic regression

−3 −2 −1 0 1 2 3

0

1

2

4

6

ys

err

0/1
svm
scaled ce

−∞ ←− ys −→ +∞
≈ −ys êrrSVM(s, y) = 0
≈ −ys (ln 2) · errSCE(s, y) ≈ 0

SVM ≈ L2-regularized logistic regression
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Kernel Logistic Regression SVM versus Logistic Regression

Linear Models for Binary Classification
PLA

minimize
err0/1 specially
• pros: efficient if

lin. separable

• cons: works only
if lin. separable,
otherwise
needing pocket

soft-margin
SVM

minimize regularized
êrrSVM by QP
• pros: ‘easy’

optimization &
theoretical
guarantee

• cons: loose
bound of err0/1 for
very negative ys

regularized
logistic regression
for classification
minimize regularized
errSCE by GD/SGD/...
• pros: ‘easy’

optimization &
regularization
guard

• cons: loose
bound of err0/1 for
very negative ys

regularized LogReg =⇒ approximate SVM
SVM =⇒ approximate LogReg (?)
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Kernel Logistic Regression SVM versus Logistic Regression

Fun Time

We know that êrrSVM(s, y) is an upper bound of err0/1(s, y). When is
the upper bound tight? That is, when is êrrSVM(s, y) = err0/1(s, y)?

1 ys ≥ 0
2 ys ≤ 0
3 ys ≥ 1
4 ys ≤ 1

Reference Answer: 3

By plotting the figure, we can easily see that
êrrSVM(s, y) = err0/1(s, y) if and only if ys ≥ 1.
In that case, both error functions evaluate to 0.
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êrrSVM(s, y) = err0/1(s, y) if and only if ys ≥ 1.
In that case, both error functions evaluate to 0.

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 10/20



Kernel Logistic Regression SVM for Soft Binary Classification

SVM for Soft Binary Classification

Naïve Idea 1
1 run SVM and get

(bSVM,wSVM)

2 return
g(x) = θ(wT

SVMx + bSVM)

• ‘direct’ use of similarity
—works reasonably well

• no LogReg flavor

Naïve Idea 2
1 run SVM and get

(bSVM,wSVM)

2 run LogReg with
(bSVM,wSVM) as w0

3 return LogReg solution as
g(x)

• not really ‘easier’ than
original LogReg

• SVM flavor (kernel?) lost

want: flavors from both sides
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Kernel Logistic Regression SVM for Soft Binary Classification

A Possible Model: Two-Level Learning
g(x) = θ(A · (wT

SVMΦ(x) + bSVM) + B)

• SVM flavor: fix hyperplane direction by wSVM—kernel applies
• LogReg flavor: fine-tune hyperplane to match maximum

likelihood by scaling (A) and shifting (B)
• often A > 0 if wSVM reasonably good
• often B ≈ 0 if bSVM reasonably good

new LogReg Problem:

min
A,B

1
N

N∑
n=1

log

1 + exp

−yn

(
A · (wT

SVMΦ(xn) + bSVM︸ ︷︷ ︸
ΦSVM(xn)

) + B
)


two-level learning:
LogReg on SVM-transformed data
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Kernel Logistic Regression SVM for Soft Binary Classification

Probabilistic SVM
Platt’s Model of Probabilistic SVM for Soft Binary Classification

1 run SVM on D to get (bSVM,wSVM) [or the equivalent α], and
transform D to z′n = wT

SVMΦ(xn) + bSVM

—actual model performs this step in a more complicated manner
2 run LogReg on {(z′n, yn)}Nn=1 to get (A,B)

—actual model adds some special regularization here
3 return g(x) = θ(A · (wT

SVMΦ(x) + bSVM) + B)

• soft binary classifier not having the same boundary as SVM
classifier
—because of B

• how to solve LogReg: GD/SGD/or better
—because only two variables

kernel SVM =⇒ approx. LogReg in Z-space
exact LogReg in Z-space?
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Kernel Logistic Regression SVM for Soft Binary Classification

Fun Time
Recall that the score wT

SVMΦ(x) + bSVM =
∑
SV
αnynK (xn,x) + bSVM for the

kernel SVM. When coupling the kernel SVM with (A,B) to form a
probabilistic SVM, which of the following is the resulting g(x)?

1 θ

(∑
SV

BαnynK (xn,x) + bSVM

)
2 θ

(∑
SV

BαnynK (xn,x) + BbSVM + A
)

3 θ

(∑
SV

AαnynK (xn,x) + bSVM

)
4 θ

(∑
SV

AαnynK (xn,x) + AbSVM + B
)

Reference Answer: 4

We can simply plug the kernel formula of the
score into g(x).
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Kernel Logistic Regression Kernel Logistic Regression

Key behind Kernel Trick

one key behind kernel trick: optimal w∗ =
N∑

n=1
βnzn

because wT
∗ z =

N∑
n=1

βnzT
n z =

N∑
n=1

βnK (xn,x)

SVM

wSVM =
N∑

n=1

(αnyn)zn

αn from dual
solutions

PLA

wPLA =
N∑

n=1

(αnyn)zn

αn by # mistake
corrections

LogReg by SGD

wLOGREG =
N∑

n=1

(αnyn)zn

αn by total SGD
moves

when can optimal w∗ be represented by zn?
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Kernel Logistic Regression Kernel Logistic Regression

Representer Theorem
claim: for any L2-regularized linear model

min
w

λ

N
wT w +

1
N

N∑
n=1

err(y ,wT zn)

optimal w∗ =
∑N

n=1 βnzn.

• let optimal w∗ = w‖ + w⊥, where w‖ ∈ span(zn) & w⊥ ⊥ span(zn)
—want w⊥ = 0

• what if not? Consider w‖
• of same err as w∗: err(y ,wT

∗ zn) = err(y , (w‖ + w⊥)T zn)
• of smaller regularizer as w∗:

wT
∗w∗ = wT

‖w‖ + 2wT
‖w⊥ + wT

⊥w⊥ > wT
‖w‖

—w‖ ‘more optimal’ than w∗ (contradiction!)

any L2-regularized linear model
can be kernelized!
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Kernel Logistic Regression Kernel Logistic Regression

Kernel Logistic Regression
solving L2-regularized logistic regression

min
w

λ

N
wT w +

1
N

N∑
n=1

log
(

1 + exp
(
−ynwT zn

))
yields optimal solution w∗ =

∑N
n=1 βnzn

with out loss of generality, can solve for optimal β instead of w

min
β

λ

N

N∑
n=1

N∑
m=1

βnβmK (xn,xm) +
1
N

N∑
n=1

log

(
1 + exp

(
−yn

N∑
m=1

βmK (xm,xn)

))

—how? GD/SGD/... for unconstrained optimization

kernel logistic regression:
use representer theorem for kernel trick
on L2-regularized logistic regression
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Kernel Logistic Regression Kernel Logistic Regression

Kernel Logistic Regression (KLR) : Another View

min
β

λ

N

N∑
n=1

N∑
m=1

βnβmK (xn,xm) +
1
N

N∑
n=1

log

(
1 + exp

(
−yn

N∑
m=1

βmK (xm,xn)

))

•
∑N

m=1 βmK (xm,xn): inner product between variables β and
transformed data (K (x1,xn),K (x2,xn), . . . ,K (xN ,xn))

•
∑N

n=1
∑N

m=1 βnβmK (xn,xm): a special regularizer βT Kβ

• KLR = linear model of β

KLR =

with kernel as transform & kernel regularizer;

KLR

= linear model of w

KLR =

with embedded-in-kernel transform & L2 regularizer
• similar for SVM

warning: unlike coefficients αn in SVM,
coefficients βn in KLR often non-zero!
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Kernel Logistic Regression Kernel Logistic Regression

Fun Time

When viewing KLR as linear model of β with embedded-in-kernel
transform & kernel regularizer, what is the dimension of the Z space
that the linear model operates on?

1 d , the dimension of the original X space
2 N, the number of training examples
3 d̃ , the dimension of some feature transform Φ(x) that is

embedded within the kernel
4 λ, the regularization parameter

Reference Answer: 2

For any x, the transformed data is
(K (x1,x),K (x2,x), . . . ,K (xN ,x)), which is
N-dimensional.
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Kernel Logistic Regression Kernel Logistic Regression

Summary
1 Embedding Numerous Features: Kernel Models

Lecture 5: Kernel Logistic Regression
Soft-Margin SVM as Regularized Model

L2-regularization with hinge error measure
SVM versus Logistic Regression

≈ L2-regularized logistic regression
SVM for Soft Binary Classification

common approach: two-level learning
Kernel Logistic Regression

representer theorem on L2-regularized LogReg

• next: kernel models for regression

2 Combining Predictive Features: Aggregation Models
3 Distilling Implicit Features: Extraction Models
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