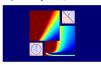
Machine Learning Foundations (機器學習基石)



Lecture 15: Validation Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 14: Regularization

minimizes augmented error, where the added regularizer effectively limits model complexity

Lecture 15: Validation

- Model Selection Problem
- Validation
- Leave-One-Out Cross Validation
- V-Fold Cross Validation

Model Selection Problem

So Many Models Learned

Even Just for Binary Classification ...

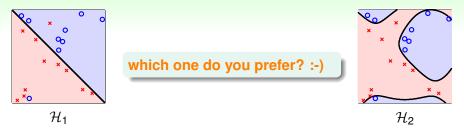
 $\mathcal{A} \in \{ \mathsf{PLA}, \mathsf{pocket}, \mathsf{linear regression}, \mathsf{logistic regression} \}$ $T \in \{ 100, 1000, 10000 \}$ $\eta \in \{1, 0.01, 0.0001\}$ $\Phi \in \{$ linear, quadratic, poly-10, Legendre-poly-10 $\}$ $\Omega(\mathbf{w}) \in \{$ L2 regularizer, L1 regularizer, symmetry regularizer $\}$ $\lambda \in \{0, 0.01, 1\}$

in addition to your **favorite** combination, may need to try other combinations to get a good *g*

Hsuan-Tien Lin (NTU CSIE)

Model Selection Problem

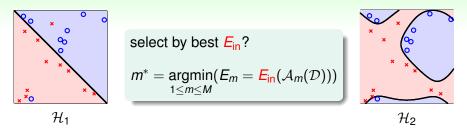
Model Selection Problem



- given: *M* models *H*₁, *H*₂,..., *H*_M, each with corresponding algorithm *A*₁, *A*₂,..., *A*_M
- goal: select \mathcal{H}_{m^*} such that $g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$ is of low $E_{\text{out}}(g_{m^*})$
- unknown E_{out} due to unknown P(x) & P(y|x), as always :-)
- arguably the most important practical problem of ML

Hsuan-Tien Lin (NTU CSIE)

Model Selection by Best Ein



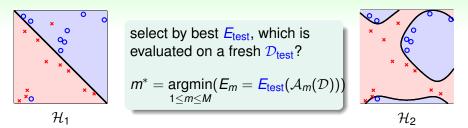
- Φ₁₁₂₆ always more preferred over Φ₁;
 λ = 0 always more preferred over λ = 0.1—overfitting?
- if A_1 minimizes E_{in} over H_1 and A_2 minimizes E_{in} over H_2 ,
 - $\Longrightarrow g_{m^*}$ achieves minimal E_{in} over $\mathcal{H}_1 \cup \mathcal{H}_2$
 - \implies 'model selection + learning' pays $d_{VC}(\mathcal{H}_1 \cup \mathcal{H}_2)$
 - -bad generalization?

selecting by *E*_{in} is **dangerous**

Hsuan-Tien Lin (NTU CSIE)

Model Selection Problem

Model Selection by Best E_{test}



• generalization guarantee (finite-bin Hoeffding):

$$E_{ ext{out}}(g_{m^*}) \leq E_{ ext{test}}(g_{m^*}) + O\left(\sqrt{rac{\log M}{N_{ ext{test}}}}
ight)$$

-yes! strong guarantee :-)

• but where is D_{test}?—your boss's safe, maybe? :-(

selecting by *E*_{test} is **infeasible** and **cheating**

Comparison between Ein and Etest

in-sample error Ein

- calculated from \mathcal{D}
- feasible on hand
- 'contaminated' as *D* also used by *A_m* to 'select' *g_m*

test error E_{test}

- calculated from D_{test}
- infeasible in boss's safe
- 'clean' as $\mathcal{D}_{\text{test}}$ never used for selection before

something in between: *E*_{val}

- calculated from $\mathcal{D}_{\text{val}} \subset \mathcal{D}$
- feasible on hand
- 'clean' if \mathcal{D}_{val} never used by \mathcal{A}_m before

selecting by *E*_{val}: legal cheating :-)

Hsuan-Tien Lin (NTU CSIE)

For $\mathcal{X} = \mathbb{R}^d$, consider two hypothesis sets, \mathcal{H}_+ and \mathcal{H}_- . The first hypothesis set contains all perceptrons with $w_1 \ge 0$, and the second hypothesis set contains all perceptrons with $w_1 \le 0$. Denote g_+ and g_- as the minimum- E_{in} hypothesis in each hypothesis set, respectively. Which statement below is true?

- If *E*_{in}(*g*₊) < *E*_{in}(*g*₋), then *g*₊ is the minimum-*E*_{in} hypothesis of all perceptrons in ℝ^d.
- 2 If *E*_{test}(*g*₊) < *E*_{test}(*g*₋), then *g*₊ is the minimum-*E*_{test} hypothesis of all perceptrons in ℝ^d.
- 3 The two hypothesis sets are disjoint.
- 4 None of the above

For $\mathcal{X} = \mathbb{R}^d$, consider two hypothesis sets, \mathcal{H}_+ and \mathcal{H}_- . The first hypothesis set contains all perceptrons with $w_1 \ge 0$, and the second hypothesis set contains all perceptrons with $w_1 \le 0$. Denote g_+ and g_- as the minimum- E_{in} hypothesis in each hypothesis set, respectively. Which statement below is true?

- If *E*_{in}(*g*₊) < *E*_{in}(*g*₋), then *g*₊ is the minimum-*E*_{in} hypothesis of all perceptrons in ℝ^d.
- 2 If *E*_{test}(*g*₊) < *E*_{test}(*g*₋), then *g*₊ is the minimum-*E*_{test} hypothesis of all perceptrons in ℝ^d.
- 3 The two hypothesis sets are disjoint.
- 4 None of the above

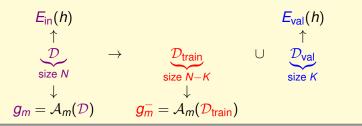
Reference Answer: (1)

Note that the two hypothesis sets are not disjoint (sharing ' $w_1 = 0$ ' perceptrons) but their union is all perceptrons.

Hsuan-Tien Lin (NTU CSIE)

Validation

Validation Set \mathcal{D}_{val}



- $\mathcal{D}_{val} \subset \mathcal{D}$: called validation set—'on-hand' simulation of test set
- to connect *E*_{val} with *E*_{out}:
 *D*_{val} ^{iid} *P*(**x**, *y*) ⇐ select *K* examples from *D* at random
- to make sure D_{val} 'clean': feed only D_{train} to A_m for model selection

$$E_{\mathsf{out}}(\underline{g_m}) \leq E_{\mathsf{val}}(\underline{g_m}) + O\left(\sqrt{rac{\log M}{K}}
ight)$$

Hsuan-Tien Lin (NTU CSIE)

Validation

Model Selection by Best Eval

$$m^{*} = \underset{1 \leq m \leq M}{\operatorname{argmin}}(E_{m} = E_{val}(\mathcal{A}_{m}(\mathcal{D}_{train})))$$

$$= \underset{L_{out}(g_{m})}{\operatorname{generalization}} guarantee for all m:$$

$$= \underset{L_{out}(g_{m})}{\operatorname{fout}(g_{m})} \leq E_{val}(g_{m}) + O\left(\sqrt{\frac{\log M}{K}}\right)$$

$$= \underset{L_{out}}{\operatorname{fout}} \left(\underbrace{g_{m^{*}}}_{\mathcal{A}_{m^{*}}(\mathcal{D})}\right) \leq E_{out}\left(\underbrace{g_{m^{*}}}_{\mathcal{A}_{m^{*}}(\mathcal{D}_{train})}\right)$$

$$= \underset{L_{out}(g_{m^{*}})}{\operatorname{learning}} curve, remember? :-)$$

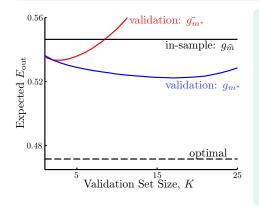
$$= \underset{L_{out}(g_{m^{*}}) \leq E_{out}(g_{m^{*}}) \leq E_{val}(g_{m^{*}}) + O\left(\sqrt{\frac{\log M}{K}}\right)$$

Hsuan-Tien Lin (NTU CSIE)

Validation

Validation in Practice

use validation to select between \mathcal{H}_{Φ_5} and $\mathcal{H}_{\Phi_{10}}$



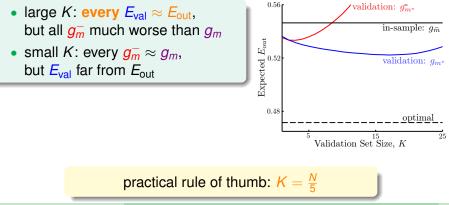
- in-sample: selection with *E*_{in}
- optimal: cheating-selection with *E*_{test}
- sub-g: selection with E_{val} and report g⁻_{m*}
- full-g: selection with E_{val} and report g_{m^*} $-E_{out}(g_{m^*}) \le E_{out}(g_{m^*}^-)$ indeed

why is sub-g worse than in-sample some time?

Validation

The Dilemma about K

reasoning of validation:



Hsuan-Tien Lin (NTU CSIE)

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running the whole validation procedure with $K = \frac{N}{5}$ on 25 such models with different parameters to get the final g_{m^*} ?

- 6N²
- 2 17N²
- 3 25N²
- ④ 26N²

Validation Validation

Fun Time

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running the whole validation procedure with $K = \frac{N}{5}$ on 25 such models with different parameters to get the final g_{m^*} ?

- 6N²
- 2 17N²
- 3 25N²
- ④ 26N²

Reference Answer: (2)

To get all the g_m^- , we need $\frac{16}{25}N^2 \cdot 25$ seconds. Then to get g_{m^*} , we need another N^2 seconds. So in total we need $17N^2$ seconds.

Extreme Case: K = 1

reasoning of validation:

$$E_{\text{out}}(g) \approx E_{\text{out}}(g^-) \approx E_{\text{val}}(g^-)$$

(small K) (large K)

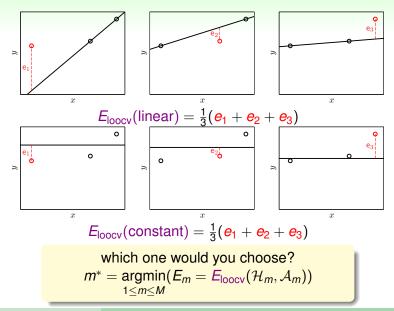
- take K = 1? $\mathcal{D}_{val}^{(n)} = \{(\mathbf{x}_n, y_n)\}$ and $E_{val}^{(n)}(g_n^-) = err(g_n^-(\mathbf{x}_n), y_n) = e_n$
- make e_n closer to $E_{out}(g)$?—average over possible $E_{val}^{(n)}$
- leave-one-out cross validation estimate:

$$E_{\text{loocv}}(\mathcal{H},\mathcal{A}) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \text{err}(g_n^-(\mathbf{x}_n), y_n)$$

hope:
$$E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) \approx E_{\text{out}}(g)$$

Hsuan-Tien Lin (NTU CSIE)

Illustration of Leave-One-Out



Hsuan-Tien Lin (NTU CSIE)

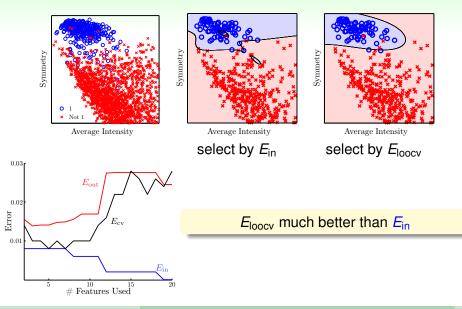
Theoretical Guarantee of Leave-One-Out Estimate does $E_{\text{loocv}}(\mathcal{H}, \mathcal{A})$ say something about $E_{\text{out}}(g)$? yes, for average E_{out} on size-(N - 1) data

$$\begin{aligned} \mathcal{E}_{\mathcal{D}} E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) &= \mathcal{E}_{\mathcal{D}} \frac{1}{N} \sum_{n=1}^{N} e_n &= \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{\mathcal{D}} e_n \\ &= \frac{1}{N} \sum_{n=1}^{N} \frac{\mathcal{E}_{\mathcal{D}}}{\mathcal{D}_n(\mathbf{x}_n, y_n)} \operatorname{err}(g_n^-(\mathbf{x}_n), y_n) \\ &= \frac{1}{N} \sum_{n=1}^{N} \frac{\mathcal{E}_{\mathcal{D}}}{\mathcal{D}_n} E_{\text{out}}(g_n^-) \\ &= \frac{1}{N} \sum_{n=1}^{N} \overline{\mathcal{E}}_{\text{out}}(N-1) = \overline{\mathcal{E}}_{\text{out}}(N-1) \end{aligned}$$

expected $E_{\text{loocv}}(\mathcal{H}, \mathcal{A})$ says something about expected $E_{\text{out}}(g^-)$ —often called 'almost unbiased estimate of $E_{\text{out}}(g)$ '

Hsuan-Tien Lin (NTU CSIE)

Leave-One-Out in Practice



Hsuan-Tien Lin (NTU CSIE)

Consider three examples $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3)$ with $y_1 = 1, y_2 = 5$, $y_3 = 7$. If we use E_{loocv} to estimate the performance of a learning algorithm that predicts with the average *y* value of the data set—the optimal constant prediction with respect to the squared error. What is E_{loocv} (squared error) of the algorithm?

Consider three examples $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3)$ with $y_1 = 1, y_2 = 5$, $y_3 = 7$. If we use E_{loocv} to estimate the performance of a learning algorithm that predicts with the average *y* value of the data set—the optimal constant prediction with respect to the squared error. What is E_{loocv} (squared error) of the algorithm?

Reference Answer: 4 This is based on a simple calculation of

$$e_1 = (1-6)^2, e_2 = (5-4)^2, e_3 = (7-3)^2.$$

V-Fold Cross Validation

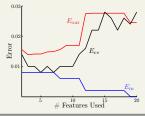
Disadvantages of Leave-One-Out Estimate

Computation

$$E_{\text{loocv}}(\mathcal{H},\mathcal{A}) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(g_n^{-}(\mathbf{x}_n), y_n)$$

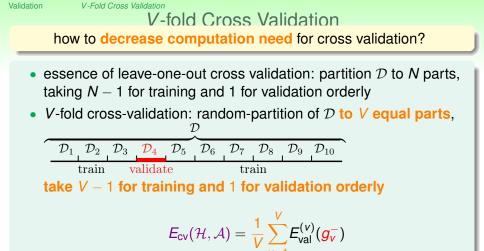
- N 'additional' training per model, not always feasible in practice
- except 'special case' like analytic solution for linear regression

Stability-due to variance of single-point estimates



Eloocv: not often used practically

Hsuan-Tien Lin (NTU CSIE)



• selection by E_{cv} : $m^* = \underset{1 \le m \le M}{\operatorname{argmin}}(E_m = E_{cv}(\mathcal{H}_m, \mathcal{A}_m))$

practical rule of thumb: V = 10

Hsuan-Tien Lin (NTU CSIE)

V-Fold Cross Validation

Final Words on Validation

'Selecting' Validation Tool

- V-Fold generally preferred over single validation if computation allows
- 5-Fold or 10-Fold generally works well: not necessary to trade V-Fold with Leave-One-Out

Nature of Validation

- all training models: select among hypotheses
- all validation schemes: select among finalists
- all testing methods: just evaluate

validation still more optimistic than testing

do not fool yourself and others :-), report test result, not best validation result

Hsuan-Tien Lin (NTU CSIE)

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running 10-fold cross validation on 25 such models with different parameters to get the final g_{m^*} ?

$$\frac{47}{2}N^2 2 47N^2 3 \frac{407}{2}N^2$$

For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running 10-fold cross validation on 25 such models with different parameters to get the final g_{m^*} ?

$$\frac{47}{2}N^2$$

$$\frac{47}{2}N^2$$

$$\frac{407}{2}N^2$$

Reference Answer: (3) To get all the E_{cv} , we need $\frac{81}{100}N^2 \cdot 10 \cdot 25$ seconds. Then to get g_{m^*} , we need another N^2 seconds. So in total we need $\frac{407}{2}N^2$ seconds.

Summary

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 14: Regularization

Lecture 15: Validation

- Model Selection Problem
 - dangerous by E_{in} and dishonest by E_{test}
- Validation
 - select with $E_{val}(\mathcal{D}_{train})$ while returning $\mathcal{A}_{m^*}(\mathcal{D})$
- Leave-One-Out Cross Validation

huge computation for almost unbiased estimate

• V-Fold Cross Validation

reasonable computation and performance

• next: something 'up my sleeve'